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Abstract

A plethora of evidence and theoretical work indicates that the basal ganglia (BG) might
be the locus where conflicts between prospective motor programs, or actions, are being
resolved. Similarly to the majority of brain regions, oscillations in this subcortical group
are ubiquitous, largely driven by the cortex and associated with a number of motor
symptoms in neurodegenerative diseases. However, the literature so far contains no
systematic attempt to address the impact of cortical oscillations on the ability of the
BG to select. In this study, we employed a state-of-the-art spiking neural model of the
BG circuitry and investigated the effectiveness of the BG as an action selection device.
We found that cortical frequency, phase, dopamine and the examined time scale, all
have a very important impact on the model’s ability to select. Our simulations resulted
in a canonical profile of selectivity, termed selectivity portraits, which suggests that the
cortex is the structure that determines whether selection will be performed in the BG
and what strategy will be utilized. Some frequency ranges promote the exploitation of
highly salient actions, others promote the exploration of alternative options, while the
remaining frequencies simply halt the selection process. Based on this behaviour, we
propose that the BG circuitry can be viewed as the “gearbox” of action selection.
Coalitions of rhythmic cortical areas are able to switch between a repertoire of available
BG modes which, in turn, change the course of information flow within the
cortico-BG-thalamo-cortical loop. Dopamine, akin to “control pedals”, either stops or
initiates a decision, while cortical frequencies, as a “gear lever”, determine whether a
decision can be triggered and what type of decision this will be. Finally, we identified a
selection cycle with a period of around 200ms, which was used to assess the biological
plausibility of the popular cognitive architectures.

Introduction

The physical location of the basal ganglia (BG), as well as their broad bidirectional
connectivity with major cortical areas, the limbic system and the thalamus, place the
this brain structure in a key position to modulate the flow of information between the
cortex and the body. Despite the great diversity of inputs and outputs, the human BG
consist of the same repeating internal circuitry [1] which is also largely retained in most
vertebrate species [2, 3]. This strictly topographic organization on different scales
suggests that through this structure, some common modulatory operations are applied
to functionally different channels of information flow.

In the microscopic scale, the BG circuitry can be broken down into a massive
number o parallel loops (or channels) which, as suggested, represent different competing

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/197129doi: bioRxiv preprint 

https://doi.org/10.1101/197129
http://creativecommons.org/licenses/by-nc/4.0/


information signals or “action requests” [4, 5]. According to this popular theory, the BG
circuit is able to process those requests and finally select the most salient (or urgent)
potential action, via the direct BG pathway, while providing inhibition to the rest
competing channels via the indirect pathway [6, 7].

An increasing amount of neurophysiological evidence implicates the BG to selection
of voluntary motor actions and provides indirect verification of this hypothesis [8]. [9]
showed that the excess activation of the direct BG pathway in freely behaving mice, via
stimulation of MSND1 neurons in the striatum, increases movement, while the
stimulation of the indirect pathway made the same animals to freeze. In addition,
although both pathways are required for healthy action selection and were found to
contribute equally to the initiation of actions in [10], the indirect pathway is suppressed
during the execution of actions or action sequences [11], presumably because any
behavioural conflicts have already been resolved during movement [8].

From another standpoint, low-frequency brain oscillations have been widely
implicated in both the function of the BG [12] and the process of decision
making [13–15]. Oscillations in the cortex mediate the processing of new
information [16], the dynamic formation of neural ensembles representing different
actions and the suppression of other task-irrelevant regions [17,18]. The are also found
to encode uncertainty and influence the exploration-exploitation trade-off [19]. In
addition, there is a substantial number of studies focusing on low-frequency oscillations
in the BG, as changes of this activity are connected with a number of disorders such as
Parkinson’s or Huntington’s disease.

But are these phenomena related? Evidence suggests that oscillations in some
certain bands in the striatum and the subthalamic nucleus (STN), the input structures
of the BG, are driven by cortical regions [20–23]. Taking this into account, in previous
work [24] we explored the impact of cortical rhythmic activity on the BG function and
we found that the former can completely shape which areas of the BG circuit are active.
Yet, the connection between the BG, cortical oscillations and decision making still
remains relatively unexplored.

In this work we attempt to narrow this gap by investigating whether cortical
oscillations could influence the ability of the BG to act as a selection device. To achieve
this, we initially defined a number of metrics that enable the assessment of the
effectiveness of possible selection mechanisms. Using the biologically plausible neural
model of the BG circuitry defined in [24], we then carried out an analysis of the
relationship between cortical frequencies, dopamine concentration and BG selectivity.

We found that the frequency and phase difference between oscillatory cortical areas,
the level of dopamine in the system and the examined time scale, all have a very
important impact to the ability of our model to select. Our simulations resulted in a
canonical profile of selectivity in the BG, which we termed selectivity portraits, that can
be largely maintained in simplified versions of the model.

Using these portraits, we show that although the BG circuit can robustly and
sequentially perform selection tasks, the strongly-active cortical areas instruct the mode
of this selection via their oscillatory activity. Some frequency ranges promote the
exploitation of actions of which the outcome is known, others promote the exploration
of new actions with high uncertainty, while others simply deactivate the selection
mechanism. Finally, we identified a selection cycle with a period of around 200 ms,
which was used to assess the biological plausibility of the most popular architectures in
cognitive science.

Our results agree well with experimental observations, provide new justifications and
insights into oscillatory phenomena related to decision making and reaffirm the role of
the BG as the selection centre of the brain.
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Materials and Methods

The basal ganglia model

The full model

The predominant tool used in this study is a state-of-the-art, large-scale spiking neuron
model of the complete motor BG circuitry, presented in detail in [24]. This model
integrates fine-tuned models of phenomenological (Izhikevich) spiking neurons that
correspond to different sub-types of cells within the BG nuclei, electrical and
conductance-based chemical synapses that include short-term plasticity and
neuromodulation, as well as anatomically-derived striatal connectivity.

In particular, this model comprises 10 neural populations that correspond to the four
major nuclei of the biological BG and form the canonical circuit described in the
Introduction. These include the striatum and the STN, the two inputs of the BG, the
external part of the globus pallidus (GPe), as well as the substantia nigra pars reticulata
(SNr), one of the two output structures of the BG. Furthermore, the effect of the pars
compacta part of the substantia nigra (SNc) is realized through the concentration of the
neurotransmitter dopamine (DA) in the different parts of the network (green colour in
Fig. 1). The network is devided in three microscopic channels, which are mutually
inhibited and used to represent different action requests throughout this study.
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Fig 1. The network architecture of the current BG model.

The internal structure of the striatum has been modelled using three different groups
that correspond to its three major neural populations. The first two groups, which
comprise the 99% of the striatum, correspond to the two categories of medium
spiny-projection neurons (MSNs), divided based on the dominant type of their
dopamine receptors. Dopamine is known to enhance activity in the first group (MSND1
neurons) and depress the second (MSND2 neurons). The remaining 1% of the striatum
is occupied by fast-spiking gabaergic interneurons (FSIs) that are affected by both types
of dopamine receptors and are highly interconnected with both electrical and
GABAergic synapses. Finally, the STN and GPe comprise three sub-populations each,
that correspond to the three predominant types found in the literature to have
distinctive dynamical and electrophysiological patterns.

The number and ratio of neurons in each group, is taken from anatomical studies
and result in a total of 9586 neurons that form the BG network. The probability for a
connection between any two neurons of this network depends on the source and target
nuclei and it was either infered from anatomical studies or taken from previous
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computational studies. Finallly, an optimization method was used to approximate
neural and network parameters based on empirical findings [25].

A reduced version of the model

As a consequence of its detailed architecture, the neural model in [24] contains a rather
high number of parameters that might influence its behaviour and the resulting
measurements of selectivity. In order to narrow down this space and establish the most
important BG features for selectivity we defined a second, simplified version of this
neural model with significantly less differences between nuclei. The behaviour of this
simplified model is compared against the full version in [24] in the Results section of
this study, where the homogeneity and robustness of our results is determined. The
architecture of the simplified model is shown in Fig. 2.
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D1 D2

Parameter MSN* STN*** GPe**** SNr****

a 0.01 0.005 0.05 0.05
b -20 88.33 2.5 3
c(mV ) -55 -65.0 -60 -65
d 91 500.0 70 200
vr (mV ) -80 -61.0 -55.1 -55.8
vt(mV ) -29.7 -64.035 -54.7 -55.2
vpeak(mV ) 40 20.0** 15 20.0
Cm(pF ) 15.2 333.33 40 80
k 1 13.33 0.706 1.731
d1 0.3** - - -
d2 0.3** 0.3** 0.3** -

A B

Fig 2. Simplified version of the BG model. * Parameters taken from [26] **
Parameters taken from [4] *** Parameters derived from [27] **** Parameters derived
from [28]

Here, the striatum is modelled using only 600 D1-like and 600 D2-like MSNs with
the FSIs and gap junctions being neglected due to their small number. The rest neuron
groups consist of the STN, GPe and SNr, which were modeled using a single parameter,
set as well as a fixed number of 150 neurons for each group. The values for all neuron
parameters can be found in the table of Fig. 2B. The synapses between neurons in this
model do not exhibit short-term plasticity. They include AMPA, NMDA and GABA
types and they are governed by conductance-based equations. They have fixed reversal
potentials E equal to 0, 0 and −80 for each neurotransmitter respectively, τAMPA = 2,
τNMDA = 100 and τgaba = 3, as well as a maximum conductance g = 1nS for all
connections in the system. In addition, no optimization was conducted to fit the firing
rates of the model to the corresponding biological nuclei, as it was the case with the
original model in [24]. Instead, the probability for each neuron of a source nucleus to be
connected to a neuron in the target nucleus was always set to 0.25. Finally, the cortical
input towards the three microscopic channels of this model remained the same as in the
case of the full version of thr BG model, in order to enable a more direct comparison.

Metrics

Selectivity

The view of the BG as the action selection device implies that their performance on this
aspect could be evaluated based on measurable criteria, such as signal distinction. The
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further suggestion that the salience of an action is encoded in the local level of activity
in the striatum and STN, which is directly affected by cortical input, can serve as the
basis of this evaluation. [29] defined selectivity in the BG as the ability of a neural
mechanism to robustly distinguish competing signals. Although this definition is
sufficient, the main focus of this study was confined to the difference between transient
and steady-state effects, and it produced metrics that can not be applied in a more
general case, such as the BG model of the current study.

Our aim here is to create a metric that is aligned with the features of our model but
it also remains general enough to be used in other studies. The first step of this attempt
is to find a method to measure the distinctiveness of a single selected channel. This can
be defined as the ability of a channel to receive distinctively less inhibition than any
other channel or, more specifically, the degree to which the following conditions are
fulfilled: (a) The firing rate of the selected channel in the level of the SNr is close to
zero, which is required in order to revoke inhibition in the thalamus, and (b) no other
channel is far below tonic levels. These two conditions can be written as

aj = 1− Fj
max{Ftonic, Fj}

, bj =
minFi 6=j

max{Ftonic,minFi 6=j}
(1)

where j is the examined channel, Fi is the SNr firing rate of a channel i and Ftonic is
the tonic firing rate of the SNr (∼ 25 spikes/sec). Since both denominators in (1) are
upper-bounded by the value of the corresponding numerator, the product D̄j = ajbj
will always take values between [0, 1] and reflects the requested measure. The special
case of Fj = minFi 6=j = Ftonic/2 results in D̄j = 1

4 and represents the baseline below
which the channel j is indistinguishable. To normalize D̄j , so the baseline lies in 0, the
final distinctiveness Dj of a channel j is given as

Dj =


1
3 (4D̄j − 1) if D̄j >

1
4

4D̄j − 1 otherwise
, −1 ≤ Dj ≤ 1 (2)

A graphical illustration of the above can be found in Fig. 3A. Using this metric we
can now measure a number of properties of the BG selection mechanism. First, the
effectiveness of the BG in selecting the most salient cortical input can be defined as

E = Dk, −1 <= E <= 1 (3)

where k is the index of the most salient channel, i.e. the channel with the highest firing
rate at the level of the cortex.

Furthermore, the degree of selectivity of the BG reflects to their ability to select any
channel regardless of its salience and can be defined as

S = max
j
Dj , −1 <= S <= 1 (4)

Finally, one more useful property that can be measured using Dj is to what extent the
BG is selecting, or exploring, alternative actions. This is given as

exploration = max
j 6=k
Dj , −1 <= exploration <= 1 (5)

and is defined as the level of exploratory behaviour of the BG mechanism, or simply
exploration. To compare this metric with terminology commonly found in the literature,
the value of effectiveness in the BG can be considered here as the level of
exploitativeness, since the high salience of the leading microscopic channel arises from a
previously learnt behaviour. Hence, selectivity can be then thought of as the union of
exploration and exploitation.
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Fig 3. Metrics for distinctiveness and dependence. Ai: A multi-channel
example of SNr firing rates used to illustrate the concept of distinctiveness of the
channel j. Aii: Space of possible values for Dj for any difference δ between j and the
least-inhibited alternative channel. Note that the line Dj = δ is an upper bound to the
possible values of Dj in this space. B: Example calculation of dependence.

To conclude, Dj can be used to measure various features of a neural-based action
selection mechanism with minimal adjustments. The only requirements are first, a local
measurement of the instantaneous firing rate in the output area of a neural structure,
and second, a prior knowledge of the average tonic firing rate in the same area. In case
that the latter cannot be obtained, the difference δ between the selected channel and
the least-inhibited neighbouring area (Fig. 3Aii) provides a good approximation of
distinctiveness, especially when δ > 1

4 , and thus it can be used instead.

Transient versus steady-state An event processed by a selection mechanism can
have both a transient and a steady-state effect on a dynamical system such as the brain.
Our BG model exhibited rich transient phenomena during the first 500ms after the
injection of a stimulus, as well as a different post-transient steady state that was
maintained indefinitely. To distinguish between these two modes, the transient
distinctiveness of a salient channel is defined as the maximum degree by which this
channel received less inhibition than any other neighbouring channel for a fixed short
interval, after the generation of the salient signal. That is

max
t
D[t−100ms,t]
j (6)

where T + 100ms < t < T + 500ms and T denotes the point on time that the stimulation
was applied. The steady-state distinctiveness, on the other hand, can be measured
taking into account the post-transient stable firing rates in the level of the SNr.

Dependence

Selectivity can be affected by various parameters of the model or the current stimulus.
Some of these parameters can play a decisive role in determining the model’s
performance. The degree by which the BG selectivity depends on the value of a single
parameter of the model can be measured by comparing the local versus the global
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variation of the resulting Dj for a number of simulation runs with random initial
conditions.

For instance, in case that selectivity is highly dependent on the value of a parameter,
a significantly large sample of randomized simulation runs will result in diverse local
mean values and small local standard deviations, compared to the standard deviation of
the complete sample. An illustration of this concept is shown in Fig. 3Bi-ii.

This metric was used here to examine the effect of the phase offset ϕ between two
oscillatory cortical inputs. In this case, local areas can be found by dividing the range of
possible values for this parameter R = [0, 2π) into a number of bins
Ri = {x/x ∈ [a, a+ dx), 2π · a = i · dx}, where dx is the length of each bin.
Additionally, if σi is the standard deviation of selectivity values within the bin Ri and
σglobal the global standard deviation in R, the dependence of the BG selectivity to ϕ
can be defined as

dependence = 1− σ̄i
σglobal

, 0 <= dependence <= 1 (7)

For the analysis of this study we have used 30 local areas (bins) to calculate dependence,
a number which was found to provide adequate and robust results.

Results

Selectivity portraits

Initially, we conducted a series of simulations where the BG circuitry was called to
resolve a conflict between two salient potential actions. To simulate this scenario, the
BG model received strong cortical input in two out of their three microscopic channels,
governed by 1000 inhomogeneous Poisson processes each, described in [24], and
background noise of 3 spikes/sec in the third channel. These two strong inputs were
oscillatory, with a single fixed frequency f = f1 = f2, but different amplitudes A1 < A2.
Since the firing rate of the cortical ensembles that generate these inputs represents the
salience of each action, the second cortical input was always considered the most salient
one or, in other words, “the right choice”.

To investigate the relation between dopamine, cortical oscillations and the efficiency
of the BG as a selection mechanism, we varied the frequency f of the two cortical
ensembles, the phase offset ϕ between them, and the level of dopamine d = d1 = d2 in
the system. An overview of the resulting BG behaviour can be seen in Fig. 4.

The coloured scatter plots of this figure illustrate the tendency of the model to select
the most salient signal (effectiveness), or the alternative, less-salient signal (exploration)
for any possible combination of dopamine and cortical frequency. Finally, the plots right
below indicate the ability of the system to select any signal, as well as the degree by
which ϕ affects these measurements, across the same frequency spectrum. Since these
figures can expose the critical conditions that affect the selection mechanism under
examination, we termed them “selectivity portraits” of the model.

In the next paragraphs, we present a number of observations which were largely
based on this figure, and we outline the most important testable predictions that
emerged, regarding the function of the BG in the brain.

The combination of dopamine concentration and cortical frequency defines
BG effectiveness and exploration

Fig. 4 clearly indicates that both the frequency of the two oscillatory inputs as well as
the level of dopamine in the system play a crucial role in the ability of the BG to select.
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Fig 4. Selectivity portraits of the BG model. Effectiveness (scatter plot up),
exploration (scatter plot down), selectivity (black curve) and dependence on the phase
offset ϕ (red curve) when two inputs oscillate with amplitudes A1 = 7.5, A2 = 10
spikes/sec in (A) and A1 = 5, A2 = 10 spikes/sec in (B), in order to simulate strong
and weak competition respectively. Cortical input to the third channel has a fixed
baseline firing rate of 3 spikes/sec. Effectiveness is calculated for each combination of
dopamine levels d and input frequencies f . The colour bars represent the mean of a
sample of 200 runs (for each point) with random ϕ ∈ [0, 2π). Selectivity curves
represent the mean (black line) and standard deviation gray area for all ϕ and d, across
frequency spectrum. Dependence was calculated for d = 0.3.

The responses of the model for various values of these two parameters revealed three
main areas of interest in the frequency spectrum with completely different behaviour.
The first area includes low-frequency oscillations, with a borderline at f = 15Hz, the
second area corresponds to beta oscillations (13 < f < 30Hz) and the third area
includes all greater frequencies.

In all cases, dopamine exhibited distinct patterns with which it regulated
effectiveness and exploration. These patterns were completely different during the
initial transient phase as opposed to the final steady-state BG response, while they were
further modified depending on whether the competition was strong or week. As a result,
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the model generated four unique selectivity portraits when it dealt with each of the
above cases.

More specifically, we found that, in our model, dopamine concentration affects
selectivity only in particular frequency ranges, where its role is to either trigger or block
the selection process. Notably, decisions triggered by dopamine promoted exploration
over exploitation in the majority of the simulated scenarios. An exception is the case of
a strong initial lead in the salience of the one of the competing channels before the level
of the BG, showed in Fig. 4Bi. As the dominance of this channel is clear, an increased
level of dopamine triggers the selection of this instead of the alternative choice.
However, even if the most salient channel has already been selected transiently, this
selection can be maintained over time only if dopamine decreases (Fig. 4Bii).

From the perspective of the cortical behaviour, low-frequency oscillations also
promoted the selection of the least salient channel. This was achieved via the level of
dopamine, which determined whether a selection will be made or delayed. With this
type of input, the BG model became completely unable to maintain the first choice
after an initial short transient.

On the other hand, beta oscillations minimized the influence of dopamine and
brought the system in a neutral state, where both effectiveness and exploration are in
the borderline value 0. Once more, this effect was halted in the presence of a strong
difference between the two inputs.

Finally, gamma oscillations can clearly facilitate BG effectiveness. Transiently,
selectivity maximized and the most salient channel was selected for any frequency,
phase offset and dopamine level. In steady-state, gamma oscillations continued to
support the same decision, but only if the channel remained highly salient and the level
of dopamine dropped below tonic levels.

In order to ascertain the validity of these results and rule out the possibility that
other stochastic parameters of the model had an important impact, we examined the
variance of these measures when the examined parameters were fixed. Specifically, we
ran 100 experiments where, each time, the level of dopamine, the input frequency and
the phase offset ϕ were kept fixed to a random value within the biologically realistic
limits but all other statistically defined entities in the model were randomised. These
included the synaptic indexes, neural parameter perturbations and neuron types within
a nucleus among others. This process was repeated 500 times giving in total 500
random points in the selectivity portraits that can be used for this analysis.

As a result, the three selectivity metrics presented Fig. 4 were almost identical
between runs. A Shapiro-Wilk’s test [30,31] showed that the vast majority of these data
points were approximately normally distributed, with an average p value p = 0.56± 0.36
that could not reject the null hypothesis of normality. The resulting standard deviations
in each point were on average 0.114± 0.035 for effectiveness and 0.053± 0.032 for
exploration.

The magnitude of this variation was very small compared to the differences in the
selectivity process, and it was also comparable to the standard deviation of the
normalized firing rates in the 3 channels of the SNr (0.072(±0.057)× 25 spikes/sec).
Since these values are the only parameters of D̄j , our results indicate that there is no
hidden correlation in the system, and the fluctuations of the standard deviation in
selectivity plots of Fig. 4 were caused by dopamine and ϕ.

The BG can almost always select the most salient action transiently

During the simulations that produced the selectivity portraits, the BG model exhibited
a significantly more aggressive selectivity transiently, at the first 500 ms after the
presentation of the stimulus, as opposed to its steady-state behaviour. This is an
expected range of reaction times in psychophysical choice tasks. It is consistent with
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oscillatory changes in the BG [32] and sensorimotor cortex [33] during animal decision
making tasks, as well as choice reaction times in mental chronometry studies in
humans [34–36]. However, the equation (6) that has been used to produce the
selectivity portraits of the current model, does not fully address the dynamic changes of
selectivity. A further comparison with experimental studies, such as the above, requires
information regarding the onset and duration of the emerging transient peaks, as well as
any rebound effects. The average response of our model for the four major examined
frequency ranges is presented in Fig. 5.

No oscillations alpha beta gamma

0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1

Time from stimulus presentation (sec)

Exploration

E�ectiveness

Fig 5. Transient changes in selectivity. Two competing cortical inputs oscillate
with amplitudes 7.5 / 10 spikes/sec respectively. The two coloured curves represent
mean value for any level of dopamine and offset ϕ, and the two coloured areas smoothed
standard deviation.

As in the previous section, the large variations at some frequency ranges of this
figure come from the different values of phase offset ϕ and the level of dopamine. For
instance, beta frequencies cause positive effectiveness only when dopamine is greater
than 0.8. Since successful selection cannot occur for Dj < 0, we consider the BG as able
to select only in scenarios where a significant portion of our experiments had a
selectivity peak above this baseline.

Right after the presentation of the stimulus the BG model did not produce any
selection response for a short period with fixed duration. Instead, the firing rate in all
SNr channels was high, indicating an initial STOP phase. This phase had a very similar
duration of 85± 67 ms on average, in all frequency ranges. Next, a transient increase in
effectiveness that peaked at 133± 155 ms on average, accompanied the initial STOP
phase. Although this increase had also a similar onset at all frequencies, its exact
duration and the rebound activity varied significantly between the four frequency ranges
(Average duration without oscillations: 81± 62 ms, in alpha oscillations: 42.± 59 ms,
beta: 28± 46 ms and gamma: 70± 63 ms). Hence, our results indicate that cortical
frequency does not influence the reaction time of the BG, although different frequency
ranges cause different types of reactions.

Furthermore, the model was not able to maintain effectiveness above the baseline
after the first 500 ms. An exception to this rule was the case of alpha oscillations, where
effectiveness had a second sharp rebound spike, with a surprisingly similar duration and
onset among runs. Indeed, in some trials at these frequencies, selectivity was stronger in
this second peak. This bimodal distribution of maximum selectivity between trials could
reflect to a similar pattern in behavioural tasks. The latencies of the two peaks in our
simulations are consistent with the bimodal distribution of reaction times in distinct cue
choice tasks with rats [33]. However, the mechanism that caused this second selectivity
peak is not yet fully understood, thus further investigation is required in order to
establish its biological importance.
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Cortical oscillations with low frequencies are required for selection change

The steady-state patterns of BG selectivity are also worth closer examination. Their
function can be plausibly linked to a number of cognitive operations related to action
selection. These include the ability of the BG to maintain a selection, for example
during postural activities [32], to easily switch the current selection to an alternative
cue, or the level of general alertness.

In Fig.4, it is shown that the most critical areas that affect effectiveness and
exploration are mainly located in low frequencies while gamma oscillations have no
discernible effect. In fact, Fig. 5 shows that gamma frequencies have virtually the same
effect on selectivity as no oscillations.

To shed more light into the steady-state behaviour of the BG after the presentation
of two competing stimuli, Fig.6 illustrates the firing rate of the BG output nucleus, the
SNr, during that period and for the complete examined frequency spectrum.
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Fig 6. Inhibition of the SNr microscopic channels. Up: Firing rates of the
three simulated microscopic channels in SNr, for various stimulation frequencies when
two channels are stimulated with maximum amplitudes A1 = 7.5 and A2 = 10
spikes/sec respectively. Down: The same figure but for A1 = 5 and A2 = 10 spikes/sec.
Activity in channel 1 is reversely proportional to the level of dopamine in the system.

At low oscillations, and particularly at alpha frequencies, the firing rate of the
selected microscopic channel was always close to the firing rate of tonic areas of this
nucleus (25 spikes/sec). When the difference between the competing signals was low,
this gave a clear advantage to the less salient channel which, under some conditions,
could be directly selected. However, when the competition was less ambiguous, the
advantage of the less salient channel diminished. In fact, during cortical oscillations at
20 Hz, the two salient channels were treated equally. They were both inhibited to
around 50% of their default tonic state and, as a result, both channels remained ready
for immediate deployment.

This specific beta frequency was of particular importance, since it manifested a
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critical state in the model. Higher cortical frequencies favoured the most salient channel
and, on average, they significantly increased its distinctiveness, while low frequencies
below 20 Hz had the exact opposite effect.

Finally, gamma oscillations also showed an interesting effect. In experiments with
low ambiguity between competing channels and for low levels of dopamine, a selection
of the highest salient channel could be maintained. However, under high ambiguity, or
when dopamine increased, both channels remained inhibited, i.e. selected. This
mechanism, which presumably allows information to flow via the cortico-BG-thalamic
loop, might keep both information channels active until more evidence is accumulated.
Cortical gamma synchronization has been widely associated with active information
processing and feature binding [16,37,38]. Hence, the multi-selection mechanism we
observed here might also contribute to these cognitive functions, by promoting
integration of multiple information channels and thus allowing coalitions of neural
ensembles to be formed.

Selectivity portraits are largely maintained in simplified versions of the BG
model but not in the minimal model

The BG model that was developed in [24] and used in this study has an advanced
degree of complexity. Although its behaviour is similar to its biological counterpart, it is
not clear yet to what extent our results depend on specific modelling features or how
robust they are for small perturbations. Here we address this by providing a
classification of the individual features of the model according to their impact on
selectivity portraits. To do this, we ran the same simulations shown in Fig. 4 but for
each set of data points created, a single parameter of the model was changed. When
necessary, the optimization process for the connectivity of the model was repeated
under these conditions, to bring the firing rates of the BG nuclei back to their
biologically realistic ranges. The result of this classification is illustrated on Fig. 7.

The model variations that were chosen to be shown here are the ones that showed
the highest differences in either effectiveness or exploration. To maintain consistency
with the previous figures, we ran simulations for both sets of amplitudes
A1 = 7.5, A2 = 10 and A1 = 5, A2 = 10 spikes/sec. In all cases, the feature of the model
that clearly had the strongest impact on selectivity was the existence of plasticity in the
chemical synapses. When plasticity was “off”, the conductance strength of the affected
synapses was maintained in a static state, where the connectivity of the model was
tuned to represent the baseline activity of the BG nuclei [24]. This synaptic stationarity
reduced dramatically the ability of the model to make selections at any frequency, and
completely impaired its ability to maintain selection for longer than 500 ms. See the
black selectivity curves in Fig. 7A and B. In contrast, the lack of lateral connectivity in
the striatum had a significant positive effect in steady-state selectivity, but not
transiently. Finally, the selectivity of the model underwent a similar dramatic reduction
with plasticity when no NMDA receptors were used in the model (τNMDA = τAMPA),
consistent both in transient and steady state.

Interestingly, variations in conductance delays in synapses between, or within, the
nuclei did not play an important role in modulating the selectivity portraits. Delays
were either completely randomized, maintaining a biologically plausible range, or altered
in synapses where our initial choice was based on evidence with conflicts among
independent studies. For example, a computational model of the BG microcircuit
presented in [28] integrated data previous studies and and concluded that the
conductance delay in synapses from the STN to the GPe is on average 5 ms, for
GPe-STN also 5 ms, for STN-SNr 4.5 ms, for MSND1-SNr 7ms and for MSND2-GPe 7
ms. In the current study, these parameters were taken from [4] where their
corresponding values are 2 ms, 4 ms, 1.5 ms 4 ms and 5 ms respectively. In addition, a
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Fig 7. Comparison of selectivity portraits of reduced versions of the BG model. A: Transient effectiveness and
exploration for various cortical frequencies and zero phase offset between two cortical input signals, for different versions of
the BG model where a single key feature has changed. The difference between the amplitudes of these signals is 2.5 spikes/sec.
B: The same figures but steady-state effectiveness and exploration. C: Box plot of the mean error between the selectivity
behaviour of the default BG model and the examined reduced versions, for various initial conditions in (B). D: The same
effectiveness figure for the minimal BG model.

second example comprised changes only in the delay of the input between the cortex
and STN, which represents the extra distance that information signals have to travel to
arrive to the hyper-direct BG pathway. This is an important parameter of the model,
since it is not yet clear what cortical areas activate the same microscopic channels in the
striatum and STN. In both examples, random variations in the synaptic delays did not
cause significant variations in the selectivity portraits.

Another important observation in the current comparison is the effect of the phase
offset ϕ on selectivity during low-oscillations. Fig. 7A and B include curves of average
selectivity over various initial conditions, but with ϕ always being fixed at zero. We
chose to show these curves in order to highlight the great impact of the phase offset at
low frequencies, which remained consistent among the most versions of the model. As
an exemption, when no slowly-decaying synapses are used (τNMDA = τAMPA), this
effect disappears.

Finally, Fig. 7D illustrates that the minimal version of the BG model produced a
completely different behaviour. This can be attributed to a wide range of differences
between the two models including the number of neurons and membrane potential
dynamics. Yet, even under these simplifications, cortical oscillations at 20 Hz remained
the most critical borderline in selectivity portraits that divides the frequency spectrum
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into two bands with antithetical behaviour (Fig. 4.Aii and Bii).
Taking everything into account, our results indicate the important hazards of

oversimplification in computational modelling based on spiking neurons, since the latter
do not always fall into the same level of biological abstraction.

The effect of the phase offset between low-frequency cortical inputs on
selectivity portraits

So far, we showed that the combination of cortical frequency with the level of dopamine
in the system defines how effective the BG circuitry is in discriminating incoming
cortical information signals. Oscillators of various frequencies emerge constantly in the
cortex, made by task-dependent coalitions of neural areas, or ensembles [18,39]. These
flexible neural populations are transiently being engaged (or coupled) and disengaged
(or decoupled) in a metastable manner [40], distinguishable by their different relative
phases. Evidence indicates that by staying out of phase, these ensembles maintain
representations of different entities in working memory [17].

Hence, it is likely that cortical groups that project to different microscopic channels
in the level of the BG are phase-locked with a non-zero phase offset, which plays an
important role in maintaining the identity of the potential action that is currently
represented. Furthermore, since evidence points to the beta frequencies as the main
range that mediates the formation of new ensembles [18], it is particularly important to
assess the BG behaviour in this range.

In our simulations, we found that the phase offset ϕ between coherent cortical
signals with different amplitudes can have a strong influence on the effectiveness of the
BG, at certain low frequencies, while in gamma band this effect disappears (Fig. 8A).
Indeed, the strongest effect was clearly located in the beta range, where the BG
effectiveness was significantly enhanced when the phase of the one input signal preceded
in time the phase of the second, with a small offset around π

2 .
Surprisingly, the sensitivity of the BG to different phase offsets during beta

oscillations was largely preserved in all versions of our computational model including
the minimal version. Fig. 8A illustrates this similarity which is even more prominent,
since the two models produced different selectivity portraits, as a result of their
numerous differences.

The relationship between phase and the BG function was investigated experimentally
by [41], who showed that neural synchrony increased in the Parkinsonian BG for certain
phase differences between beta oscillations in STN and GPe. Our computational model
has shown that, above the alpha range, most GPe neurons that are part of a phasic
microscopic BG channel remain largely silent during this phasic process [24]. Hence, the
remaining GPe neurons are vulnerable to entrainment by weaker cortical inputs. As
cortical beta oscillations were also shown to maintain coherence throughout the BG
circuit, it is likely that the phase difference that Cagnan and her colleagues observed in
this study reflected specific phase alignments of two competing cortical populations.

Selecting the most salient input does not require coherence between
competing populations.

Our results highlighted the impact of the frequency and phase of cortical ensembles that
project to the BG. In order to draw conclusions regarding the phase difference between
competing populations, we confined our simulations to populations of equal frequencies.
However, EEG studies show that several different bands can coexist in the same or
different regions of the cortex and interact with each other [42]. Hence, to explore the
dynamics of BG selectivity that emerge during a combination of two stimuli with
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Fig 8. The ubiquitous effect of the phase offset ϕ at beta frequencies. A:
BG effectiveness as a function of the frequency of two oscillatory cortical groups for
A2 −A1 = 2.5 spikes/sec and the phase offset ϕ between them. B: The same figure for
the minimal model presented in Materials and Methods. C: BG effectiveness versus ϕ
at theta frequencies. D: BG effectiveness versus ϕ at gamma frequencies.

non-equal frequencies we ran another set of simulations for frequencies 0 < f1, f2 < 50
Hz and random offset ϕ. The resulting portraits are given in Fig. 9.

Despite the fact that our BG model contains various synaptic pathways that connect
the two neighbouring channels, the SNr activity of each channel was immune to
frequency changes in the other (Fig. 9B). Changes in effectiveness and exploration were
both largely dominated by the frequency f2 of the strongest input, and across the f2
spectrum they followed a pattern similar to the portraits in Fig. 4. The oscillation of
the weak channel was able to ‘bend’ this pattern only at beta frequencies, where
effectiveness was enhanced.

Behavioural predictions

Evidence for the existence of a long selection cycle that can be used for
evidence accumulation

It is assumed by a variety of models that cognitive operations in the brain require a
fixed duration [43–45], which is often referred to as a cognitive cycle. Studies have
implicated the BG as the central cognitive coordinator which works in a serial manner
with a cycle of 50ms [44,46].

In order to investigate the contribution of our model to this hypothesis, we
simulated a two choice task experiment, following the methodology in [29]. The BG
model was stimulated with tonic input of 3 spikes/sec for 1 second in order to converge
to an “inactive” steady-state where no selection is being made (Fig. 10). Then, a
ramping increase, which lasted for 50 ms, changed the cortical firing rate of the one
channel to 10 spikes/sec (channel 2 ). A second neighbouring channel received the same
increase for the first 25 ms of the ramping time, but it decayed back to its tonic firing
rate after another 25 ms (channel 1 ). The cortical activity in these two channels
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steady-state effectiveness and selectivity of the model when f2 = 20 Hz.

represented the urgency for two competing actions, which in the latter less-salient case
was suppressed after some initial evidence accumulation.

Although the model of the striatum that has been used in this study is based on the
neuron equations presented in [29], we observed a consistent bimodal selectivity pattern
that was different from the results in this study. Since our model does not include any
feedback connections from other nuclei to the striatum, this difference can be only
attributed to the asymmetric inhibition between MSND1 and MSND2 neurons which
was examined in [24], but it was not taken into account in [29].

The response of the SNr, the BG output nucleus, to this stimulation comprised a
sequence of events. The first event occurred after 50 ms from the presentation of the
stimuli in channels 1 and 2. Initially, a rapid increase in SNr firing rate was evoked,
which was proportional to the intensity of the stimulus in each channel. This increase
maximized after approximately 50 more ms, to be followed by a complete shut down of
the selected channel, for the rest of the duration that the stimulus was presented.

The timing of this sequence of events was very similar to the experiment in Fig. 5
where the salience of the second action remained fixed during stimulation. This effect
was shown to be robust and not influenced by the oscillatory patterns of the cortical
input, therefore indicating the existence of a series of cognitive operations that take
place during the selection process.

As shown in Fig. 10, after approximately 75 ms from the stimulation onset, channel
1 ceased to influence the outcome of the selection. But was channel 2 already selected at
this particular point of time? Since the SNr does not stop its inhibitory effect to the
thalamus before 200ms have passed, it is possible that a large portion of this time is
used to accumulate information related to this selection. The fact that extra inhibition
is provided to the phasic channels in the thalamus via the SNr, agrees well to this
hypothesis.
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To investigate these questions, as well as the tolerance of the time interval that is
required for a successful selection, a new set of experiments was conducted. After the
initial 50 ms ramp period, channel 2 received a fixed (non-oscillatory) input that had a
random duration between 1 and 750 ms, while channel 1 received the same ramped
input as before. In all runs, the distinctiveness Dj of the three simulated channels was
recorded across time, in order to see when the maximum point of effective selection can
be reached in each case. The results are presented in Fig. 11.
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range of stimulus durations. B: Distinctiveness of the tree SNr channels for the same range. C: Histogram that shows when
the maximum effectiveness was recorded with respect to the point in time that stimulation stopped.

Interestingly, we found that the BG model can discriminate between phasically and
tonically-active channels only when the stimulus is presented for more than 140 ms
(black dashed line in Fig. 11A and B). Longer stimuli are adequate to initiate this
selection process, which normally lasts approximately 200 ms (yellow dashed line in
Fig. 11A). Therefore, the inhibition of the selected channel in the level of the SNr is
always preceded by excess excitation when a successful selection is performed.

This long interval, during which some information channels in the thalamus are
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completely shut by SNr inhibition (Fig.10A), could allow a mental deliberation process
to be performed in the cortex, while the latter remains partly isolated from the
environment. If during this process a channel looses its salience, as in the case of
channel 1 in Fig. 10, its SNr activity will return to a neutral state, thus avoiding any
interference with the final selection. Additionally, if no channel is able to maintain
strong cortical activity, the process of selection will be cancelled and the excess
excitation in the SNr will again prevent the inhibition of the thalamus. These features
make the observed behaviour a good candidate mechanism for serial action selection.

Furthermore, the model exhibited a strong rebound effect after phasic cortical
stimulation stopped. Within the range of 0 to 110 ms after stimulation, which is
represented by a gray zone in Fig. 11A, the SNr inhibition of the most salient channel
remained suspended. In fact, after approximately 50 ms the distinctiveness of the
stimulated channel peaked again, as the neighbouring microscopic channels regained
activity (Fig. 11C). This post-stimulation increase in selectivity was strongly facilitated
by the rebound behaviour of the direct pathway, via excitation of MSN neurons in the
striatum. As shown in Fig. 10B, the MSNd1 sub-population exhibits a sharp increase in
their firing rate, which is inversely proportional to the rate of MSNd2 neurons of the
same channel. Since MSNs do not evoke rebound spikes when stimulated in vitro [47],
this activity can only be due to the fast decrease of local inhibition and the asymmetric
connectivity between the two types of MSN neurons.

Although striatal lateral inhibition is crucial for the observed pattern of prolonged
selectivity, it is not the only mechanism that causes rebound responses. Fig. 12
illustrates the response of the BG model for stimulus of various duration, when the
simulated microscopic channels are connected with weak local striatal connections, to
cover the possibility that these channels are physically located far from each other in
the level of the striatum.
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Fig 12. BG response for stimulus of varying duration in non-neighbouring channels. A,B: The same as in
Fig. 11 in a variation of the BG model for weak striatal lateral inhibition that represents longer distance between channels.

In this case, the model required shorter presentation of the stimulus in order for a
selection to be performed (around 100 ms). However, after stimulation stoped, it
underwent a refractory period of approximately 200 ms (gray area in Fig. 12A), after
which effectiveness peaked again. The fact that the duration of this period matches the
initial time that the model needs to execute a selection provides additional indications
of a selection cycle, which can be initiated after major changes to the input that the
model receives. Although the existence of a cycle is consistent with all data presented in
this section, a refractory period was not observable when strong competition took place
within the striatum. A possible reason is that as the BG become more effective in
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distinguishing between channels, they are able to maintain a ready-to-select state,
rather than initiating a new cycle, since the winning channel is already inhibiting the
surrounding areas.

Finally, in order to conclude that the series of events which led to selection in our
experiments constitute a cycle, the ability of the model to maintain effectiveness
sequentially needs to be established. The steady-state selectivity portraits presented in
Fig. 4 demonstrate that a single selection can not be maintained for many cycles of a
duration longer than 70 ms (lower than beta frequencies), even if it is significantly more
salient than an alternative choice.

Hence, to test if such a selection cycle can be repeated indefinitely, we ran an
experiment where the three channels of the BG are stimulated sequentially for a fixed
period T per single cycle. We found that the BG was able to distinguish the most
salient channel via excitation in the SNr when T > 30ms. However, the second phase of
the selection process, where a selection is executed via inhibition of the corresponding
SNr channel, could not be achieved when T < 140ms. A cycle of 200 ms was able to
maintain inhibition to the SNr for approximately 50 ms. These results match with the
model’s behaviour in Fig. 12 and verify that the above selection process can be
sequenced.

Cognitive architectures

Although recent cognitive models are consistent with various experimental studies, a
strict definition of the timing of a cognitive cycle is a challenging task. For this reason,
cognitive architectures do not currently agree on a common timing model that accounts
for perception, cognition and action selection [45]. As mentioned before, the BG are
considered to be a fundamental element of this triad [46], which makes the model that is
described in this study a useful source of information for this quest. Even with an ideal
design, however, a BG model is inadequate for capturing the timing of a complete
cognitive cycle, since a significantly wider range of brain structures are typically
involved in this process. Alternatively, the current model can be used to impose a
number of biological restrictions and to establish whether the current cognitive models
can be supported by the BG dynamics (Fig. 13A).

An important restriction implied by our simulations is that a cognitive cycle should
be at least 200 ms, which is the time it takes for the BG to complete a selection cycle
spontaneously, measured from the onset of cortical stimulation. Although it is not clear
to what extend the perception process can overlap with the activation of the cortical
areas that project to the BG directly, it is safe to assume that there is a minimal
overlap, given the hierarchical structure of information processing in the cortex [48].
Hence, if no parallelism between different cycles is assumed, our model suggests that a
biologically plausible borderline range for the period of a cognitive cycle is from 200 ms
to 200 ms plus the time duration required for perception. This restriction contradicts
the majority of the currently proposed cognitive architectures, whose timing
assumptions can be found in [45] and are summarised below.

One of the most popular models examined here is called Adaptive Control of
Thought-Rational model (ACT-R). Originally introduced by [49], ACT-R is a modular
and symbolic system which proposes that human knowledge comprises declarative
memory chunks, and procedural rules. The brain is thought to be coordinated based on
these rules via a central production unit, which was later associated with the function of
the BG [46]. ACT-R assumes that the time of human perception is approximately 85
ms, while 100 more milliseconds are required for the rest cognitive operations before
selection. These intervals can be further broken down into 50 ms cycles of production
rules, which correspond to information travelling through the BG-thalamo-cortical loop.
Finally, since action selection is realized as a production rule cycle, it also lasts for 50
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represent areas where BG selectivity is above the threshold. The three coloured curves represent different microscopic
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ms and, as a result, the time that remains for the BG to process input and execute a
selection is 150 ms.

While this duration is shorter than the current predictions, the 50 ms cycle of
ACT-R is, to some extend, consistent with our model’s behaviour. Fig. 10 illustrates
that all significant events in SNr activity that led to selection occurred in 50 ms
intervals. Although the means of selection in the BG is typically hypothesized to be
inhibition, excess SNr excitation discriminated the most salient microscopic channel
prior to inhibition. This behaviour contradicts previous BG models and indicates that a
selection is initially made in the first 100 ms, while other necessary operations take
place until the selection is executed at approximately 200 ms from the stimulus onset.

A second model examined here is called Executive Process/Integrative Control
(EPIC) [50]. The architecture and core assumptions of this model are very similar to
ACT-R. The main difference in timing between these two models can be found in
perception, which in EPIC is thought to last for 50 ms. Hence, the same conflict
between ACT-R and our results applies also to this model.

Another influential approach was proposed by [51] and is called Learning Intelligent
Distribution Agent (LIDA). LIDA is based on Bernard Baars’ model of consciousness
named global workspace theory, according to which, conscious cognitive content is
broadcasted to all active brain processes via a globally available workspace (see the
theatre metaphor in [52]). LIDA assumes that perception takes 80-100 ms, the rest
(unconscious) processing before action selection takes approximately 100-200 ms, while
the action selection sub-process takes 60-110ms [45]. The predicted timing of a cognitive
cycle proposed here falls within the limits of this theory although, on average, the
duration of non-perception processes is 35 ms longer than predicted.

Finally, the Model Human Processor (MHP), proposed by [53], is based on the same
division of the mind as perceptual, cognitive and motor subsystems (or processors),
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which are partially coupled and have different durations. A number of studies have
concluded that the cycle time for the perceptual processor in young adults is on average
100 ms with a range between 50 - 200 ms depending on the task, for the cognitive
processor 70 ms with a range between 25-170 ms and for the motor processor 70 ms with
a range between 30-100 ms. For a review on this topic, as well as the time changes in
older adults see [54]. Again, most of the range of estimated time for cognition and action
selection is inconsistent with our results, which ideally require at least 140 ms for the
stimulus to be projected to the BG and 60 additional milliseconds for action selection.

One issue that was not taken into account in this analysis is a potential parallelism
of different cognitive cycles. Although this is a common limitation among the majority
of the above models, it is known that the brain can process different tasks using some
form of parallelism. Experiments with two different choice tasks performed on a single
trial, have highlighted that the processing required for these tasks can overlap, but the
reaction time of the second task will depend on the duration of the overlap [55]. This
phenomenon, known as the psychological refractory period, is often attributed to the
existence of a central bottleneck in the flow of information, that allows parallelism in
perception and action execution but not during the time when the action is being
selected [56]. As shown previously in this section, our BG model could support such
parallel operations which can reduce the period of a cycle down to 140 ms, the time
required for stimulus presentation. Thus, given the complex dynamics of decision
making which are highlighted with this paradigm, further analysis is required to assess
the plausibility of the above cognitive models.

In an additional experiment, the three channels of the BG were stimulated
sequentially as before, for a cycle T equal to the proposed period of each cognitive
model. Stimulation was applied only in the time interval between perception and action
selection, to keep consistency between the models. The response of the model was
timed, in order to investigate whether it will maintain a selection for the duration
assumed by each model (Fig. 13A). To measure selectivity, we used the metric S which
is defined in (4) and the model was considered to be actively selecting when S > 0.22.
A comparison between original estimations of selection and the resulting durations that
the SNr selected channel remained inhibited can be found in Fig. 13B.

The plausibility of LIDA was enhanced as the BG model was able to achieve the
highest levels of selectivity in all trials, under these time restrictions. The timing of
LIDA was also a close match, with almost all trials resulting in durations within the
estimated range. Fig. 13C illustrates the average firing rate of the BG output during
the trials and allows the comparison between models. Furthermore, the time restrictions
of ACT-R and EPIC also allowed the BG model to exceed the threshold of selectivity.
However, EPIC was a better match temporally, causing inhibition to the selected
channel for 41± 28 ms, and also achieved higher selectivity scores.

On the other hand, when the BG model was stimulated with the temporal
restrictions of MHP, action selection did not occur at all (Fig. 13C). This indicates that
despite the fact that this cognitive model is able to fit to experimental data with a high
degree of accuracy [54], its underlying theory may require adjustments to be biologically
consistent.

Low-frequency oscillations facilitate the resolution of ambiguity

Fig. 14 illustrates in more detail the impact of different cortical frequencies for any
amplitude difference between stimuli, which represents all possible stages of a single
selection. The one extreme case of A1 = A2 = 10 spikes/sec corresponds to two equally
silent inputs, while the combination of A1 = 3 and A2 = 10 spikes/sec reflects the case
that only one input has remained above the baseline. According to the selectivity
portraits and this figure, at the beginning of a selection and when the correct choice is
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ambiguous, the BG are able to start exploring the most salient input only when the
cortex does not oscillate at low frequencies, or during the combination of high beta and
dopamine.
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Fig 14. Ambiguity effects on BG selectivity. A: Transient effectiveness when two competing inputs have various
amplitude difference, and A2 > A1. Different sets of data points represent reference cortical frequencies and dopamine levels,
and are illustrated in different colours. B: The same as A for steady-state effectiveness.

On the other hand, if a selection task requires a longer interaction with the BG, low
oscillations can maintain effectiveness near the baseline (Fig. 14B), possibly securing
extra time for evidence accumulation. Also, an increased level of dopamine in this case
has the opposite effect. Interestingly, the system is unable to achieve a high effectiveness
score after the initial transient period, even in the case of a clear winner. This indicates
that either decision making in this case is achieved on another brain region, or that long
interactions for single cognitive tasks are simply not possible. If the former hypothesis is
true, low-oscillatory input to the BG could facilitate selection by maintaining a neutral
state among phasically-active inputs. Finally, it is worth noting that the gamma band
had the same impact with no oscillations in all simulated scenarios.

All in all, the non-linear behaviour of the BG effectiveness that is illustrated in this
figure, during the transition from ambiguity to certainty, shows the complexity of this
circuit, when stimulated with low-frequency oscillations. However, the predictive power
of our model is limited by the lack of other important brain regions, which makes
difficult to draw conclusions that reflect complete behaviours.

Discussion

The gear box metaphor

This resulting selectivity portraits of our model constitute an interesting finding as they
indicate that the cortex is in fact the structure that determines whether decision
making will be performed, while the BG just execute the selected decision policy.
Taking this into account, we present a novel hypothesis that views the BG as the
“gearbox” of action selection in the brain (Fig. 15), a mechanism that provides various
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modes of signal selection on demand. Following this metaphor, the level of dopamine
can be likened to the “control pedals” of action selection that either stop or initiate a
decision (see selectivity portraits in Fig. 4). In the same context, the frequency of
cortical oscillations acts as a “gear lever”, that instead of controlling the type and
direction of thrust that the throttle provides to an automobile, it dictates the degree to
which dopamine can trigger a decision, as well as what type of decision this would be
(either exploit, stop or explore).

Fig 15. The gearbox analogy.

This framework provides justification to a number of experimental findings. Cortical
beta is found to increase when a postural challenge is anticipated [57]. Since cortical
beta, at around 20 Hz, can bring the BG in an neutral state that cancels out
effectiveness and exploration, it can be viewed as a frequency that causes a temporary
deactivation of the action selection system when the current action needs to be
maintained. In addition, the transient effects of selectivity agree well with the duration
of increases in extracellular dopamine after SNc discharges in vivo recordings of the rat
striatum in [58,59]. A single discharge increases dopamine for approximately 200 ms
while an SNc burst causes an increase that lasts about 500− 600 ms. During this
interval, our model can almost always select the most salient action (see results) and it
can be significantly benefited by an increase in dopamine. However, the same selection
can be maintained after this interval only if the level of dopamine decreases (Fig. 4Bii).

One advantage of using this metaphor is that it highlights a number of similarities
between these two highly complex and rather unrelated dynamical systems and thus
provides an intuitive way of viewing the biological mechanism of action selection.

Relation with psychophysical studies

Our model’s predictions are also consistent with a wide range of experimental studies on
mental chronometry. Although reaction times (RT) of young adults in simple tasks are
in the order of 190− 220 ms [60], these reactions can be simply stimulus-driven [61] and
thus, they may bypass the action selection system of the brain. In contrast, when
different responses are required depending on the class of the stimulus, choice reaction
times (CRT) are found to be significantly longer, on average 500 ms in two-choice
tasks [36], between 390− 470 ms when the subjects aim for high speed, between
450− 610 ms when the aim is high accuracy [62] and at a minimum of 200 ms [34] below
which, responses are random.

By subtracting the average RT that is required by an individual to perform a simple
task from the CRT of a specific choice task, we can estimate the time that is spent for
the cognitive processing of the choices. This is found to vary significantly across
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different age groups, with an average range between 200− 400 ms and minimum at
approximately 150 ms [36]. The latency of our BG model is comparable with the lower
values in the range of central processing times found in this study. This is an acceptable
result given that the simulated task that was performed here constitutes arguably one of
the simplest possible selection scenarios, and that the pathway of voluntary actions that
involves the BG may also comprise a number of regions, as reviewed in [61], that are not
simulated here.

Furthermore, a range of studies links the duration of stimulus presentation with
choice task performance in mammals. In [63], monkeys were presented with visual cues
of varying duration, and their accuracy on a two choice task was recorded. When the
stimulus was clear, their performance increased almost linearly from near-random in
viewing time of 100 ms, up to 200 ms and then there was a minimal improvement. In a
GO odor task with rats, [64] showed that performance decreases to near random if the
odor sample is presented for 100 ms or less, unless the subjects were anticipating the
identity of the stimuli or the time of the response.

Alpha and theta oscillations act as a BG mechanism to reset
selection and explore alternative actions

In the literature, there is cumulative evidence that strong alpha power is able to inhibit
task-irrelevant regions in the cortex and thus control information flow [15,18,65]. This
theory, which is known as gating by inhibition [66], proposes that strong alpha activity
is caused by GABAergic interneurons, which silence neuronal firing by providing a
pulsed inhibition. Although a recent MEG study provides initial evidence that links
gamma peaks to alpha troughs in the temporal cortex [67], a number of important
questions still remain unanswered. For example, it is not yet clear to what extend the
phase-amplitude coupling that was observed in this study was a result of local
GABAergic inhibition, or other brain regions, and whether this mechanism can operate
in the same spatial scale that is required to inhibit complete neural ensembles.

Based on our simulations, we propose that alpha-induced inhibition of neural
populations is mediated by the selection circuit of the BG. In particular, we found that
alpha and theta cortical frequencies stop the selection of the strongest input completely
and instead promote the selection of less salient areas. This exploratory behaviour was
independent of amplitude difference between the two inputs, occurred transiently and
remained active, even after a long exposure to the stimuli (see selectivity portrait in
Fig. 4). In addition, the robustness of this effect to different background frequencies was
established in Fig. 9D. When the most salient input was oscillating at alpha rhythms
with frequency around 10 Hz, a second weak oscillatory input was always favoured,
especially when its frequency was not in the beta range.

This view of cortical alpha is consistent with a number of experimental studies. [68]
recently showed that effective connectivity from the cortex to the nucleus accumbens, a
part of the striatum, increases during alpha oscillations, and reverses during theta.
Also, [18] presented evidence where beta synchronization in the prefrontal cortex
mediated the formation of neural ensembles that represented procedural rules, while
alpha synchrony increased in the ensembles that represented alternative rules. This led
the authors to suggest that ”beta-frequency synchrony selects the relevant rule
ensemble, while alpha-frequency synchrony deselects a stronger, but currently irrelevant,
ensemble”.

While alpha importance has been already discussed, the role of theta is less clear.
Interestingly, the period of a theta cycle (150− 250 ms) fits well to the timing of an
action selection cycle found in our results, and it is within the limits of the full cycle of
the majority of the proposed cognitive models. However, in our simulations, providing
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strong stimulation the model for less than 140 ms did not evoke a selection unless
multiple inputs were presented sequentially. Could this be an indication that cortical
theta brings the BG to its extreme limit of time efficiency, below which no selection can
be achieved? In behavioural experiments, theta is found to increase in the rat striatum
during a decision-making task [69], while in humans, theta in STN increases during
sensorimotor conflicts [70].

Cortical frequency is a better predictor of the
exploration-exploitation trade-off than dopamine

It has been suggested that tonic dopamine levels in the striatum encode the degree of
which the brain selects the action with the most predicted outcome, over the exploration
of an alternative less-safe choice, by modulating activation of the direct and indirect BG
pathways [71]. Fast manipulation of the trade-off between exploration and exploitation
is critical for behavioural flexibility in dynamic environments [72]. This hypothesis is
supported by evidence with genetically modified mice, where increased dopamine levels
resulted in selections that were less influenced by the potential cost of each choice [73].

Here, the ratio between exploration and exploitation can be estimated via the ratio
between distinctiveness of the most salient microscopic BC channel and distinctiveness
of the rest active channels, that is, the ratio between effectiveness and exploration as
defined in (3) and (5).

As shown in Fig. 4, we found that cortical rhythms play a more decisive role in this
trade-off than the level of dopamine, although the combination of both cortical
frequency and dopamine was crucial for the final selection. Whereas alpha and theta
frequencies clearly promoted exploration over exploitation, unless uncertainty is very
low, and the lack of them had the opposite effect, the level of dopamine could be largely
viewed as an extra boost that triggers the selected action. In particular, during cortical
beta oscillations of approximately 20 Hz, the system was in a critical state below which
exploration was favoured over exploitation. However, at this very critical point and
under high uncertainty, the level of dopamine was the decisive factor of the trade-off.

This complex interaction of dopamine with action selection justifies the lack of a
widely accepted model, despite the fact that dopamine is evidently implicated in both
exploration and exploitation [74]. On the other hand, cortical oscillations have also
started to receive some attention on this topic. In [19], Cavanagh et al found a strong
correlation between theta oscillations in frontal regions and uncertainty-driven
exploration. This led the authors to the hypothesis that frontal areas of the cortex take
over action selection from the BG in tasks with high uncertainty. Our results however
show that the BG could potentially cope the need for exploratory behaviour, in case
that frontal areas ‘request’ it because high uncertainty is detected.

References

1. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally
segregated circuits linking basal ganglia and cortex. Annual review of
neuroscience. 1986;9(1):357–381.

2. Reiner A, Medina L, Veenman CL. Structural and functional evolution of the
basal ganglia in vertebrates. Brain Research Reviews. 1998;28(3):235–285.

3. Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B, Grillner S.
Evolutionary conservation of the basal ganglia as a common vertebrate
mechanism for action selection. Current Biology. 2011;21(13):1081–1091.
doi:10.1016/j.cub.2011.05.001.

25

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/197129doi: bioRxiv preprint 

https://doi.org/10.1101/197129
http://creativecommons.org/licenses/by-nc/4.0/


4. Humphries MD, Stewart R, Gurney KN. A physiologically plausible model of
action selection and oscillatory activity in the basal ganglia. The Journal of
neuroscience. 2006;26(50):12921–12942.

5. Gurney KN, Humphries MD, Redgrave P. A New Framework for Cortico-Striatal
Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action
Interface. PLoS biology. 2015;13(1):e1002034.

6. Mink JW. The basal ganglia: focused selection and inhibition of competing
motor programs. Progress in neurobiology. 1996;50(4):381–425.

7. Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to
the selection problem? Neuroscience. 1999;89(4):1009–1023.

8. Friend DM, Kravitz AV. Working together: Basal ganglia pathways in action
selection. Trends in Neurosciences. 2014;37(6):301–303.
doi:10.1016/j.tins.2014.04.004.

9. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, et al.
Regulation of parkinsonian motor behaviours by optogenetic control of basal
ganglia circuitry. Nature. 2010;466(7306):622–626.

10. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent
activation of striatal direct and indirect pathways during action initiation.
Nature. 2013;494(7436):238–242. doi:10.1038/nature11846.

11. Jin X, Tecuapetla F, Costa RM. Basal ganglia subcircuits distinctively encode
the parsing and concatenation of action sequences. Nature neuroscience.
2014;17(3):423–30. doi:10.1038/nn.3632.

12. Brittain JS, Brown P. Oscillations and the basal ganglia: motor control and
beyond. Neuroimage. 2014;85:637–647.

13. Zhang Y, Chen Y, Bressler SL, Ding M. Response preparation and inhibition: the
role of the cortical sensorimotor beta rhythm. Neuroscience. 2008;156(1):238–246.

14. Siegel M, Engel AK, Donner TH, et al. Cortical network dynamics of perceptual
decision-making in the human brain. Frontiers in human neuroscience. 2011;5:21.

15. Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I. Distinct roles for
alpha-and beta-band oscillations during mental simulation of goal-directed
actions. The Journal of Neuroscience. 2014;34(44):14783–14792.

16. Fries P. Neuronal gamma-band synchronization as a fundamental process in
cortical computation. Annual review of neuroscience. 2009;32:209–224.

17. Siegel M, Warden MR, Miller EK. Phase-dependent neuronal coding of objects in
short-term memory. Proceedings of the National Academy of Sciences.
2009;106(50):21341–21346.

18. Buschman TJ, Denovellis EL, Diogo C, Bullock D, Miller EK. Synchronous
Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron.
2012;76(4):838–846.

19. Cavanagh JF, Figueroa CM, Cohen MX, Frank MJ. Frontal theta reflects
uncertainty and unexpectedness during exploration and exploitation. Cerebral
cortex. 2011; p. bhr332.

26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/197129doi: bioRxiv preprint 

https://doi.org/10.1101/197129
http://creativecommons.org/licenses/by-nc/4.0/


20. Tseng KY, Kasanetz F, Kargieman L, Riquelme La, Murer MG. Cortical slow
oscillatory activity is reflected in the membrane potential and spike trains of
striatal neurons in rats with chronic nigrostriatal lesions. The Journal of
neuroscience : the official journal of the Society for Neuroscience.
2001;21(16):6430–6439. doi:21/16/6430 [pii].

21. Mahon S, Vautrelle N, Pezard L, Slaght SJ, Deniau JM, Chouvet G, et al.
Distinct patterns of striatal medium spiny neuron activity during the natural
sleep-wake cycle. The Journal of Neuroscience. 2006;26(48):12587–95.
doi:10.1523/JNEUROSCI.3987-06.2006.

22. Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, et al. Resting
oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease.
Brain. 2011;134(2):359–374.

23. Kim J, Kita H. Short-term plasticity shapes activity pattern-dependent
striato-pallidal synaptic transmission. Journal of neurophysiology.
2013;109(4):932–939.

24. Fountas Z, Shanahan M. The Role of Cortical Oscillations in a Neural Model of
the Basal Ganglia. In: PLOS ONE, under review. IEEE; 2014. p. 2407–2414.

25. Fountas Z, Shanahan M. GPU-based fast parameter optimization for
phenomenological spiking neural models. In: 2015 International Joint Conference
on Neural Networks (IJCNN); 2015. p. 1–8.

26. Humphries MD, Lepora N, Wood R, Gurney K. Capturing dopaminergic
modulation and bimodal membrane behaviour of striatal medium spiny neurons
in accurate, reduced models. Frontiers in computational neuroscience. 2009;3.

27. Michmizos KP, Nikita KS. Local field potential driven Izhikevich model predicts
a subthalamic nucleus neuron activity. In: Engineering in Medicine and Biology
Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011.
p. 5900–5903.

28. Lindahl M, Sarvestani IK, Ekeberg Ö, Kotaleski JH. Signal enhancement in the
output stage of the basal ganglia by synaptic short-term plasticity in the direct,
indirect, and hyperdirect pathways. Frontiers in computational neuroscience.
2013;7.

29. Tomkins A, Vasilaki E, Beste C, Gurney K, Humphries MD. Transient and
steady-state selection in the striatal microcircuit. Frontiers in computational
neuroscience. 2013;7.

30. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete
samples). Biometrika. 1965;52(3/4):591–611.

31. Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests. Journal of Statistical Modeling and
Analytics. 2011;2(1):21–33.

32. Jenkinson N, Brown P. New insights into the relationship between dopamine, beta
oscillations and motor function. Trends in neurosciences. 2011;34(12):611–618.

33. Leventhal DK, Gage GJ, Schmidt R, Pettibone JR, Case AC, Berke JD. Basal
ganglia beta oscillations accompany cue utilization. Neuron. 2012;73(3):523–536.

27

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2017. ; https://doi.org/10.1101/197129doi: bioRxiv preprint 

https://doi.org/10.1101/197129
http://creativecommons.org/licenses/by-nc/4.0/


34. Heitz RP, Engle RW. Focusing the spotlight: Individual differences in visual
attention control. Journal of Experimental Psychology: General.
2007;136(2):217–240. doi:10.1037/0096-3445.136.2.217.

35. Heitz RP. The speed-accuracy tradeoff: history, physiology, methodology, and
behavior. Frontiers in neuroscience. 2014;8:150. doi:10.3389/fnins.2014.00150.

36. Woods DL, Wyma JM, Yund EW, Herron TJ, Reed B. Age-related slowing of
response selection and production in a visual choice reaction time task. Frontiers
in Human Neuroscience. 2015;9(April):1–12. doi:10.3389/fnhum.2015.00193.

37. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, et al. Coherent
oscillations: A mechanism of feature linking in the visual cortex? Biological
cybernetics. 1988;60(2):121–130.

38. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, et al.
Frequency of gamma oscillations routes flow of information in the hippocampus.
Nature. 2009;462(7271):353–7. doi:10.1038/nature08573.

39. Akam T, Kullmann DM. Oscillations and filtering networks support flexible
routing of information. Neuron. 2010;67(2):308–320.
doi:10.1016/j.neuron.2010.06.019.

40. Tognoli E, Kelso JAS. The Metastable Brain. Neuron. 2014;81(1):35–48.
doi:10.1016/j.neuron.2013.12.022.

41. Cagnan H, Duff EP, Brown P. The relative phases of basal ganglia activities
dynamically shape effective connectivity in Parkinson’s disease. Brain.
2015;138(6):1667–1678.
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