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Abstract 

Missense mutations in MORC2 cause neuropathies including spinal muscular atrophy and 

Charcot-Marie-Tooth disease. We recently identified MORC2 as an effector of epigenetic 

silencing by the HUSH complex. Here we report the biochemical and cellular activities of 

MORC2 variants, alongside crystal structures of wild-type and neuropathic forms of a human 

MORC2 fragment comprising the GHKL-type ATPase module and CW-type zinc finger. This 

fragment dimerizes upon binding ATP and contains a hinged, functionally critical coiled coil 

insertion absent in other GHKL ATPases. We find that dimerization and DNA binding of the 

MORC2 ATPase module transduce HUSH-dependent silencing. Disease mutations change 

the dynamics of dimerization by distinct structural mechanisms: destabilizing the ATPase-

CW module, trapping the ATP lid or perturbing the dimer interface. These defects lead to 

modulation of HUSH function, thus providing a molecular basis for understanding MORC2-

associated neuropathies. 
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Introduction  

Microrchidia CW-type zinc finger proteins (MORCs) are a family of transcriptional regulators 

conserved in eukaryotes. More specifically, MORCs regulate the epigenetic control of 

transposons and newly integrated transgenes at different developmental stages in plants1,2, 

nematodes1,3 and mammals4,5. Four mammalian genes (MORC1-4) have been annotated. 

MORC1 is required for spermatogenesis in mice6, as an effector of transposon silencing5. 

We recently showed that human MORC2 is necessary, in conjunction with the human 

silencing hub (HUSH), for heterochromatin maintenance and the heterochromatinization of 

transgenes integrated at chromatin loci with histone H3 trimethylated at lysine 9 (H3K9me3), 

an epigenetic hallmark of heterochromatin4,7. We showed that MORC2 is additionally 

recruited to transcription start sites bearing H3K4me3, an epigenetic mark enriched at active 

promoters4. MORC2 has also been reported to have ATP-dependent chromatin remodelling 

activity, which contributes to the DNA damage response8 and to down-regulation of 

oncogenic carbonic anhydrase IX in a mechanism dependent on histone deacetylation by 

HDAC49. MORC3 localizes to H3K4me3-marked chromatin, but the biological function of 

MORC3 remains unknown10. 

Despite growing evidence of their importance as chromatin regulators, MORCs have been 

sparsely characterized at the molecular level. Mammalian MORCs are large, multidomain 

proteins with an N-terminal gyrase, heat shock protein 90, histidine kinase and MutL 

(GHKL)-type ATPase module, a central CW-type zinc finger domain and a divergent C-

terminal region with one or more coiled coils thought to enable constitutive dimerization11.  

SMCHD1 (Structural maintenance of chromosomes flexible hinge domain containing protein 

1) shares some of these key features and could therefore be considered as a fifth 

mammalian MORC, but lacks a CW domain and has a long central linker connecting to an 

SMC-like hinge domain12. As with several other members of the GHKL superfamily, the 

ATPase module of MORC3 dimerizes in an ATP-dependent manner10. The recently reported 

crystal structure of the ATPase-CW cassette from mouse MORC3 consists of a homodimer, 

with the non-hydrolyzable ATP analogue AMPPNP and an H3K4me3 peptide fragment 

bound to each protomer10. The trimethyl-lysine of the H3K4me3 peptide binds to an aromatic 

cage in the CW domains of MORC3 and MORC410,13,14. The MORC3 ATPase domain was 

also shown to bind DNA, and the CW domain of MORC3 was proposed to autoinhibit DNA 

binding and ATP hydrolysis by the ATPase module14. Based on observed biochemical 

activities, MORCs have been proposed to function as ATP-dependent molecular clamps 

around DNA10. However, the CW domains of MORC1 and MORC2 lack the aromatic cage 

and do not bind H3K4me3, suggesting that different MORCs engage with chromatin via 

different mechanisms4,13. Moreover, MORC1 and MORC2 contain additional domains, 
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including a predicted coiled coil insertion within the ATPase module that has not been found 

in any other GHKL ATPases. 

Exome sequencing data from patients with genetically unsolved neuropathies have recently 

reported missense mutations in the ATPase module of the MORC2 gene15–22. A range of 

symptoms have been detailed, all subject to autosomal dominant inheritance, with a complex 

genotype-phenotype correlation. Several reports described Charcot-Marie-Tooth (CMT) 

disease in families carrying MORC2 mutations including R252W (most commonly)15,16,19,20: 

patients presented in the first or second decade with distal weakness that spread proximally, 

usually accompanied by signs of CNS involvement. Two other mutations, S87L and T424R, 

have been reported to cause congenital or infantile onset of neuropathies15,18,20,21. Severe 

spinal muscular atrophy (SMA) with primary involvement of proximal muscles and 

progressive cerebellar atrophy was detailed in patients with the T424R mutation18,21, while 

diagnosis of patients with the S87L mutation was CMT with SMA-like features15,20. We 

recently showed that the CMT-associated MORC2 mutation R252W hyperactivates HUSH-

mediated epigenetic silencing in neuronal cells4. Disease mutations in MORC2 map to the 

ATPase module, as in the related SMCHD1 protein, where mutations have recently been 

associated with Bosma arhinia microphthalmia syndrome (BAMS) 23,24. However, the lack of 

biochemical or structural data on MORC2 has precluded efforts to understand its molecular 

function and rationalise the phenotypes of this rapidly growing list of neuropathic MORC2 

variants.  

Here we report the biochemical and cellular activities of MORC2 variants, alongside 

structures of wild-type and neuropathic variant forms of a MORC2 fragment comprising the 

GHKL-type ATPase module and CW-type zinc finger. Our data reveal several functionally 

critical features of MORC2. We show how the ATPase activity of MORC2 is tuned, and how 

ATP-dependent dimerization and DNA binding transduce HUSH-dependent silencing. We 

propose distinct structural mechanisms that explain how these functions of MORC2 are 

misregulated in neuropathy-associated variants: destabilization of the ATPase-CW module, 

trapping the ATP lid or perturbing the dimer interface. Together, our data provide a 

molecular understanding of the multiple structural mechanisms underlying the neuropathic 

effects of MORC2 mutations. 

Results 

Isolation of a stable, functional ATPase fragment of human MORC2 

To explore its molecular functions and establish a template to study the effect of neuropathic 

disease mutations, we set out to purify human MORC2 constructs suitable for biochemical 
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and structural studies. MORC2 is a 1032-amino acid protein predicted to contain several 

functional domains including an N-terminal GHKL-type ATPase module with a coiled-coil 

insertion (CC1) (Fig. 1A). MORC3 lacks the CC1 insertion and its ATPase module can be 

produced in E. coli 10,14, but we were unable to purify soluble human MORC2 with an intact 

CC1 from bacteria. We purified MORC2(1-282) (i.e. the GHKL domain, but not including 

CC1 or the remainder of the ATPase module) and used native differential scanning 

fluorimetry (DSF) to monitor its interaction with non-hydrolysable ATP analogue AMPPNP. 

Native DSF exploits the intrinsic fluorescence properties of proteins to monitor thermal 

unfolding processes, which are usually accompanied by a redshift in the fluorescence 

maximum wavelength from 330 nm to 350 nm. By monitoring the ratio of fluorescence at 

these wavelengths as a function of temperature, a melting temperature (Tm) may be 

extracted in the absence and presence of stabilizing ligands. We found that although we 

could detect a small thermal stabilization of MORC2(1-282) by Mg2+/AMPPNP, indicating an 

interaction, no ATPase activity was detected using this construct in an endpoint assay based 

on the detection of inorganic phosphate (Fig. 1B and Supplementary Fig. 1a). We could 

express and purify full-length MORC2 bearing a cleavable tandem StrepII tag in insect cells 

using a baculovirus-based expression system, but obtained low yields and the protein was 

highly sensitive to proteolytic cleavage. We therefore used limited proteolysis to identify a 

protease-resistant N-terminal fragment that ran at approximately 75 kDa by SDS-PAGE and 

showed evidence of ATP hydrolysis activity (Supplementary Fig. 1a,b). Based on 

sequencing of tryptic peptides by tandem mass spectrometry, we designed a construct 

spanning residues 1-603, encompassing the N-terminal ATPase module, the CW-type zinc 

finger (CW) domain and the second predicted coiled coil (CC2). MORC2(1-603) from insect 

cells was monomeric in isolation according to size exclusion chromatography 

(Supplementary Fig. 1c), and was stabilized by Mg2+/AMPPNP, leading to a large increase 

in the protein Tm from 51.5 °C to 67.3 °C as measured by DSF (Fig. 1B). Notably, the 

unfolding transition became multiphasic in the presence of the nucleotide (Fig. 1C). This is 

consistent with a mixture of unbound monomers, singly AMPPNP-bound dimers and doubly 

bound dimers, as observed in the gas phase by native mass spectrometry of MORC3 10. 

Concentrations up to 2 mM of Mg2+/ADP and inorganic phosphate (the products of ATP 

hydrolysis) did not stabilize the protein (Supplementary Fig. 1d).  

MORC2 was previously reported to have ATPase activity in an assay using cellular extracts 

and in which the D68A point mutant was used as a negative control 8. We were unable to 

purify MORC2 constructs bearing the D68A mutation from either bacterial or eukaryotic cells, 

suggesting that it may cause misfolding of the ATPase module. Since GHKL-type ATPases 

are usually inefficient enzymes, a robust negative control is essential to rule out background 
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activity from more efficient contaminating ATPases. Hence, we performed an ATPase assay 

with purified components, using the classical NADH-coupled system that has been used for 

DNA gyrase and Hsp90 in order to measure enzyme kinetics in continuous mode 25,26. For 

the negative control, we mutated the highly conserved active site residue Asn39; the N39A 

mutation did not compromise the folding of MORC2 but abrogated binding of Mg2+/AMPPNP 

according to DSF data (Fig. 1B). Purified wild-type MORC2(1-603) was found to have low 

ATPase activity, while the N39A mutant was inactive (Fig. 1D). The kinetics we measured 

were typical of GHKL ATPases, with a fitted kcat of 0.10 min-1 and Km (ATP) of 378 ± 53 µM 

(Fig. 1E). Together these data indicate that the wild-type MORC2 N-terminal ATPase 

module dimerizes upon ATP binding and that dimers dissociate upon ATP hydrolysis, like 

other GHKL-type ATPases. 

Structure of a homodimeric N-terminal fragment of human MORC2 bound to AMPPNP  

Having isolated a MORC2 construct competent for nucleotide binding and hydrolysis, we 

sought to generate mechanistic insights into the biochemical properties of MORC2 and the 

molecular basis of MORC2-associated neuropathies via structural analysis. We obtained 

crystals of human MORC2(1-603) in the presence of a molar excess of AMPPNP. The 

structure was determined by molecular replacement, using the murine MORC3 ATPase 

module structure10 as a search model. The asymmetric unit contained two MORC2 

molecules and the structure was refined to 1.8 Å resolution (Supplementary Table S1). 

The overall architecture of the crystallized MORC2 fragment bound to AMPPNP is an almost 

symmetric, parallel homodimer resembling the letter M (Fig. 2A). A 2,778 Å2 surface from 

each monomer is buried at the dimer interface. Structural alignment of the ATPase modules 

of MORC2 and MORC3 showed an rmsd of 1.29 Å for 2,200 backbone atoms, with 36% 

sequence identity. The MORC2 ATPase module consists of two α-β-α sandwich domains 

which we have distinguished as the GHKL domain (residues 1-265) and the transducer-like 

domain (residues 266-494, previously annotated as the S5 domain) due to its resemblance 

to the transducer domain of gyrase 27,28. Notably, the β-sheet in the transducer-like domain 

contains an 80-amino acid antiparallel coiled coil insertion, CC1 (residues 282-361), which 

forms a 6-nm projection emerging from the ATPase module. A similar insertion is predicted 

in MORC1 but is absent in other GHKL superfamily members. The transducer-like domain is 

capped by a helix-loop-helix motif that links to the CW domain (residues 495-545). This motif 

is disordered in the MORC3 structure and moreover, the CW domain of MORC2 is in a 

completely different position and orientation relative to the ATPase module. Our MORC2 

structures span residues 1-551, including all reported sites of neuropathy-causing mutations 

(Supplementary Fig. 2a,b). We did not observe electron density for the second predicted 
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coiled coil, CC2 (residues 551-603). A tetrahedrally coordinated zinc atom carried over from 

the purification was observed bound to the CW domain. The presence of zinc in the MORC2 

crystals was confirmed by X-ray fluorescence spectroscopy (Supplementary Fig. 2c). 

MORC2 has a prototypical GHKL ATPase active site. One AMPPNP molecule, stabilized by 

an octahedrally coordinated Mg2+ ion, is bound in the active site of both protomers. All critical 

residues involved in ATP binding and hydrolysis from the four signature motifs in the N-

terminal GHKL ATP binding domain 29 are conserved (Supplementary Fig. 2d,e): from Motif 

I (helix α2 in MORC2), Glu35 acts as a general base for water activation and Asn39 

coordinates the Mg2+ ion that templates the water-mediated interactions of the α-, β- and γ- 

phosphates; from Motif II, Asp68 hydrogen bonds to the adenine-N6-amine and the bulky 

sidechain of Met73 stacks against the adenine ring, while Gly70 and Gly72 (the ‘G1 box’) 

appear to provide flexibility to the ensuing ‘ATP lid’; from Motif III, Gly98, Gly101 and Gly103 

form the ‘G2 box’ at the other end of the lid and Lys105 forms a salt bridge with the α-

phosphate; from Motif IV, Thr119 and Thr197 contribute to the stabilization of Motif II and the 

adenine ring, respectively. Lys427 from the transducer-like domain coordinates the γ-

phosphate of AMPPNP, and forms a hydrogen bond with the same activated water 

nucleophile bound by Glu35. As in other GHKL family members, this conserved lysine from 

the transducer-like domain completes the functional ATPase. 

Nucleotide binding of MORC2 ATPase stabilizes the dimer interface 

GHKL ATPases usually dimerize on binding ATP but the composition and dynamics of the 

ATP lid that can close over the active site vary across the GHKL superfamily29. In the wild-

type MORC2 structure, the ATP lid (residues 82-103) is in the closed conformation in both 

protomers, leaving only a narrow channel between the bound AMPPNP and the solvent. 

Aside from residues in the four motifs detailed above, protein-nucleotide interactions made 

by the sidechains of Ser87 (a neuropathy mutation site) and Lys89 with the β-phosphate, 

and by the backbone atoms of Gln99 and Tyr100 with the γ-phosphate, stabilize the lid 

conformation (Fig. 2B). Residues in the lid form a significant part of the dimer interface, with 

Ile82, Phe84, Arg90, Tyr100 and Asn102 forming hydrogen bonds and hydrophobic contacts 

with residues 12-24 of the other protomer. A loop in the transducer-like domain (residues 

422-437), also contributes to the dimer interface. This loop coordinates the γ-phosphate of 

AMPPNP through Lys427 (and includes another neuropathy mutation site, Thr424) (Fig. 2C). 

Residues 1-11 form the remaining contacts of the dimer interface, extending across all three 

layers of the GHKL domain of the other protomer. The majority of the dimer contacts are 

formed by loops that directly coordinate ATP and are likely to have a different, more flexible 
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structure in the absence of ATP. This demonstrates how ATP binding and dimerization of 

MORC2 are coupled structurally. 

ATP-dependent dimerization is required for MORC2 effector function in HUSH 

silencing 

The MORC2(1-603) N39A mutant was a monomer in solution and did not bind or hydrolyse 

ATP (Figs. 1B, 1D and Supplementary Fig. 1c). Since ATP binding by the MORC2 ATPase 

module is coupled to dimerization, we conclude that the catalytically inactive N39A mutant 

does not form dimers via the ATPase module. We previously established a genetic 

complementation assay to assess the capacity of different disease-associated variants of 

MORC2 to rescue HUSH-dependent transgene silencing in MORC2 knockout (KO) cells. 

Briefly, we isolated clonal HeLa reporter cell lines bearing a HUSH-repressed GFP reporter. 

CRISPR-mediated KO of MORC2 in these clones led to cells becoming GFP bright, allowing 

complementation with exogenous MORC2 variants, which can be monitored as GFP re-

repression using FACS4. The lentiviral vector used expresses mCherry from an internal 

ribosome entry site (IRES), enabling us to control for multiplicity of infection (MOI) by 

monitoring mCherry. Using this assay, we previously found that the N39A mutant failed to 

rescue HUSH-dependent silencing4. Together with our biochemical data (Fig. 1), this shows 

that ATP binding or dimerization of MORC2 (or both) is required for HUSH function. 

To decouple the functional roles of ATP binding and dimerization, we used our MORC2 

structure to design a mutation aimed at weakening the dimer interface without interfering 

with the ATP binding site. The sidechain of Tyr18 makes extensive dimer contacts at the 

twofold symmetry axis, but is not located in the ATP binding pocket (Fig. 2C). Using the 

genetic complementation assay described above, we found that whereas addition of 

exogenous V5-tagged wild-type MORC2 rescued HUSH silencing in MORC2-KO cells, the 

Y18A MORC2 mutant failed to do so (Fig. 2D). The inactive MORC2 Y18A variant was 

expressed at a higher level than wild-type despite the same MOI being used (Fig. 2E). 

We then purified MORC2(1-603) Y18A and analysed its stability and biochemical activities 

using DSF and the ATPase assay. The mutant was properly folded based on DSF data on 

the unliganded protein, and was stabilized by AMPPNP suggesting that it was capable of 

nucleotide binding (Fig. 2F). However, consistent with our design, the high-Tm species 

corresponding to MORC2(1-603) dimers were absent. Despite its inability to form dimers, 

MORC2(1-603) Y18A was an active ATPase with slightly increased activity over the wild-

type construct (Fig. 2G). This suggests that dimerization of the MORC2 N-terminus is not 

required for ATP hydrolysis. Taken together, we conclude that ATP-dependent dimerization 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 2, 2017. ; https://doi.org/10.1101/197186doi: bioRxiv preprint 

https://doi.org/10.1101/197186


 

 

of the MORC2 ATPase module transduces HUSH silencing, and that ATP binding and 

hydrolysis are not sufficient. 

CC1 has rotational flexibility that may be coupled to nucleotide binding and 

dimerization  

The most striking feature of the MORC2 structure is the projection made by CC1 (residues 

282-361) that emerges from the core ATPase module. The only other GHKL ATPase with a 

similar coiled coil insertion predicted from its amino acid sequence is MORC1, for which no 

structure is available. Elevated B-factors in CC1 suggest local flexibility and the projections 

emerge at different angles in each protomer in the crystal structure. The orientation of CC1 

relative to the ATPase module also varies from crystal to crystal, leading to a variation of up 

to 19 Å in the position of the distal end of CC1 (Fig. 3A). Although the orientation of CC1 

may be influenced by crystal contacts, a detailed examination of the structural variation 

reveals a cluster of hydrophobic residues (Phe284, Leu366, Phe368, Val416, Pro417, 

Leu419, Val420, Leu421, Leu439) that may function as a ‘greasy hinge’ to enable rotational 

motion of CC1. Notably, this cluster is proximal to the dimer interface. Furthermore, Arg283 

and Arg287, which flank the hydrophobic cluster at the base of CC1, form salt bridges 

across the dimer interface with Asp208 from the other protomer, and further along CC1, 

Lys356 interacts with Glu93 in the ATP lid (Fig. 3B). Based on these observations we 

hypothesize that dimerization, and therefore ATP binding, may be coupled to rotation of CC1, 

with the hydrophobic cluster at its base serving as a hinge.  

Positively charged residues on the distal end of CC1 contribute to DNA binding and 

are required for HUSH-dependent silencing 

CC1 has a predominantly basic electrostatic surface, with 24 positively charged residues 

distributed across the surface of the coiled coil (Fig. 3C). MORC3 was shown to bind 

double-stranded DNA (dsDNA) through its ATPase module, but this interaction was 

autoinhibited by the CW domain14. We therefore sought to determine whether the MORC2 

ATPase-CW cassette binds DNA, and whether the charged surface of CC1 contributes to 

DNA binding. We first performed electrophoretic mobility shift assays (EMSAs) with 

nucleosome core particles (NCPs) and observed that wild-type MORC2(1-603) bound to 

both free DNA and nucleosomal DNA present in the NCP sample, with an apparent 

preference for free DNA (Fig. 3D).  

Next, to assess the importance of CC1 in HUSH-dependent silencing, we examined the 

effect of a panel of charge reversal mutations in CC1 in the cell-based HUSH 

complementation assay. The charge reversal point mutations R319E, R344E, R351E and 

R358E all rescued HUSH function in MORC2-KO cells, but R326E, R329E and R333E (or 
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combinations thereof) failed to do so (Fig. 3E and Supplementary Fig. 3a). Again, inactive 

variants were expressed at higher levels than active ones (Supplementary Fig. 3b). 

Residues 326, 329 and 333 form a positively charged patch near the distal end of the 

second α-helix of CC1. We therefore made a MORC2(1-603) triple mutant, 

R326E/R329E/R333E, and compared its dsDNA binding to that of the WT construct. We 

confirmed that WT MORC2(1-603) bound to the canonical Widom 601 nucleosome 

positioning sequence with high apparent affinity, and observed a ‘laddering’ effect on the 

DNA at the lowest (250-750 nM)  protein concentrations. This is consistent with multiple 

DNA binding surfaces on the protein and/or multiple proteins binding to a single piece of 

DNA. The triple CC1 charge reversal mutant still bound dsDNA, but with weaker apparent 

affinity, and no laddering of the DNA bands was observed (Fig. 3F). The WT MORC2 GHKL 

domain alone (residues 1-282) also bound dsDNA, albeit with a much lower affinity and with 

no laddering, while the CW domain in isolation did not bind DNA in the EMSA 

(Supplementary Figs. 3b,c). Together, these data suggest that MORC2 binds dsDNA 

through multiple sites including a positively charged surface near the distal end of the CC1 

arm, and that the latter is required for transduction of HUSH-dependent silencing.  

The CW domain has a regulatory role in the HUSH effector activity of MORC2  

Several recent studies have shown that the CW domain of MORC3 binds H3K4me3 

peptides selectively over histone 3 peptides with other epigenetic marks10,13,14. By contrast 

the MORC2 CW domain does not bind to the H3K4me3 mark due to a missing tryptophan at 

the ‘floor’ of the CW aromatic cage (Thr496 in MORC2, Fig. 4A)4,13. Indeed, the MORC2 CW 

domain was found not to interact with any of a wide variety of histone H3 and histone H4 

peptides13. We confirmed that the lack of interaction with DNA and/or histones is not due to a 

folding defect or a reliance on the ATPase module for folding, since isolated 15N-labelled 

MORC2 CW domain showed well-dispersed peaks in a 1H, 15N-heteronuclear single 

quantum coherence (HSQC) experiment (Supplementary Fig. 4a). 

The orientation of the CW domain relative to the ATPase module differs by approximately 

180˚ in the MORC2 and MORC3 structures, with the degenerate histone binding site of the 

MORC2 CW domain facing towards the ATPase module rather than towards solvent 

(Supplementary Fig. 4b). The CW domain binds an array of arginine residues in the 

transducer-like domain: conserved residue Trp505, providing the ‘right wall’ of the methyl-

lysine-coordinating aromatic cage, forms a cation-π interaction with the sidechain of Arg266. 

Thr496 (the degenerated ‘floor’ residue) makes a water-mediated hydrogen bond with the 

backbone amide of Arg266. Asp500 forms a salt bridge with Arg254. Gln498 forms a 

hydrogen bond with the backbone carbonyl oxygen of Arg252. Glu540 forms a salt bridge 
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with the Arg252 sidechain, which also forms a hydrogen bond with the backbone oxygen 

atom of Leu503 (Fig. 4B). The latter interactions are especially notable since a number of 

recent studies have shown that the R252W mutation causes Charcot-Marie-Tooth (CMT) 

disease15,16,19,20. We recently demonstrated that this mutation causes hyperactivation of 

HUSH-dependent epigenetic silencing4, leading to enhanced and accelerated re-repression 

of the GFP reporter in our functional assay. The R252W mutation, by removing the salt 

bridge to Glu540, may destabilize the ATPase-CW interface, which could account for the 

misregulation of MORC2 function in HUSH-dependent silencing. To test this hypothesis, we 

designed a mutation aimed at causing a similar structural defect, R266A, which disrupts the 

cation-π interaction with Trp505 described above. We performed a timecourse experiment, 

monitoring GFP reporter fluorescence in MORC2-KO cells after addition of the exogenous 

MORC2 variant. The R266A mutation recapitulated the hyper-repressive phenotype of 

R252W in the reporter clone tested (Fig. 4C-E), supporting the notion that the ATPase-CW 

interaction in MORC2 has a regulatory function in HUSH transgene silencing. Since the CW 

domain is directly linked to the second coiled coil (CC2), which is the putative HUSH binding 

module4, destabilization of this intramolecular association could have direct consequences 

on HUSH assembly or activity. 

In MORC3, the CW domain prevents binding of the ATPase module to DNA in the absence 

of H3K4me314. In MORC2, however, the CW domain does not inhibit DNA binding since 

MORC2(1-603) bound tightly to DNA despite the presence of an unliganded CW domain 

Figs. 3D,F). We note that many of the sidechains forming key contacts in the ATPase-CW 

domain interfaces of MORC2 and MORC3 are not conserved in the two proteins. These non-

conserved residues are Arg254, Arg266 and Thr496 in MORC2; and Glu184, Arg195, 

Lys216, Tyr217, Arg405, Arg444, and Asp454 in MORC3. Hence, it appears unlikely that the 

CW domain can bind to the MORC2 ATPase module in the same configuration as in 

MORC3, and vice versa. Together, our data show that the CW domain of MORC2 has a 

degenerate aromatic cage that explains its lack of binding to epigenetic marks on histone 

tails, and suggest that the association of the CW domain to the ATPase module antagonizes 

HUSH-dependent epigenetic silencing. Moreover, we conclude that MORC2 and MORC3 

have evolved CW domains with distinct regulatory mechanisms. 

Disease mutations modulate the in vitro and in vivo activities of MORC2 

We next tested whether MORC2 mutations reported to cause neuropathies affected the 

ATPase activity of MORC2. We purified MORC2(1-603) variants containing the R252W, 

T424R and S87L point mutations. All of the variants were well folded and were stabilized by 

addition of 2 mM Mg2+/AMPPNP (Supplementary Fig. 5a,b). We found a wide range of 
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effects on ATPase activity (Fig. 5A). MORC2(1-603) bearing CMT mutation R252W15,16,19,20 

showed a small decrease in the rate of ATP hydrolysis. In contrast, SMA mutation T424R18,21 

increased ATPase activity approximately threefold. The S87L variant (for which the clinical 

diagnosis was CMT with SMA-like features15,20) eluted from a size-exclusion column as two 

species: a major dimeric species with elevated 260 nm absorbance, indicating the presence 

of bound nucleotide, and a minor monomeric species (Supplementary Fig. 5a); this variant 

displayed very low ATPase activity, near the detection threshold. 

The R252W MORC2 variant hyperactivates HUSH-mediated transgene silencing4 but has 

reduced ATPase activity in vitro. We used the timecourse HUSH functional assay in two 

distinct MORC2-KO GFP reporter clones (i.e. two different HUSH-repressed loci) to 

investigate further the correlation of these activities. S87L (which forms stabilized dimers and 

also has reduced ATPase activity in vitro) also matched or outperformed wild-type MORC2 

at each time point measured. Conversely, T424R (which has increased ATPase activity in 

vitro) was significantly less efficient at GFP reporter repression than wild-type at both loci 

(Fig. 5B and Supplementary Figs. 5c,d). Together, these data indicate that unlike the point 

mutants incompetent for ATP binding (N39A) or dimerization (Y18A), which altogether fail to 

transduce HUSH silencing, the disease-associated variants are all capable of ATP binding, 

dimerization and hydrolysis. Further, we find that the efficiency of HUSH-dependent 

epigenetic silencing decreases as the rate of ATP hydrolysis increases. A summary of the 

properties of neuropathic and engineered MORC2 variants is shown in Table 1.  

Neuropathic mutations S87L and T424R perturb MORC2 dimer interface 

Two MORC2 mutations, S87L and T424R, have been reported to cause congenital or 

infantile onset of neuropathies, distinct from the later onset that was reported for patients 

bearing the R252W (or other) mutations. The consequences of S87L and T424R mutations 

on the biochemical activities of MORC2 are drastic. The locations of these mutation sites – 

Ser87 in the ATP lid and Thr424 at the dimer interface – are also at functionally important 

regions in the structure and we therefore determined the crystal structures of these variants 

to understand better the observed activities (Supplementary Table S1). T424R MORC2 

was co-crystallized with AMPPNP using the same protocol as for wild-type MORC2, but 

since S87L was dimeric and bound to ATP upon purification from insect cells, we determined 

its structure bound to ATP. The overall homodimeric structure of the two MORC2 disease 

variants was very similar to that of wild-type (Supplementary Fig. 6). The orientation of CC1 

relative to the ATPase module varied in each protomer within the same range as in wild-type. 

The ATP molecules bound to S87L MORC2 are in a nearly identical conformation to 
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AMPPNP in the wild-type and T424R structures, confirming that AMPPNP is a reasonable 

mimic of the natural nucleotide substrate in this case. 

Ser87 is in the lid that covers bound ATP. Its sidechain hydroxyl forms a hydrogen bond with 

the β-phosphate of AMPPNP in the wild-type structure. In the S87L mutant, we found that 

the lid is partially missing in one protomer and has a completely different conformation in the 

other. In the latter protomer, the lid forms additional contacts across the dimer interface in 

the S87L mutant (Fig. 5C). Leu87 itself forms apolar contacts with Asp141 from the other 

protomer, but more importantly, Arg90 forms a tight salt bridge with Glu17 across protomers. 

In the wild-type structure the Arg90 and Glu17 sidechains are 4-5 Å apart but do not form a 

salt bridge. Instead, Lys86 can form a salt bridge with Asp141 from the other protomer in 

wild-type. The increased number of dimer contacts in the S87L mutant is reflected in an 

increased buried surface area at the dimer interface (3,016 Å2 buried per protomer versus 

2,778 Å2 in wild-type). These observations provide a plausible structural basis for the 

observation that S87L forms more stable ATP-bound dimers than wild-type, which in turn 

affects its cellular function. 

The effect of T424R on the crystal structure of MORC2 is more subtle. The backbone 

structures of wild-type and T424R are essentially identical, including in the loop that contains 

the mutation (Fig. 5D). The arginine sidechain in the mutant does make an additional salt 

bridge across the dimer interface, with Glu27 from the other protomer. This additional 

contact may contribute to the dimer interface, but we did not observe any dimerization of 

T424R MORC2 during purification, suggesting that the mechanism of misregulating MORC2 

is distinct from S87L. Moreover, the buried surface area at the dimer interface is actually 

decreased upon the T424R mutation (2,527 Å2 buried per protomer versus 2,778 Å2 in wild-

type). We have described how ATP binding/hydrolysis is structurally coupled to 

dimerization/dissociation. The contribution of the mutant Arg424 sidechain to the dimer 

interface, and its position just three residues away from a key active site residue Lys427, can 

be expected to alter the dimerization dynamics and thus the ATPase activity of MORC2. 

Indeed, we found that the T424R mutation increases the rate of ATP hydrolysis, indicating 

that T424R dimers form and dissociate more rapidly than in the wild-type. It should be noted, 

however, that MORC2-associated neuropathies are subject to autosomal dominant 

inheritance. Our structures therefore represent the physiologically less common species in 

which not one but both protomers bear the mutation. It may be that the effect on molecular 

function is subtly different in heterozygous MORC2 dimers. Together, these data show that 

S87L causes kinetic stabilization of MORC2 dimers, whereas T424R increases the rate of 

dimer assembly and disassembly. These two disease mechanisms are distinct from that of 

R252W, which we propose above to weaken the regulatory ATPase-CW interaction. 
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Discussion  

Genetic studies have established that MORC family proteins have fundamentally important 

functions in epigenetic silencing across eukaryotic species1,4,5. We recently identified 

MORC2 as an indispensable effector of the HUSH complex and showed that MORC2 

contributes to chromatin compaction across HUSH target loci. The activity of MORC2 was 

dependent on ATP binding by its GHKL-type ATPase module4. Here, our structural and 

biochemical analyses provide evidence for how ATP binding and dimerization of MORC2 are 

coupled to each other.  

To understand how the biochemical activity of MORC2 is related to its cellular function, a 

comparison to prototypical GHKL ATPases is informative. The Km for ATP and kcat of the 

MORC2 N-terminal fragment, 0.37 mM and 0.1 min-1 respectively, are of comparable 

magnitude to those measured for recombinant constructs of E. coli DNA gyrase B (GyrB) 

(0.45 mM and 0.1 min-1) 30, human Hsp90 (0.84 mM and 0.007 min-1)31 and MutL (0.09 mM 

and 0.4 min-1)32. The Km of MORC3 has not been reported but its activity at 3 mM ATP was 

0.4-0.5 min-1.14 Hence, MORC2 and MORC3 resemble prototypical GHKL ATPases in that 

they bind ATP with relatively low affinity and hydrolyse ATP relatively slowly. Due to their low 

enzymatic turnover, GHKL ATPases are not known to function as motors or deliver a power 

stroke. Instead, ATP binding and hydrolysis function as conformational switches triggering 

dimer formation and dissociation, respectively33. Since MORC2 has similar enzymatic 

properties to other GHKL ATPases, we propose that its HUSH effector function arises from 

dimerization of its ATPase module triggered by ATP binding. Consistent with this model, a 

mutation outside the active site designed to inhibit dimerization of the ATPase module 

without affecting ATP binding/hydrolysis (Y18A) causes a loss of HUSH silencing (Fig. 2D-

G). Since ATP hydrolysis leads to dissociation of the dimer, one corollary is that increasing 

the rate of hydrolysis should cause less efficient HUSH function, and decreasing the rate of 

hydrolysis should hyperactivate HUSH function (so long as ATP can still bind and the protein 

can dimerize). Indeed this is what we found through analysis of three neuropathy-associated 

MORC2 mutants: T424R, which hydrolyses ATP more rapidly than wild-type, leads to less 

efficient HUSH silencing, whereas S87L and R252W, which hydrolyse ATP more slowly than 

wild-type, match or hyperactivate wild-type HUSH silencing (Fig. 5). We conclude that the 

lifetime of wild-type MORC2 ATPase dimers is tuned to enable cellular function. Indeed, the 

properties of engineered and naturally occurring MORC2 variants studied so far 

(summarized in Table 1) suggest that slight changes in the rate of ATP hydrolysis or dimer 

stability misregulate MORC2 cellular function by perturbing its N-terminal dimerization 

dynamics. 
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Our data suggest that the biological function of MORC2 arises from cycling between 

monomeric and dimeric conformational states at a finely tuned rate defined by ATP binding 

and hydrolysis – but what is the effect of MORC2 dimerization in the cell? The MORC2 

N-terminal fragment binds dsDNA with high affinity as a monomer. Dimerization of two DNA-

bound MORC2 molecules would bring two DNA duplexes together, which could promote 

DNA loop formation and chromatin compaction. MORC3 and SMCHD1 also bind DNA and 

have both been proposed to function as molecular clamps on DNA10,34,35. If MORC2 acts as 

a DNA clamp, the lifetimes of open and closed forms will be determined by the dimerization 

dynamics of the ATPase module. Structural and biochemical studies on full-length MORC2 

are necessary to investigate whether MORC2 functions as a clamp and to better understand 

how it interacts with chromatin. 

The structure of MORC2 contains a coiled-coil insertion in the ATPase module, CC1, which 

forms a positively charged 6-nm projection. A similar insertion is predicted in MORC1 (and in 

certain MORCs from other species including MORC1 from C. elegans, the sole annotated 

MORC in that species3) but not in other GHKL ATPases. MORC2 CC1 contributes to DNA 

binding, and charge reversal mutations at the distal end of CC1 cause a change in DNA 

binding properties and loss of HUSH function. Comparison of MORC2 structures from 

different crystals shows that a cluster of hydrophobic residues, where CC1 emerges from the 

ATPase module near the dimer interface, provides rotational flexibility to CC1. Since 

residues in each CC1 form hydrogen bonds with the ATP lid and the other MORC2 protomer, 

ATP binding and dimerization of the ATPase module may be coupled to rotational motion of 

CC1, or to a change in the range of rotational states accessible to CC1. Additional 

mechanisms of coupling CC1 motions to ATP binding and dimerization may operate in the 

context of full-length MORC2. A structure of MORC2 in the absence of nucleotide is needed 

to shed further light on the motions of CC1 and the inter-domain dynamics of the system. 

Despite similarities in domain structure, several observations suggest that the mode of 

chromatin recruitment and molecular functions of different MORCs vary across the family.  

Firstly, MORC2 contains a tudor/chromo-like domain (TCD) not found in other MORCs. The 

MORC2 TCD is dispensable for effective HUSH function, suggesting that it is not required 

for recruitment of MORC2 to HUSH loci4. However, MORC2 is also recruited to many loci 

that are not HUSH targets4, and the TCD may be involved in this. Secondly, the CW 

domains of MORC3 and MORC4 bind to H3K4me3, but the CW domains of MORC1 and 

MORC2 do not13. In the MORC2 structure, the degenerated histone binding surface of the 

CW domain binds to an array of arginine residues in the ATPase module. Weakening these 

interactions hyperactivates HUSH silencing implying that the CW domain may have a 

regulatory function. Release of the CW domain may transmit a functionally important motion 
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through the neighbouring second coiled coil (CC2), the HUSH binding module, and could be 

triggered in WT MORC2 by another protein or unidentified epigenetic mark. Alternatively, the 

CW domain may function as a tandem reader (in concert with the TCD) by contributing 

additional affinity for a histone mark despite possessing very low affinity in isolation, as seen 

for example in CHD136. Thirdly, sequence similarities between MORC2 and MORC1 suggest 

that the two proteins have structural and functional similarities. MORC1 has a similar domain 

structure to MORC2, including the CC1 insertion and a degenerated aromatic cage in the 

CW domain, lacking only the TCD. Human MORC1 is expressed exclusively in the male 

germline and the blastocyst, in which it silences active transposons at their H3K4me3-

marked transcriptional start sites (TSSs) 5. MORC2 is also recruited to TSSs in differentiated 

cells4. Notably, the CMT-associated mutations R252W and D466N make the sequence of 

MORC2 more homologous to that of MORC1. Since the R252W MORC2 variant 

hyperactivates HUSH silencing, MORC1 may have greater repressive activity than MORC2. 

This could be advantageous because transposable elements are most actively expressed in 

the germline and during early development, due to the relief of epigenetic repression 

associated with the acquisition of pluripotency in these cells. MORC1 may be required at 

these stages as the more active MORC variant to prevent an excessive level of transcription 

from transposons. 

MORC2 is the only gene in the MORC family in which mutations have been reported to 

cause neuropathies in humans. Here, we have examined three disease mutations (S87L, 

R252W and T424R) that cause neuropathies diagnosed as CMT and/or SMA. Our work 

provides insights on the basis of MORC2 misregulation in affected patients and identifies the 

link between the biochemical activities of MORC2 and its cellular function as an effector of 

the HUSH complex. Modulation of HUSH-independent activities of MORC2 may also be 

important in determining disease outcome. For example, MORC2 has been associated with 

the activity of HDAC49, a protein known to be important in synaptic plasticity and as a 

transcriptional regulator in the central nervous system37, and which was overexpressed in 

SMA model mice and muscles of SMA patients38. More work will be needed understand how 

MORC2 mutations cause the range of clinical symptoms described, but it is interesting to 

note that the mutations causing pronounced changes in biochemical properties (S87L, which 

forms constitutive dimers, and T424R, which increases ATPase activity three-fold) are 

associated with congenital or infantile onset, unlike the R252W mutation where the 

biochemical effect is more subtle and affected patients presented later. 

Based on our observed relationships between its in vitro and in vivo activities, we conclude 

that MORC2 is part of a homeostatic system tuned such that a reduction in biochemical 

activity can cause a gain-of-function cellular phenotype, and vice versa. Similarly, mutations 
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in SMCHD1 cause Bosma arhinia microphthalmia syndrome (BAMS), while others cause 

facioscapulohumeral muscular dystrophy type 2 (FSHD2) 23,24, with varied effects on in vitro 

ATPase activity23. These studies provide an interesting example in another GHKL ATPase of 

(i) pleiotropic disease outcomes resulting from mutations in the same gene, and (ii) gain of 

function cellular phenotypes resulting from decreased biochemical activity and vice versa. 

Since both gain and loss of MORC2 molecular function are linked to neuropathies, there are 

in theory a large number of MORC2 mutations that could cause disease including those that 

compromise the stability of the ATPase module. We would therefore predict that there are 

other MORC2 mutations associated with undiagnosed neuropathies. Here we have 

described a molecular basis for understanding MORC2 effector function in human epigenetic 

silencing and the varied mechanisms of misregulation that underlie MORC2-associated 

neuropathies. 
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Figure Legends 

Figure 1. MORC2 is a GHKL-type ATPase.  

(A) Domain organization of human MORC2. The GHKL ATP binding domain and the 

transducer-like domain (trans.) together form the ATPase module. CC indicates a predicted 
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coiled coil; CW indicates a CW-type zinc finger domain; TCD indicates a predicted tudor-

chromodomain.  

(B and C) MORC2 binds to non-hydrolyzable ATP analogue AMPPNP according to 

Differential Scanning Fluorimetry (DSF). AMPPNP significantly increases the thermal 

stability of MORC2(1‑603), while the N39A point mutant abrogates binding and MORC2(1-

282) is stabilized to a much smaller extent than MORC2(1‑603) (B). Raw DSF data of 

MORC2(1-603) in the absence (pink) and presence (greyscale) of the nucleotide (C). Shown 

are the ratios of fluorescence at 350 nm and 330 nm (top) and the first derivative (bottom), 

as a function of temperature. The high-Tm species were assigned as nucleotide bound 

dimers. 

(D) Rate of ATP hydrolysis by wild-type (WT) and N39A MORC2(1-603) variants at 37°C in 

the presence of 7.5 mM ATP, measured using an NADH-coupled continuous assay. Error 

bars represent standard deviation between measurements.  

(E) Steady-state ATPase activity of 4 µM WT MORC2(1-603) at 37°C fitted to a model of 

Michaelis-Menten kinetics. 

 

Figure 2. ATP binding and dimerization of MORC2 are tightly coupled and required for 

HUSH-dependent transgene silencing. 

(A) Crystal structure of homodimeric human MORC2 residues 1-603 in complex with 

Mg-AMPPNP refined at 1.8 Å resolution. One protomer is coloured according to the domain 

structure scheme (top), and the other is coloured in orange. The protein is shown in cartoon 

representation, nucleotides are shown in stick representation, and metal ions are shown as 

spheres. Solvent molecules are not shown. 

(B and C) Nucleotide binding and dimerization are structurally coupled. Residues in the ATP 

lid (residues 82-103), which covers the active site (B) and in the loop from the transducer-

like domain (C) contribute to interactions at dimer interface. Key sidechains are shown in 

stick representation; labelled residues from the second protomer are marked with an asterisk. 

(D and E) Dimerization is critical for mediating HUSH-dependent transgene silencing activity. 

Expression of a MORC2 variant bearing an alanine substitution at a key residue in the dimer 

interface (Y18A) failed to rescue transcriptional repression of the GFP reporter in MORC2 

knockout cells, as assessed by FACS. Shown are the data from Day 12 post-transduction: 

the GFP reporter fluorescence of the HUSH-repressed clone is in grey; the MORC2 

knockout is in green; the MORC2 knockout transduced with exogenous MORC2 variants is 
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in orange (D). The lentiviral vector used expresses mCherry from an internal ribosome entry 

site (IRES), enabling control of viral titre by mCherry fluorescence measurement. Despite 

using the same MOI, the Y18A variant was expressed at higher levels than wild-type (WT) 

as assessed by a Western blot of cell lysates (E). 

(F and G) Y18A MORC2(1-603) is folded, and binds and hydrolyses ATP based on DSF 

data with AMPPNP (F) and ATPase assays (G). Error bars represent standard deviation 

between measurements. The data for WT from Fig. 1C-D are shown for reference. 

 

Figure 3. Novel coiled coil insertion (CC1) in the GHKL ATPase module of MORC2 is 

hinged, highly charged and important for DNA binding and HUSH function. 

(A) Superposition of MORC2(1-603) structures determined from two different crystals 

showing that CC1 was in different rotational states in the two crystals, leading to a difference 

of 19 Å in the position of the distal end of CC1. Inset: close-up of the boxed region, with the 

view rotated 90˚, showing that hydrophobic residues (in stick representation for both 

structures) form a hinge at the base of CC1.  

(B) Close-up of the region boxed in panel A, highlighting in stick representation residues in 

CC1 that make polar interactions with the ATP lid and with the other MORC2 protomer, 

suggesting that the rotational motion of CC1 could be coupled to ATP binding and 

dimerization. 

(C) Electrostatic surface representation of the MORC2(1-603)-AMPPNP structure, made 

using the APBS PyMOL plug-in (red = negative charge, blue = positive charge). The 

positions of seven conserved arginines in CC1 are highlighted (inset).  

(D) MORC2(1-603) binds to dsDNA. EMSA with 500 nM nucleosome core particles (NCPs) 

in the presence of increasing concentrations of MORC2(1-603) (from left to right: 0, 0.25, 0.5, 

1, 2.5, 5 µM i.e. up to 10 molar equivalents). Negative controls were performed with SDS-

containing loading dye, which denatures proteins (at 0 and 10 equivalents), and with an 

unrelated protein of similar size (-ve, concentrations at 0.5 and 5 µM). The positive control 

was HMGB1, a known DNA binding protein (+ve, concentrations at 0.5 and 5 µM). The gel 

was post-stained for DNA with SYBR Gold. L denotes the DNA ladder. 

(E) A charged patch at the tip of CC1 is required for HUSH-dependent silencing. Summary 

of FACS-based genetic complementation assays with charge reversal mutants of MORC2. 

See also Supplementary Figs. 3a,b. 
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(F) CC1 contributes to the DNA binding activity of MORC2(1-603). EMSAs with 100 ng 601 

DNA in the presence of increasing concentrations of wild-type (WT, left) or triple mutant 

R326E/R329E/R333E (right). The laddering effect on the DNA migration seen at low WT 

MORC2 concentrations is absent in the case of the triple mutant, and the apparent affinity is 

weaker based on the slower disappearance of the unbound DNA band with protein titration. 

Gels were post-stained for DNA with 2 µM SYTO62. 

 

Figure 4. The degenerated histone binding motif of the CW domain of MORC2 binds an Arg-

rich surface on the ATPase module. 

(A) Amino acid sequence alignment of the CW domains of MORC2, lysine-specific 

demethylase 1B (KDM1B) and MORC3 shows that MORC2 lacks the ‘floor’ Trp residue 

important for H3K4me3 coordination by the other proteins. The sections of the MORC 

domain structure schemes marked with a line represent the regions resolved in crystal 

structures. ‘Zn’ marks the cysteine residues involved in zinc coordination. Residue numbers 

refer to human MORC2. 

(B) Details of the MORC2 ATPase-CW interaction. Key residues mentioned in the text are 

shown in stick representation and polar contacts (3.2 Å or less) are represented by dotted 

lines. 

(C-E) Weakening the ATPase-CW interaction in MORC2 hyperactivates HUSH-mediated 

transgene silencing. Time-course of transgene re-repression by R252W and R266A MORC2 

variants in the MORC2-knockout HeLa reporter clone (C). The bar chart shows the relative 

GFP fluorescence level (FACS-derived geometric mean) of complemented cells compared 

to the untreated cells (*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001; ns, not significant, 

unpaired t-test compared to wild-type data). Error bars represent the mean ± standard 

deviation from three biological replicates. Example FACS plots show that the R252W and 

R266A variants enhance the overall degree of GFP reporter repression relative to wild-type 

MORC2 (D). Shown are the data from Day 14 post-transduction: the GFP reporter 

fluorescence of the HUSH-repressed clone is in grey; the MORC2 knockout is in green; the 

MORC2 knockout transduced with exogenous MORC2 variants is in orange. Western blot 

validation of expression of the MORC2 variants (E). 

 

Figure 5. Neuropathy-associated mutations modulate the ATPase and HUSH-dependent 

silencing activities of MORC2 by altering the stability of the MORC2 dimer. 
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(A) Rate of ATP hydrolysis by wild-type (WT) and neuropathic variants of MORC2(1-603) at 

37°C in the presence of 7.5 mM ATP, measured using an NADH-coupled continuous assay. 

Error bars represent standard deviation between measurements. The WT data are shown for 

reference and are the same as in Fig. 1. R252W and S87L variants have reduced rates of 

ATP hydrolysis, whereas T424R has threefold higher activity than WT.  

(B) Assessing the efficiency of HUSH-mediated silencing by neuropathic MORC2 variants. 

Time-course of transgene re-repression by MORC2 variants in two distinct MORC2-

knockout GFP reporter clones (i.e. two different HUSH-repressed loci). The bar chart shows 

the relative GFP fluorescence level (FACS-derived geometric mean) of complemented cells 

compared to the untreated cells (*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001; ns, not 

significant, unpaired t-test compared to wild-type data). Error bars represent the mean ± 

standard deviation from three biological replicates. nd, not determined. See also 

Supplementary Figs. 4c,d.  

(C and D) Neuropathic mutations S87L and T424R alter the modes of ATP binding and 

dimerization of the ATPase module. (C) Structure of the ATP lid (residues 82-103) of the 

S87L mutant. The structures of WT and S87L MORC2 dimers, bound to ATP and AMPPNP, 

respectively, were superimposed using the ATPase module of one protomer as the 

alignment reference. The two protomers are coloured yellow and orange for S87L, and white 

and grey for WT, respectively. Residues in the second protomer are labelled with asterisks. 

The ATP lid has a different conformation in the mutant. The mutant Leu87 side chain forms 

nonpolar dimer contacts with Thr15 and Asp141 from the other protomer, whereas in WT 

Ser87 coordinates the β-phosphate of AMPPNP. The β-phosphate of ATP is coordinated by 

Lys86 and a water molecule in S87L, instead of Ser87 and Lys89 in WT. Arg90 forms a salt 

bridge across the dimer interface with Glu17 from the other protomer in S87L but not WT. 

(D) Dimer interface near the site of SMA mutation T424R. The WT and T424R dimers were 

superimposed using both ATPase modules of each dimer as the alignment reference. The 

WT and mutant protomers are coloured and labelled as in panel C. The T424R mutation 

does not cause significant changes to the structure of main chain atoms. The mutant Arg424 

residue forms a salt bridge across the dimer interface with Glu27 from the other protomer, 

whereas in WT Thr424 forms a hydrogen bond with Asp429 in the transducer-like domain, 

near Lys427 (which coordinates the ATP γ-phosphate). 

 

Table 1. Summary of molecular consequences of neuropathic and structure-based 

mutants of MORC2. 
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*These mutations have not been studied in this paper. † R333E is an example of several 

CC1 charge reversal mutants; see Fig. 3. ND, not determined. 

 

 

 

Materials and Methods 

Cell culture. Sf9 insect cells (Expression Systems) were grown in Insect-XPRESS media 

(Lonza) with no antibiotics at 27 °C. HEK293T and HeLa cells (ECACC) were grown in 

IMDM plus 10% FCS, GlutaMAX (1x) and penicillin/streptomycin (100 U/mL). 

Protein Expression and Purification. Human MORC2 (residues 1-1032 and 1-603) were 

cloned into a modified pOET transfer vector (Oxford Expression Technologies) for 

baculovirus-driven production of N-terminally 3C protease-cleavable tandem-StrepII-tagged 

protein. S. frugiperda (Sf9) cells were cotransfected with this plasmid and linearized 

baculovirus genomic DNA (AB Vectors). Virus stocks were amplified with three rounds of 

infection. For expression, Sf9 cells at a density of 2-2.5 x 106 cells/mL were infected with 

2.5% (v/v) third-passage (P3) virus and incubated with shaking at 27 °C for 50-60 h. All 

subsequent steps were performed at 4 °C. Cells were harvested by centrifugation, 

resuspended in lysis buffer containing 50 mM Tris pH 8.0, 150 mM NaCl, 2 mM MgCl2, 1 mM 

DTT, 1:10,000 (v/v) benzonase solution (Sigma), 1x cOmplete EDTA-free protease inhibitors 

(Roche) and flash frozen in liquid nitrogen before storage at -80 °C. Upon thawing, cells 

were lysed by sonication on ice. The ionic strength of the buffer was then increased by 

adding NaCl from a 5 M stock to a final concentration of 0.5 M. The lysate was clarified by 

centrifugation (1 h, 40,000 x g). For a typical preparation at a ~200-µg scale, the protein-

containing supernatant was bound to 500 µL preequilibrated StrepTactin Sepharose High 

Performance resin (GE Healthcare) for 1 h. The sample was then applied to a 2-ml Pierce 

Centrifuge Column (Thermo Scientific) and washed with at least 20 CV wash buffer (50 mM 

Tris pH 8.0, 500 mM NaCl, 2 mM MgCl2, 1 mM DTT) before elution with 5 mM d-

desthiobiotin in wash buffer. The buffer was exchanged to MORC2 gel filtration buffer 

(50 mM HEPES pH 7.5, 150 mM NaCl, 2 mM MgCl2, 0.25 mM TCEP) with an Econo-Pac 

10DG Desalting Column (Bio-Rad) and the tag cleaved by overnight incubation with 10 U 

PreScission Protease (GE Healthcare). Alternatively, proteins were eluted from the resin 

with Prescission cleavage (40 U). The GST-tagged protease was removed by incubating the 

cleaved sample twice with 100 µl glutathione agarose resin (Thermo Fisher Scientific). Final 

purification was achieved by size-exclusion chromatography on a Superdex 200 increase 
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(10/300) column (GE Healthcare). Variants were expressed and purified in the same way as 

for wild-type (WT) MORC2. 

Human MORC2 (residues 1-282) was cloned into a pET15b vector for the production of N-

terminally His-tagged protein, and expressed in E. coli BL21(DE3) cells at 37 °C in 2xTY 

media containing 100 mg/L ampicillin. Expression was induced at an OD600 of 0.8 with 

0.2 mM IPTG for 18 h at 18 °C. The culture was pelleted and resuspended in a buffer 

containing 50 mM Tris pH 8.0, 500 mM NaCl, 10 mM imidazole, 1 mM DTT, 1:10,000 (v/v) 

benzonase solution (Sigma) and 1x cOmplete EDTA-free protease inhibitors (Roche), then 

flash frozen in liquid nitrogen and stored at -80 °C. All subsequent steps were done at 4 °C. 

Further lysis was achieved by extensive sonication (3 x 3 min). The lysate was clarified by 

centrifugation and the protein-containing supernatant was bound to preequilibrated Ni-NTA 

beads (Generon) for 1 h. The beads were washed with at least 20 CV Ni wash buffer 

(50 mM Tris pH 8.0, 500 mM NaCl, 10 mM imidazole, 1 mM DTT) before a stepwise elution 

in batch mode with 3 x 5 CV of Ni wash buffer supplemented with 200 mM, 300 mM and 500 

mM imidazole. Further purification was performed with size-exclusion chromatography on a 

Superdex 200 increase (10/300) column (GE Healthcare) in MORC2 gel filtration buffer. 

Human MORC2 CW domain (residues 490-546) was expressed and purified as described 

previously4. 15N-labelled protein was produced by culturing cells in M9 media containing 

15NH4Cl (Sigma) as the sole nitrogen source and purification was the same as for unlabelled 

protein. 

Limited proteolysis. 100 µl of full-length MORC2 at ~0.1 mg/ml in gel filtration buffer was 

incubated with 1% (w/w) trypsin (Pierce) at room temperature. 15-µl aliquots were removed 

at time intervals and the enzyme quenched by adding 5 µl of 4x SDS-PAGE loading buffer 

and heating the sample to 95 °C for 5 min. 10 µl samples were loaded on a NuPAGE 4-12% 

Bis-Tris gel (Thermo Fisher Scientific) in MES running buffer, separated at 200 V for 45 min 

and then stained with Quick Coomassie stain (Generon). 

Differential Scanning Fluorimetry (DSF). 10 µl samples containing MORC2 variants at 

5 µM in the presence or absence of AMPPNP or ADP/Pi (Sigma) were prepared in gel 

filtration buffer, incubated on ice for 1 h and then loaded into glass capillaries (Nanotemper) 

by capillary action. Intrinsic protein fluorescence at 330 nm and 350 nm was monitored 

between 15 and 90 °C in the Prometheus NT.48 instrument (Nanotemper), and the Tm 

values calculated within the accompanying software by taking the turning point of the first 

derivative of the F350:F330 ratio as a function of temperature. Nucleotide concentrations were 

determined spectroscopically using ε260 of 15.4 mM-1cm-1. 
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ATP hydrolysis assays. Initial assessment of ATPase activity of MORC2 constructs was 

done with an ATPase/GTPase assay kit (Sigma) for detecting the release of inorganic 

phosphate. Briefly, MORC2 at a final concentration of 3 µM was mixed with assay buffer 

(Sigma) and ATP (Sigma) added to a final concentration of 1 mM in a flat-bottom 96-well 

clear plate (Corning). After 90 min at room temperature, the reaction was quenched with 

malachite green reagent and after a further 10 min incubation, absorbance at 620 nm was 

read with a Clariostar plate reader (BMG LABTECH). For determining quantitative ATPase 

hydrolysis rates in continuous mode, the NADH-coupled system26 was used to detect the 

evolution of ADP in 384-well microplates (Corning) at 37 °C. Assays were set up in a volume 

of 30 µL containing 0.35 mM NADH (VWR), 3 mM phosphoenolpyruvate (VWR), 8 U lactate 

dehydrogenase (Roche), 2.5 U pyruvate kinase (Roche), 7.5 mM ATP (Sigma) and 1.6-4 µM 

MORC2 variants. The components (apart from MORC2) were dissolved in an assay buffer 

containing 100 mM Tris pH 8.0 and 20 mM MgCl2. Blanks containing the protein buffer were 

included to account for background NADH decomposition over the course of the experiment. 

Pathlength-corrected NADH absorbance values at 340 nm were measured in a Clariostar 

plate reader at 37 °C, at 1-min intervals over a period of 90 min. Linear regression was used 

to fit the rate of NADH consumption at steady state. Rates are quoted as the consumption of 

NADH (µmol) per minute per µmol of MORC2, using the extinction coefficient ε340(NADH) of 

6.22 mM-1cm-1. Rates were blank-corrected and measured in triplicate. Non-linear regression 

analysis of Km and Vmax were done in GraphPad Prism; values are quoted ± standard error. 

Nucleotide concentrations were determined spectroscopically using ε260 of 15.4 mM-1cm-1. 

X-ray crystallography. WT MORC2(1-603) was concentrated to 5 mg/ml (~70 µM) and 

incubated with ten molar equivalents AMPPNP in MORC2 gel filtration buffer. Crystals were 

grown at 18 °C by the sitting drop vapour diffusion method, by mixing the protein/nucleotide 

mixture at a 1:1 ratio with the reservoir solution optimized from the Morpheus screen39: 0.1 M 

bicine/Trizma pH 8.5, 9% PEG4,000, 18% glycerol and 0.12 M Morpheus alcohols mix 

(Molecular Dimensions) consisting of 0.02 M each of 1,6-hexanediol, 1-butanol, (RS)-1,2 

propanediol, 2-propanol, 1,4-butanediol and 1,3-propanediol. Pyramidal crystals appeared in 

1-2 days and were frozen in liquid N2 using 35% glycerol as a cryoprotectant. The procedure 

was the same for the S87L and T424R variants except that the precipitant concentrations for 

the best crystals were higher (10-11% PEG4000 and 20-22% glycerol). In the case of the 

S87L variant, the protein was at 4.5 mg/ml and was concentrated from the earlier gel 

filtration peak (i.e. the nucleotide-bound dimeric fraction), which was assigned as ATP-

bound; therefore, ATP was supplemented in place of AMPPNP. X-ray diffraction data were 

collected at 100 K at the European Synchrotron Radiation Facility (beamlines ID29 and 

ID30b) and processed using the autoPROC package40. Molecular replacement was done 
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with Phaser41 using the mouse MORC3 ATPase (PDB: 5IX2) as a search model10 to place 

the ATPase module. The Zn atoms and coordinating residues from the CW domains were 

placed in real space and the remainder built de novo in Coot42. Models were iteratively 

refined in Fourier space using REFMAC43 or PHENIX44. Model building and real space 

refinement were done in Coot. Crystallographic data are summarised in Supplementary 

Table S1. Structure figures were generated with PyMOL. The structures were deposited in 

the Protein Data Bank with codes 5OF9, 5OFA and 5OFB. 

EMSAs. 100 ng of 601 mononucleosome positioning sequence DNA (a kind gift from T. 

Bartke, Helmholtz Zentrum, Munich) or 500 nM nucleosome core particles (a kind gift from S. 

Tan, Penn State University) was incubated on ice with increasing concentrations of MORC2 

variants in gel filtration buffer for 1 h. The reaction mixtures were loaded on a 6% 

polyacrylamide gel that had been prerun on ice for 1 h at 150 V in 45 mM (0.5x) Tris-borate 

buffer. Electrophoresis was performed at 150 V on ice for 90 min. Gels were post-stained for 

DNA with 1x SYBR gold stain (Thermo Fisher Scientific) then visualised with the G-BOX 

system (Syngene), or with 2 µM SYTO 62 (Invitrogen) then visualised with the Odyssey CLx 

system (LICOR). 

NMR spectroscopy. 60 µM 15N-labelled MORC2 CW domain in a buffer containing 50 mM 

HEPES pH 7.5, 150 mM NaCl, 2 mM MgCl2, 0.5 mM TCEP, 0.1 mM ZnSO4 and 5% (v/v) 

D2O was transferred to a 5-mm tube (Norell). Spectra were recorded at 293 K on a Bruker 

600 MHz Avance III spectrometer and processed in Topspin software. 

Flow cytometry. Cells were analyzed on a FACSFortessa (BD Biosciences) instrument. 

Data was analyzed with FlowJo. 

Antibodies. The following antibodies were used: mouse α-V5 (Abcam, ab27671), mouse α-

β-actin (Sigma-Aldrich, A5316), donkey α-mouse HRP-conjugated antibody (Jackson 

ImmunoResearch, 715-035-150).  

Immunoblotting. Cells were lysed in 1% SDS plus 1:100 (v/v) benzonase solution (Sigma-

Aldrich) for 15 min at room temperature, and then heated to 65 °C in SDS sample loading 

buffer for 5 min. Following separation by SDS-PAGE, proteins were transferred to a PVDF 

membrane (Millipore), which was then blocked in 5% milk in PBS + 0.2% Tween-20. 

Membranes were probed overnight with the indicated primary antibodies, washed four times 

in PBS + 0.2% Tween-20, then incubated with HRP-conjugated secondary antibodies for 1 h 

at room temperature. Reactive bands were visualized using SuperSignal West Pico (Thermo 

Fisher Scientific).  
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Lentiviral expression. Exogenous gene expression in mammalian cells was performed 

using the vector pHRSIN-PSFFV-V5-MORC2-IRES-mCherry-PPGK-Hygro4, with the wild-type 

V5-MORC2 gene being replaced with the V5-MORC2 variant of interest. Lentivirus particles 

were generated through the triple transfection of HEK293T cells with the lentiviral expression 

vector plus the two packaging plasmids pCMVΔR8.91 and pMD.G, by using TransIT-293 

transfection reagent (Mirus) according to the manufacturer’s recommendations. Viral 

supernatant was typically harvested 48 h after transfection, cell debris was removed with a 

0.45-μm filter, and target cells were transduced by spin infection at 800 g for 60 min. 

Transduced HeLa cells were selected with hygromycin at 100 μg/ml. 

 

Supplementary Figure Legends 

Supplementary Figure 1. Identification, characterization and purification of a MORC2 N-

terminal fragment with ATPase activity 

(A) Endpoint Malachite green ATPase assay (based on chromogenic detection of evolved 

phosphate) with different MORC2 constructs. MORC2(1-282) had no detectable activity, 

while the 75-kDa fragment isolated from degraded full-length material showed evidence of 

activity. Error bars represent standard deviation between three measurements. 

(B) Coomassie-stained SDS-PAGE gel following limited tryptic proteolysis with 10 µg of 

purified full-length MORC2. 

(C) Portions of size-exclusion chromatograms for MORC2(1-603) WT and N39A variants. 

Solid and dashed lines indicate absorbance at 280 nm and 260 nm, respectively. Elution 

volumes are consistent with monomeric protein. Chromatography was performed with a 

S200 increase (10/300) column (GE Healthcare). 

(D) The nano-differential scanning fluorimetry (DSF) thermal unfolding profiles of MORC2(1-

603) in the absence and presence of 2 mM ADP/Pi. The profiles are identical, suggesting 

that MORC2(1-603) does not interact with the products of ATP hydrolysis. 

Supplementary Figure 2. Supporting details related to the crystal structure of the 

MORC2(1-603)-AMPPNP homodimeric complex. 

(A and B) Positions of neuropathic (CMT- and SMA-associated) point mutations on the 

MORC2 domain structure (A), and 3D structure (B). The side chains of mutated residues are 

shown as red spheres. 
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(C) X-ray fluorescence spectra have absorption peaks at energies near the theoretical zinc K 

absorption edge (inflection point 9.6586 keV), indicating that zinc is bound in two 

MORC2(1-603)-AMPPNP crystals tested (Crystals 14 and 17). 

(D and E) Details of the GHKL-type ATPase active site of MORC2. The recognition of the 

non-hydrolyzable ATP analogue AMPPNP is shown schematically (D), and in 3D to illustrate 

the four motifs specific to the GHKL family (E). The view in (E) is similar to the view in Fig. 

2B. Water molecules are shown as blue circles in (D) and as red spheres in (E). 

Supplementary Figure 3. Functional importance and DNA binding of CC1 and other 

MORC2 domains. 

(A and B) FACS plots of genetic complementation assays to assess HUSH-dependent 

silencing of CC1 charge reversal mutants. Shown are the data from Day 12 post-

transduction: in grey is the GFP reporter fluorescence of the repressed clone; in green is the 

MORC2 knockout; in orange is the MORC2 knockout transduced with exogenous MORC2 

variants (A). The lentiviral vector used expresses mCherry from an internal ribosome entry 

site (IRES), enabling control of viral titre by mCherry fluorescence measurement. A Western 

blot of cell lysates (B) shows that despite using the same MOI the inactive MORC2 variants 

were expressed at higher concentrations than WT. 

(C and D) EMSAs with 100 ng 601 DNA in the presence of increasing concentrations of 

MORC2 GHKL domain (C) or CW domain (D). Gels were post-stained for DNA with SYBR 

Gold. Note that in (C), the samples were run in two different gels, stained and scanned next 

to each other. The 0 µM and 4 µM protein samples were run in both gels as an internal 

control. 

Supplementary Figure 4. Supporting details concerning the structure and function of the 

MORC2 CW domain. 

(A) The MORC2 CW domain does not require the ATPase domain for folding. The 1H, 15N-

HSQC spectrum of isolated 15N-labelled MORC2 CW domain (residues 490-546) at pH 7.5 

and 298 K shows amide chemical shift dispersion consistent with a folded domain.  

(B) Comparison of the overall human MORC2 and mouse MORC3 ATPase-CW structures 

(cartoon representation, with nucleotides shown in stick representation and metal ions 

shown as space-filling spheres) shows the different position of the MORC2 CW domain as 

compared to MORC3, relative to the ATPase module. Domains making up the ATPase 

modules are in yellow, CW domains in blue, CC1 in green (MORC2 only), H3K4me3 peptide 

in pink (MORC3 only).  
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Supplementary Figure 5. Oligomeric state, ATP binding and HUSH-dependent silencing 

activity of neuropathic variants of MORC2. 

(A) Portions of size-exclusion chromatograms for MORC2(1-603) variants. Solid and dashed 

lines indicate absorbance at 280 nm and 260 nm, respectively. The black arrow indicates a 

larger molecular weight (earlier elution) peak for S87L with elevated 260 nm absorbance, 

which we have assigned as a nucleotide-bound dimer. Chromatography was performed with 

a S200 Increase (10/300) column (GE Healthcare). The greyed out data for WT and N39A 

are for reference and are also shown in Supp. Fig. 1. 

(B) Summary of nano-differential scanning fluorimetry (DSF) data with different MORC2(1-

603) variants in the presence and absence of nucleotide ligands. The neuropathic mutations 

studied here do not cause unfolding of the ATPase module. The greyed out data for WT and 

N39A are for reference and are also shown in Fig. 1. 

(C) Example FACS plots from the timecourse complementation experiments in two different 

clones, shown in Fig. 5b. Shown are the data from Day 14 post-transduction: the GFP 

reporter fluorescence of the HUSH-repressed clone is in grey; the MORC2 knockout is in 

green; the MORC2 knockout transduced with exogenous MORC2 variants is in orange.  

(D) Western blot validation of expression of the exogenous MORC2 variants in each MORC-

knockout reporter clone. 

Supplementary Figure 6. Comparison of the overall structures of MORC2(1-603) variants 

reported in this paper. Root mean square deviations (RMSDs) for all atoms in each structure 

pair are listed.   
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Fig. 5 

 

 

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 2, 2017. ; https://doi.org/10.1101/197186doi: bioRxiv preprint 

https://doi.org/10.1101/197186


 

 

Mutation Disease 
Activity relative to 
wild-type MORC2 Position in 

structure 
Proposed mechanism of 
MORC2 misregulation References 

ATPase HUSH 

Y18A - Higher No 
activity 

Dimer 
interface Does not dimerize This paper 

N39A - No 
activity 

No 
activity Active site Cannot bind ATP This paper; Tchasovnikarova et al. (2017) 

S87L CMT/ 
SMA Lower Higher ATP lid Constitutive N-terminal 

dimerization Sevilla et al. (2016); Hyun et al. (2016) 

R132L* CMT ND ND ATPase core Destabilize ATPase* Hyun et al. (2016) 

E236G* CMT ND ND ATPase core Destabilize ATPase* Albulym et al. (2016) 

R252W CMT Lower Higher ATPase-CW 
interface 

Destabilize ATPase-CW 
module  

Sevilla et al. (2016); Albulym et al. (2016); 
Laššuthová et al. (2016); Hyun et al. 

(2016); Tchasovnikarova et al. (2017) 

R266A - ND Higher ATPase-CW 
interface 

Destabilize ATPase-CW 
module This paper 

R333E† - ND No 
activity CC1  DNA binding & CC1 

functional  defect This paper 

Q400R* CMT ND ND ATPase core Destabilize ATPase* Zhao et al. (2016) 

T424R SMA Higher Lower Dimer 
interface 

Perturb dimerization 
dynamics 

Schottmann et al. (2016); Zanni et al. 
(2017) 

D466N* CMT ND ND ATPase 
surface Destabilize ATPase* Zhao et al. (2016); Semplicini et al. (2017) 

 

 

Table 1. Summary of molecular consequences of neuropathic and structure-based 

mutants of MORC2. 

*These mutations have not been studied in this paper. † R333E is an example of several 

CC1 charge reversal mutants; see Fig. 3. ND, not determined. 
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Fig. S3 
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Fig. S4 
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Fig. S5 
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Fig. S6 
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  WT T424R S87L 

Ligand AMP-PNP AMP-PNP ATP 
Data collection 
X-ray source 
  

  
ESRF ID30b 
  

ESRF ID29 ESRF ID29 
Space group P12

1
1 P12

1
1 P12

1
1 

  
Cell dimensions 
a, b, c (Å) 
α, β, γ (°) 
  

  
66.17, 127.93, 80.19 
90.0, 101.2, 90.0 

  
69.61, 125.73, 81.53 
90.0, 97.8, 90.0 

  
69.85, 124.68, 80.36 
90.0, 97.7, 90.0 

Wavelength (Å) 
  

0.972636 
  0.975999 0.975999 

Resolution (Å) 
  

78.66 – 1.81 
(1.84 – 1.81)* 

80.76 – 2.57 
(2.62 – 2.57)* 

79.63 – 2.02 
(2.05 – 2.02)* 

  
Observations 

  
789,315 

  
165,185 

  
309,681 

Unique reflections 118,148 43,876 82,175 
R

merge
 0.082 (0.901) 0.046 (0.599) 0.052 (0.648) 

<I> / σ(I) 13.6 (2.1) 16.2 (2.1) 13.5 (2.2) 
Completeness (%) 98.9 (98.3) 99.6 (99.4) 91.9 (96.7) 
Redundancy 6.9 (6.3) 3.8 (3.7) 3.8 (3.7) 
  
  
Refinement 

      
R

work 
/ R

free 
 0.161 / 0.188 0.211 / 0.239 0.198 / 0.228 

  
No. of non-H atoms 
  Protein 
  Ligand/Ions 
  Solvent 

  
  
8708 
66 
721 

  
  
8696 
66 
39 

  
  
8713 
67 
304 

  
Mean B-factors 
  Protein 
  Ligand/Ions 
  Solvent 

  
  
44.0 
24.1 
45.4 

  
  
93.1 
52.0 
57.2 

  
  
53.8 
34.9 
47.0 

  
RMS deviations 
  Bond lengths (Å) 
  Bond angles (°) 

  
  
0.012 
1.108 

  
  
0.014 
1.935 

  
  
0.015 
1.930 

  
Ramachandran stats. 
  % favoured 
  % allowed 
  % outliers 

  
  
97.36 
2.45 
0.19 

  
  
97.07 
2.84 
0.09 

  
  
97.27 
2.54 
0.19 

        
PDB code 5OF9 5OFA 5OFB 

 

Table S1 X-ray data collection and refinement for crystal structures of MORC2(1-603) variants 

reported in this paper. *Values in parentheses refer to the highest-resolution shell.  
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