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Abstract 
 
Single-cell RNA sequencing significantly deepened our insights into complex tissues 
and latest techniques are capable processing ten-thousands of cells simultaneously. 
With bigSCale, we provide an analytical framework being scalable to analyze millions 
of cells, addressing challenges of future large datasets. Unlike previous methods, 
bigSCale does not constrain data to fit an a priori-defined distribution and instead uses 
an accurate numerical model of noise. We evaluated the performance of bigSCale 
using a biological model of aberrant gene expression in patient derived neuronal 
progenitor cells and simulated datasets, which underlined its speed and accuracy in 
differential expression analysis. We further applied bigSCale to analyze 1.3 million cells 
from the mouse developing forebrain. Herein, we identified rare populations, such as 
Reelin positive Cajal-Retzius neurons, for which we determined a previously not 
recognized heterogeneity associated to distinct differentiation stages, spatial 
organization and cellular function. Together, bigSCale presents a perfect solution to 
address future challenges of large single-cell datasets. 
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Extended Abstract 
 

Single-cell RNA sequencing (scRNAseq) significantly deepened our insights 
into complex tissues by providing high-resolution phenotypes for individual cells. 
Recent microfluidic-based methods are scalable to ten-thousands of cells, enabling an 
unbiased sampling and comprehensive characterization without prior knowledge. 
Increasing cell numbers, however, generates extremely big datasets, which extends 
processing time and challenges computing resources. Current scRNAseq analysis 
tools are not designed to analyze datasets larger than from thousands of cells and 
often lack sensitivity and specificity to identify marker genes for cell populations or 
experimental conditions. With bigSCale, we provide an analytical framework for the 
sensitive detection of population markers and differentially expressed genes, being 
scalable to analyze millions of single cells. Unlike other methods that use simple or 
mixture probabilistic models with negative binomial, gamma or Poisson distributions to 
handle the noise and sparsity of scRNAseq data, bigSCale does not constrain the data 
to fit an a priori-defined distribution. Instead, bigSCale uses large sample sizes to 
estimate a highly accurate and comprehensive numerical model of noise and gene 
expression. The framework further includes modules for differential expression (DE) 
analysis, cell clustering and population marker identification. Moreover, a directed 
convolution strategy allows processing of extremely large data sets, while preserving 
the transcript information from individual cells. 

We evaluate the performance of bigSCale using a biological model for reduced 
or elevated gene expression levels. Specifically, we perform scRNAseq of 1,920 
patient derived neuronal progenitor cells from Williams-Beuren and 7q11.23 
microduplication syndrome patients, harboring a deletion or duplication of 7q11.23, 
respectively. The affected region contains 28 genes whose transcriptional levels vary in 
line with their allele frequency. BigSCale detects expression changes with respect to 
cells from a healthy donor and outperforms other methods for single-cell DE analysis in 
sensitivity. Simulated data sets, underline the performance of bigSCale in DE analysis 
as it is faster and more sensitive and specific than other methods. The probabilistic 
model of cell-distances within bigSCale is further suitable for unsupervised clustering 
and the identification of cell types and subpopulations. Using bigSCale, we identify all 
major cell types of the somatosensory cortex and hippocampus analyzing 3,005 cells 
from adult mouse brains. Remarkably, we increase the number of cell population 
specific marker genes 4-6-fold compared to the original analysis and, moreover, define 
markers of higher order cell types. These include CD90 (Thy1), a neuronal surface 
receptor, potentially suitable for isolating intact neurons from complex brain samples. 

To test its applicability for large data sets, we apply bigSCale on scRNAseq 
data from 1.3 million cells derived from the pallium of the mouse developing forebrain 
(E18, 10x Genomics). Our directed down-sampling strategy accumulates transcript 
counts from cells with similar transcriptional profiles into index cell transcriptomes, 
thereby defining cellular clusters with improved resolution. Accordingly, index cell 
clusters provide a rich resource of marker genes for the main brain cell types and less 
frequent subpopulations. Our analysis of rare populations includes poorly characterized 
developmental cell types, such as neuron progenitors from the subventricular zone and 
neocortical Reelin positive neurons known as Cajal-Retzius (CR) cells. The latter 
represent a transient population which regulates the laminar formation of the 
developing neocortex and whose malfunctioning causes major neurodevelopmental 
disorders like autism or schizophrenia. Most importantly, index cell cluster can be 
deconvoluted to individual cell level for targeted analysis of populations of interest. 
Through decomposition of Reelin positive neurons, we determined a previously not 
recognized heterogeneity among CR cells, which we could associate to distinct 
differentiation stages as well as spatial and functional differences in the developing 
mouse brain. Specifically, subtypes of CR cells identified by bigSCale express different 
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compositions of NMDA, AMPA and glycine receptor subunits, pointing to 
subpopulations with distinct membrane properties. Furthermore, we found Cxcl12, a 
chemokine secreted by the meninges and regulating the tangential migration of CR 
cells, to be also expressed in CR cells located in the marginal zone of the neocortex, 
indicating a self-regulated migration capacity. 

Together, bigSCale presents a perfect solution for the processing and analysis 
of scRNAseq data from millions of single cells. Its speed and sensitivity makes it 
suitable to the address future challenges of large single-cell data sets.  
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Introduction 
 
Single-cell RNA sequencing (scRNAseq) is at the forefront of techniques to chart 
molecular properties of individual cells. Recent microfluidic-based methods are 
scalable to ten-thousands of cells, enabling an unbiased sampling and in-depth 
characterization without prior knowledge1–3. Consequently, studies are less confined by 
the number of cells and aim to produce comprehensive cellular atlases of entire 
tissues, organs and organisms4. Increasing cell numbers, however, generate extremely 
large datasets, which extend processing time and challenge computing resources. 
Current scRNAseq analysis tools are not designed to analyze datasets larger than 
thousands of cells and often lack sensitivity and specificity to identify marker genes for 
cell populations or experimental conditions. 
To address the challenges of large scRNAseq datasets, we developed bigSCale, an 
analytical framework for the sensitive detection of population markers and differentially 
expressed genes, being scalable to analyze millions of single cells. Unlike other 
methods that use simple or mixture probabilistic models with predefined distributions to 
handle the noise and sparsity of scRNAseq data5–8, bigSCale does not assume an a 
priori-defined distribution. Instead, bigSCale uses large sample sizes to estimate a 
highly accurate and comprehensive numerical model of noise. The framework further 
includes modules for differential expression (DE) analysis, cell clustering and 
population marker identification. Moreover, a directed convolution strategy allows the 
processing of extremely large datasets, while preserving the transcript information from 
individual cells. 
We evaluate the performance of bigSCale using a defined biological model for reduced 
or elevated gene expression levels by performing scRNAseq of neuronal progenitors 
derived from induced pluripotent stem cells of Williams-Beuren9 and 7q11.23 
microduplication10 syndrome patients. Simulated datasets of different size and sparsity 
were utilized to underline the accuracy and speed of bigSCale in DE analysis. To 
demonstrate its suitability for unsupervised clustering and population marker 
identification using its probabilistic model of cell-distances, we applied bigSCale to 
cluster cell types of the somatosensory cortex and hippocampus from adult mouse 
brains11. Lastly, the bigSCale framework was applied to convolute and characterize 1.3 
million cells derived from the developing mouse forebrain, detecting profound 
heterogeneity in rare neuronal subpopulations. We believe bigSCale presents a perfect 
solution for the processing and analysis of scRNAseq data from millions of single cells. 
Its speed and sensitivity make it suitable to address future challenges of large single-
cell datasets. 
 
 
Results 
 
The bigSCale framework 
Datasets from scRNAseq display sparse and noisy gene expression values, among 
other sources due to drop-out events, amplification biases, and variable sequencing 
depth. The bigSCale framework builds a probabilistic model to define phenotypic 
distance between pairs of cells that considers all sources of variability. Compared to 
other methods that assume negative binomial, gamma or Poisson distributions in 
simple or mixture probabilistic models, bigSCale estimates a highly accurate and 
comprehensive numerical model of noise. The model allows to quantify distances 
between cells, which provide the basis for differential expression analysis and cell 
clustering (Fig. 1, Methods). 
(1) To generate the model, cells featuring highly similar transcriptomes are grouped 
together. Next, the expression variation within groups is used as an estimator of noise. 
Unlike previous methods, bigSCale models differences in expression levels rather than 
expression levels themselves. Therefore, a p-value is assigned to each gene, 
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representing the likelihood of a change of expression from one cell to another. Prior to 
model computation, a module for batch effect removal can be applied.  
(2) For differential expression bigSCale assigns a p-value to each gene, representing 
the likelihood of an expression change between two groups of cells. To this end, all 
pairwise cell comparisons between two groups are performed. Genes repeatedly 
differing in expression between cells cumulate higher scores, which are next adjusted 
and normalized into p-values. 
(3) Cellular clustering is achieved by computing all pairwise cell distances to generate a 
distance matrix and to assign cells into groups (via Ward’s linkage). Specifically, the 
distance matrix is computed over a set of overdispersed genes, namely genes 
presenting a high degree of variation across the dataset. To improve the feature 
quality, skewed, isolated and perfectly correlating genes are discarded. The latter are 
prone to generate artificial transcript clusters and consist of genes with a common 3’-
end, being indistinguishable by digital counting scRNAseq methods.  
(4) Following the identification of cell clusters, bigSCale conducts an iterative DE 
analysis between populations of cells for the sensitive detection of markers, defined by 
genes unevenly expressed across populations. Notably, most current tools lack the 
option to model multifaceted phenotype structures with overlying molecular signatures 
of cells. Conversely, bigSCale allows to disclose multiple alternative phenotypes of a 
given cell by ordering markers in a hierarchical structure, in which increasing layers of 
phenotypic complexity (from cell types to subtypes or states) are represented by 
markers at increasing hierarchical levels.  
(5) While bigSCale’s intrinsic speed allows the direct analysis of datasets up to 
hundred thousand cells, adjustments are needed to handle millions of cells. For these 
scenarios, the cell numbers are scaled down by pooling (convoluting) information from 
cells with analogous transcriptional profiles into indexed cell (iCell) profiles. Here, iCells 
are defined by adding transcript counts from pools of similar single cells, significantly 
increasing molecule and gene counts and overall improving the expression profile 
quality. Accordingly, iCells allow to discriminate subpopulations with higher precision 
and sensitivity. Most importantly, iCells preserve the transcript information from 
individual cells and can be deconvoluted for targeted analysis of populations of interest. 
 
Identification of differentially expressed genes 
We evaluate the performance of bigSCale using a biological model for reduced and 
elevated gene expression levels. Specifically, we performed scRNAseq of 1,920 
neuronal progenitor cells (NPC) derived from induced pluripotent stem (iPS) cells of 
two patients with Williams-Beuren (WB) and two with 7q11.23 microduplication (Dup7) 
syndrome. Both are multisystemic disorders caused by a heterozygous deletion or 
duplication, respectively, of 1.5-1.8Mb at the chromosome band 7q11.23. This region is 
flanked by segmental duplications with high sequence identity that can mediate non-
homologous recombination with the consequent loss or gain of 26-30 contiguous 
genes, whose transcriptional levels vary in line with their allele dosage9,10. To 
benchmark bigSCale against other common single-cell DE tools, NPC from four 
syndromic patients (WB1/2: n=742 and Dup7.1/2: n=735) were compared to NPC 
derived from a healthy donor (WT: n=369 cells). The sensitivity of each algorithm was 
evaluated by counting the number of genes detected to be significantly down- or 
upregulated in patients against the control. To achieve the same level of specificity 
amongst tools, the top 1500, 2000 and 2500 deregulated genes were used in each 
comparison.  
For the WB1 sample harboring a deleted allele, bigSCale presented the highest 
sensitivity by detecting 12 down-regulated genes, followed by scde6, MAST7, seurat5 
and scDD8 (Fig. 2a). Notably, bigSCale finds the same genes as the other best 
performing tools, plus additional events (Fig. 2b). Interestingly, the poorest performing 
tool scDD is also the most divergent one, displaying reduced overlaps with the other 
four methods (Fig. 2a,b). Consistently, bigSCale displayed the highest sensitivity also 
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in the remaining three comparisons (Supplementary Fig. 1a-c), with an overall 
average of 11.5 detected down-regulated genes in WB patients and 9 up-regulated 
genes in Dup7 patients (Fig. 2c). Moreover, bigSCale proved to be the most sensitive 
method at all tested specificity levels, with an average of 8.75 (top 2000) and 6.75 (top 
1500) detected DE genes (Supplementary Fig. 1d). These results indicate that 
bigSCale outperforms other methods for single-cell DE analysis in sensitivity when 
using biological data. 
To further test the performances in determining DE genes, we benchmarked bigSCale 
against the previous tools using simulated datasets. For data simulation, we used 
Splatter12, which allows to generate and control true positive DE genes. Simulations 
have been performed estimating parameters from two datasets representing different 
characteristics of large-scale experiments, namely our NPC dataset (sim_NPC) and a 
droplet-based experiment consisting of ~2,500 cells sequenced to low coverage (10x 
Genomics, sim_10xG; Methods). The two datasets widely differed in the number of 
detected genes per cell, sparsity and heterogeneity (Fig. 2d and Supplementary 
Fig. 2a). In both simulations, we recreated distributions of gene expression levels and 
library properties highly similar to the original datasets and preserved the original 
number of cells and genes. Six cell types of different proportions were simulated in 
each dataset, allowing to test DE between groups of proportions 1:1 (1x), 1:2 (2x) and 
1:10 (10x). Each tool has been applied to the complete dataset at the model-building 
step, prior to test DE between groups of cells. 
The ability to correctly classify true DE genes against non-DE genes was evaluated 
calculating the area under the curve (AUC) of a receiver operating characteristic (ROC) 
curve, ranking genes in their order of significance as determined by the tools. To test 
the capacity of controlling false positives events, we focused on the partial AUC with 
high specificity being >90%. All tools performed better in the simulated NPC dataset 
and the order of tools was consistent across all group sizes (Fig. 2e,f and 
Supplementary Fig. 2b-e). Remarkably, bigSCale outperformed the other tools, 
reaching the highest levels of sensitivity and specificity in all tested conditions (Fig. 
2g). The MAST performance was the closest to bigSCale, with the gap being more 
evident in more distinct proportional contexts (10x, Supplementary Fig. 2c,e). Notably, 
while the design of MAST is restricted to DE analysis, bigSCale provides a 
comprehensive framework for single-cell analysis. 
In the view of increasing datasets sizes, we further evaluated bigSCale’s speed in DE 
analysis. In the biological model (NPC), bigSCale proved to be the fastest tool (3.1 min) 
in performing DE, followed by MAST (4.0 min) (Fig. 2h). The slowest tool was scde 
(684 min), as reported in previously studies13,14. We next compared the scalability of 
bigSCale to MAST with respect to samples sizes. To this end, we created a simulated 
matrix of 40,000 genes and 32,000 cells and performed DE analyses between pairs of 
groups with sizes ranging from 2,000 to 32,000 cells. BigSCale was faster for all 
conditions (Fig. 2i). Moreover, bigSCale could process datasets larger than 8,000 cells, 
whereas MAST was limited by the RAM requirements, denoting a broader perspective 
of applicability for bigSCale.  
   
Cellular clustering and population marker identification 
To evaluate the ability of bigSCale to identify cell types and subpopulations in complex 
tissues, we analyzed 3,005 cells of the somatosensory cortex and hippocampus 
dissected from the adult mouse brains11. Consistently with previous analyses11,15, 
bigSCale was able to segregate all major brain cell types, namely somatosensory 
pyramidal neurons, different types of CA1/2 pyramidal neurons, interneurons, 
astrocytes, oligodendrocytes and vascular cells (Fig. 3a). Remarkably, we increased 
the number of marker genes specific for cell types 4/5-fold compared to the original 
analysis using BackSPIN and, moreover, defined markers of higher order cell types 
(Fig. 3a). Specifically, bigSCale determined 9,258 marker genes for cellular types, 
including 7,167 previously unidentified markers (Supplementary Table 1).  The 
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expression patterns of the novel markers were highly specific to the respective 
populations of cells, as shown for astrocytes (Fig. 3b), oligodendrocytes, vascular 
cells, neurons and interneurons (Supplementary Fig. 3a,b), pointing to a high 
accuracy of bigSCale. In line, external bulk RNAseq signatures supported the novel 
markers to be highly specific for the respective populations16,17 (astrocytes, p<4.9e-62; 
oligodendrocytes, p=9.9e-18; interneurons, p=9.8e-19; neurons, p=2.3e-34; vascular, 
p=1.0e-67). Furthermore, the novel markers included established marker for brain 
subtypes, such as Atp1a218, Slc1a319, Mt120 and Aqp421 for astrocytes or Stmn322, 
Snap2523 for neurons (Supplementary Fig. 4a-c). 
Differently to other methods, bigSCale marker genes are organized in a hierarchical 
structure allowing to stratify the analysis into different layers of tissue organization. This 
enabled the assignment of markers to subpopulations, but also higher order cell types, 
such as glia cells or neurons (Supplementary Fig. 3b). In this regard, current 
experimental designs fail to reliably separate intact neurons from glia cells, as 
established markers (e.g. NeuN) located in the nuclear membrane and are not suitable 
for isolating entire neurons. Our analysis identified 1,656 marker genes silenced in glial 
cells and expressed in neuronal populations (Supplementary Table 1), such as the 
neuronal surface receptor CD90 (Thy1, Fig. 3a), potentially suitable for isolating intact 
neurons from complex brain samples. 
 
Convolution of large datasets into index cells 
To analyze very large datasets of millions of cells, bigSCale convolutes the original 
cells into iCells with improved transcriptional profiles after the numerical model has 
been computed using the entire dataset (Methods). To ensure that the convolution 
strategy does not deteriorate cellular phenotypes and related cell clustering, we 
evaluated its performance by analyzing 20,000 brain cells (randomly downsampled 
data set, 10x Genomics). Specifically, we tested the cluster assignment of all cell pairs 
within the dataset before and after increasing degree of convolution (from 4,587 to 
2,101 iCells) and for different cluster numbers (n=2-32). Similarities of classification 
were defined by the Rand Index (RI), a metric suitable for comparative cluster 
assessment24, where RI=100% implies complete similarity of clusterings. Importantly, 
we observed a highly similar cluster assignment between original and convoluted 
datasets with RI>80% (Fig. 4a). The RI was also stable with increasing cluster 
numbers or degree of convolution, indicating a robust strategy to reduce cell numbers. 
In line, visualizing cells in two-dimensional plots (tSNE) confirmed the high similarity of 
cluster assignment between original and iCells (Fig. 4b). Together, the results support 
the utility of bigSCale convolution to reduce dataset sizes without the introduction of 
artifacts. 
 
Analysis of 1,306,127 cells of the developmental pallium 
The by far most extensive dataset to date for scRNAseq are 1,306,127 sequenced 
mouse brain cells from the developmental (E18) dorsal and medial pallium. The data 
was produced using droplet-based library preparation (10xChromium v2) and is 
publically available (10x Genomics). Despite being the sole developmental scRNAseq 
dataset of crucial regions such as cortex, hippocampus and the subventricular zone, its 
large size yet prevented any detailed analysis. We reasoned that the bigSCale 
analytical framework would be suitable to analyze such large data set and performed 
an in-depth analysis of cell types and states, including rare and poorly described 
subpopulations. This analysis serves as proof-of-concept for bigSCale’s suitability to 
process millions of cells from complex tissues in an unbiased manner. 
Initially, we applied our convolution strategy to reduce the dataset size 50-fold from 
1,306,127 cells to 26,185 iCells. As expected iCells were of improved quality with 
average library size increasing 50-fold (from 4,890 to 238,500 UMIs) and detected 
genes per cell increasing 5-fold (from 2,009 to 9,360). In line, average expression level 
increased from to 2.4 UMIs to 25.5 UMIs. The convolution retained 1,244,298 cells 
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(95.27%), discarding 61,829 cells (4.73%). Clustering of the index cells revealed 16 
major cell populations and captured 16,242 differentially expressed markers (Fig. 5a,b, 
Supplementary Table 2). We classified the 16 populations in four main cell types: 
non-neuronal (1-4), neuronal progenitors (5-8), radial glia (9-11) and post-mitotic 
neurons (12-16). Hierarchical markers allowed to sharply disentangle cell types and 
subtypes, as well as stages of lineage commitment. Exemplarily, higher order markers, 
such as Tubb3 and Slc1a3 mark the two main cell types: postmitotic neurons of the 
intermediate/marginal zones and radial glia and progenitors of the ventricular zone, 
respectively (Fig. 5a,c). Similarly, bigSCale captured the hallmarks of the main stages 
of the neuronal lineage25, indicated by the expression of Pax6 (radial glia), Tbr2 
(committed progenitors) and Tbr1 (differentiated neurons) (Fig. 5a). On the other hand, 
the most significant markers shaping the heterogeneity of post-mitotic neurons are 
Stmn2 (silenced in neuroblasts), Meg3 (interneurons and Cajal-Retzius (CR) neurons), 
Nrp1 (glutamatergic neurons), Tac2 (neuroblasts), Reln (CR neurons) and Gad2 
(gabaergic interneurons). 
As expected, some radial glia (C9, C10) and progenitor populations (C5, C7, C8) 
represent dividing cells, indicated by Top2a expression and other cell cycle genes (Fig. 
5a, Supplementary Table 2). Interestingly, bigSCale also identified a population of 
dividing GABAergic progenitors (C5) characterized, amongst other markers, by 
simultaneous expression of Gad2, Pax6 and Top2a. Subpatterns of expression within 
populations of cells further indicate the presence of subtypes of cells, as displayed by 
the uneven expression of the signaling molecule Nhpx2 within Gad2 positive 
interneurons (Fig. 5a). Given the association of Nhpx2 with an attention-
deficit/hyperactivity disorder26, Gad2/Nhpx2 positive cells could represent a previously 
unknown developmental subtype of interneurons with a roles in behavior and 
neurocognitive functions. 
 
Deconvolution for high-resolution subpopulation analysis 
While bigSCale enabled the convolution of 1.3 million cells to characterize the main 
cellular types of the developmental pallium with unprecedented detail, the information 
of single-cell transcriptional profiles was maintained. Consequently, population specific 
deconvolution allows the in-depth analysis of populations of interest at the resolution of 
individual cells. We were especially interested in the population of Reln positive cells, 
also known as Cajal-Retzius neurons, a transient type of neurons which regulates the 
laminar formation of the developing neocortex and whose malfunctioning causes major 
neurodevelopmental disorders like autism or schizophrenia27. 
To date a comprehensive phenotypic characterization of the CR cells and its potential 
subtypes remains elusive, mostly due to their transient nature and to the lack of 
unambiguous markers. To unravel the diversity of CR cells, we deconvoluted 480 Reln 
positive iCells to 17,543 individual Reln positive cells, an unprecedented resource to 
phenotype this cell type (Fig. 6a). Reln was expressed uniformly in all deconvoluted 
cell, confirming the specificity of the convolution strategy (Fig. 6b). Furthermore, P73 
(Trp73) a well-known marker of neocortical CR cells of later developmental stages 
(E18) was also uniformly expressed. Expression of P73 indicates that the CR cells 
were originated from the cortical hem, which is the major source of neocortical CR 
cells28. We determined CR cell specific markers, in addition to Reln and Trp73, which 
included Cacna2d2, a calcium channel subunit, and Eya2, a transcriptional coactivator 
(Methods). Unsupervised clustering revealed eight major subpopulations of CR cells 
(Fig. 5a) and a total of 8,174 differentially expressed markers genes (Supplementary 
Table 3). The clusters also included cell doublets an inevitable artefact of microfluidic-
based sample processing, recognizable by cells with simultaneous expression of Reln 
and erythrocytes genes (Fig. 6a). 
The eight subclusters pointed to a yet undescribed heterogeneity within CR cells and to 
spatial and functional differences in the developmental pallium. We found Cxcl12, a 
chemokine secreted by the meninges and regulating the tangential migration of the CR 
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cells28, to be also expressed by subtypes of CR cells (Fig. 6b). Notably, in situ 
hybridization data from E18 mice (Allen Brain Atlas) indicated that Cxcl12+/Reln+ 
positive CR cells are located within the marginal zone (MZ), whereas Cxcl12-/Reln+ 
are positioned outside the MZ, in the inner layers of the neocortex. Intriguingly, this 
points to a self-regulated migration capacity of the CR neurons of the marginal zone. 
The bigSCale analysis further unveiled potentially distinct differentiation stages of CR 
cells, marked by either Sox11/Neurod2 or Nnat/Igf2 (Fig. 6a,c). Likewise, we found a 
population of CR cells (CR8) expressing higher levels of mitochondrial genes, an 
indicator of apoptotic or disrupted cells (Fig. 6a,c). Considering that we did not find a 
similar cluster in the other pallial cell types, we excluded a technical artefact and 
suggest a cell subtype specific phenotype. Consistently, CR cells were shown to initiate 
cell death at postnatal stages28. Consequently, CR8 cells could represent an intriguing 
population of CR neurons committed to die already at the last stages of embryonic 
development (E18). 
Lastly, neurotransmitter receptors are one of the most important features of CR cells. 
We specifically interrogated the expression of the 62 subunits of the 9 major receptor 
types. We found a number of subunits to be differentially expressed, pointing to CR 
subtypes with different membrane properties (Supplementary Fig. 5). The most 
striking variation was found for the Glu-R2 (Gria2), a pivotal subunit of AMPA channels 
strongly influencing receptor properties, assembly, trafficking and long-term synaptic 
plasticity (Fig. 6d). 
 
 
Discussion 
 
Current scRNAseq analytic tools use simple or mixture probabilistic models which 
require predefined distributions to handle noise and sparsity. BigSCale bypasses this 
requirement by estimating a numerical model of noise. Furthermore, it determines the 
extent of the variation between cells without estimating actual gene expression value. 
These stratagems allowed us to build a highly optimized code, which can rapidly 
process large cell numbers whilst showing an improved sensitivity and specificity to 
detect differentially expressed genes, as shown for biological and simulated datasets. 
With the advent of microfluidic-based scRNAseq library preparation methods and the 
associated decrease in costs, experiments are now scalable to profile millions of cells 
simultaneously. Latest methods even provide single-cell transcriptomes without the 
physical separation of cells (through combinatorial indexing)29, paving the way to 
affordable big-scale projects and the comprehensive charting of tissue and organism 
compositions. With bigSCale we provide an analytical framework that addresses the 
computational challenges of future large datasets. While current tools are not 
applicable for experiments exceeding thousands of cells, DE analysis and clustering 
with bigSCale is practical for hundred thousand cells. Beyond that, its convolution 
module allows the analysis of millions of cells as shown here for the developing 
pallium.         
With decreasing expenses for library preparation, sequencing costs become a limiting 
factor. Here we showed that despite being sequenced to low coverage (average 
18,500 reads per cell), the analysis of more than a million cells is capable of identifying 
heterogeneity even in rare cell types. Indeed, the convolution into index cells and 
related improvements of expression profiles allowed us to draw a high-resolution atlas 
of the developing pallium, providing a rich resource of novel marker genes for 
subsequent studies. Further, the size of the dataset enabled us to describe a yet 
unprecedented heterogeneity in a rare, transient brain cell type (Cajal-Retzius neurons, 
1% of total cells), producing new, founded hypotheses that can be used to enhance our 
mechanistic insights in brain development. Overall, these results illustrate the value of 
lowly sequenced large datasets. Nevertheless, for even sparser datasets, such as 
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those obtained from the sequencing of nuclei30, the performance of bigSCale still needs 
to be evaluated. 
Together, we present an analytical framework for scRNAseq analysis that provides a 
solution for challenges arising from future large-scale efforts to systematically and 
comprehensively chart cellular composition of complex organisms, including the human 
body4.   
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Methods 
 
Numerical probabilistic model 
The probabilistic model is established as follows. First, cells are clustered in groups 
sharing similar expression profiles. We refer to this clustering as pre-clustering, as it is 
different from the final cell clustering achieved at the end of the pipeline. The purpose 
of the pre-clustering step is to group cells sharing highly similar transcriptomes, which 
are next treated as biological replicates to allow evaluation of the noise. Pre-clustering 
is achieved by i) normalizing the reads/UMIs to library size (xij = cij/LS for 
i=1,..,tot_genes, where xij is the normalized expression for gene i in cell j, c the non-
normalized expression and LS=Sum(cij) the library size); ii) transforming the normalized 
expression levels in log10(x+1); iii) normalizing the log-transformed values to the same 
interval for each gene. This step is required otherwise only highly expressed genes 
would drive the clustering; iiii) Clustering the cells using Pearson-correlation and 
hierarchical clustering with Ward´s linkage. BigSCale automatically attempts to find the 
deepest possible cut (on average 10-15% of total tree height) in the tree to ensure that 
only highly similar cells are grouped together. At the same time, it avoids cuts which 
are too deep and would produce clusters which are too small for computing the 
numerical model. As a side note, the level at which the dendrogram is cut (and hence 
the number of pre-clusters) is not a key parameter of the pipeline, as it produces 
marginal effects on the final clustering or differential expression. Mainly, a lower 
number of pre-clusters will generate a numerical model which is less sensitive, 
meaning that the final p-values will be higher (less significant), but with negligible 
changes in the clustering and in the order of the differentially expressed genes. At this 
stage, we now treat the cells within each group as replicates, assuming their changes 
of expression to be solely due to noise and not to biological differences. 
Secondly, all within-group pairwise comparisons between cells are enumerated in order 
to determine how rare/common (i.e. assigning a p-value) each combination of 
expression values is. Specifically, if a pre-cluster contains n cells, it produces 
C(n,2)=n*(n-1)/2 combinations of cells. Each of this combinations contains k couples of 
expression values (Xcell1, Xcell2), where k is equal to the total number of genes and 
Xcell1, Xcell2 is the expression of a gene in the two compared cells. Each couple of 
expression values of each combination is summed into a 3D histogram that represents 
a numerical approximation of a cumulative distribution function (Supplementary Fig. 
6a,b). The assigned p-values are related to the difference in gene expressions across 
all cells. For instance, if a gene has 0 UMIs in cell X and 2 UMIs in cell Y, its p-value 
would be larger than for a gene with 0 UMIs in cell X and 20 UMIs in cell Y, as such 
differences are rare. 
The fitting takes into account the library size, meaning that it accounts for the higher 
dispersion of values of low-sized libraries. Specifically, when two cells of one pre-
cluster are compared during the enumeration, they are normalized for the library size 
according to the formula xij = cij/Sum(cij)*((LS1+LS2)/2)  for i=1,..,tot_genes, where xij is 
the normalized expression for gene i in cell j=1 or j=2, c the non-normalized expression 
and LS1,LS2 the library sizes of cells j=1 and j=2). 
Learning this numerical, probabilistic model from the data is possible because single-
cell datasets contain hundreds to thousands of cells, which allows to enumerate up to 
hundreds of billions of couples and, hence, to gain a high precision in the estimated 
p-values. Ultimately, the model allows to assign a p-value to each gene, indicating the 
probability of a difference in the expression when comparing two cells. 
 
Differential expression (DE) model and hierarchical markers 
The purpose of DE analysis is to assign p-values to genes that indicate the likelihood of 
an expression change between two groups of cells. To determine these p-values, each 
cell of one group is compared to each of the cells of the other group, resulting in a total 
of n1*n2 comparison, where n is the number of cells of each group. For each gene, the 
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n1*n2 log10 transformed p-values (derived from the probabilistic model and signed to 
represent up- or down-regulation) are summed into a total raw score. Genes up(down)-
regulated in one group compared to the other will cumulate high (positive or negative) 
total raw scores. Here, the raw score is proportional to the likelihood of an expression 
change between the two groups.  
The raw score is next adjusted i) for the total number of comparison, using a curve 
smoothing spline (Supplementary Fig. 6c). The rationale for this adjustment is to take 
into account that genes with sparser expression will produce smaller scores compared 
to genes expressed in high frequency; ii) for the within-group variability, which is 
estimated by running a DE analysis between randomly reshuffled cells in a way that 
cells of the same group are compared. Specifically, two null-groups are created by 
taking an equal proportion of cells from the two original groups. For example, in the 
case of two groups of 100 cells each, the null-groups will each be formed by mixed 
50+50 cells randomly extracted from original group one and two, respectively. For 
comparison involving <2,000 total cells, 5 such permutation are performed. For 
comparison involving >2,000 total cells, the number of permutations is progressively 
scaled down with the increase of cell numbers. The reason is that large groups allow to 
fit the within group variability already with one or few permutations. 
Aside from being a standalone tool, the DE script is also iteratively applied between 
clusters at the end of the clustering pipeline to isolate markers genes, i.e. genes 
expressed only in specific cells types (i.e. clusters). Upon completion of the clustering, 
a differential expression analysis is performed among all the pairs of clusters, resulting 
in (N2) comparisons, where N=number of clusters. Generally, the user can select the 
desired number of clusters, according to the desired detail of analysis. Nonetheless, 
bigSCale will calculate a hierarchical structure of the markers, which allows to 
recognize the main cell types even when setting a high N to inspect cell subtypes. In 
this way, the number of clusters N can be freely set to any level without the risk of 
losing phenotypic information. 
As the last step, genes presenting significant changes of expression throughout the 
dataset are selected and organized in a hierarchical structure. Genes which are up-
regulated in one population compared to each of the other populations are classified as 
markers specific to that population (Level 1 markers). Level 1 makers capture the 
phenotypes being unique and peculiar to populations of cells. Each Level 1 marker has 
a score, which corresponds to the highest (less significant) log10 transformed p-value 
out of the N-1 comparison. In the next step, Level 2 markers are calculated. These 
markers are up-regulated in at most 2 populations of cells compared to each of the 
other populations. Essentially this means that Level 2 markers are genes expressed in 
two populations of cells amongst all populations. This computation iteratively continues 
up to Level N-1 markers. Exemplarily, we assume four populations: radial glia, 
neuronal progenitors, dividing neuronal progenitors and differentiated neurons. Level 1 
markers would represent genes expressed only in one of the populations, such as 
radial glia specific markers. Level 2 markers would be genes shared by two 
populations, such as the neuronal progenitors markers, which are expressed both in 
the neuronal progenitors and in the dividing neuronal progenitors. Lastly, Level 3 
markers are shared by three populations, for example neuronal markers, which are 
expressed in the dividing and non-dividing progenitors and in the differentiated 
neurons. 
To calculate new markers for CR cells we selected genes that were i) markers for CR 
cells, using the 1.3M convoluted dataset (1,291 genes with Z-score>6, Supplementary 
Table 2) and ii) uniformly expressed within subtypes of CR cells, using the 
deconvoluted CR dataset. Genes without significant changes of expression (max fold 
change <1.5) between subtypes (CR1-CR8) of CR cells were labeled as uniformly 
expressed in CR cells. A total of 501 genes including Reln satisfied both requirements. 
However, restricting the intersection to strong CR makers showing at least 8-fold 
increased expression in CR cells and Z-score>15 resulted in six high confidence 
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makers: Reln (Z-score=35), Cacna2d2 (Z-score=30), Eya2 (Z-score=21), Tex15 (Z-
score=19), Cpeb1 (Z-score=17), Vmn2r1 (Z-score=15). 
 
Overview of the clustering 
Once the probabilistic model has been fitted, it is possible to calculate distances 
between cells. Firstly, overdispersed genes, namely genes with high variation of 
expression throughout the dataset, are determined by means of a non-linear noise 
model learned from the data (Supplementary Fig. 6d-f). To further improve the 
features section, extremely skewed genes (Supplementary Fig. 6g) and isolated 
genes (not correlated with any others) are discarded. Furthermore, perfectly correlating 
genes are discarded as they belong to families with shared 3’-exons (such as Pcdh or 
Uty), for which most scRNAseq techniques (e.g. MARS-Seq31,32 or Chromium-based3 
methods) cannot differentiate between transcripts. These families can otherwise 
generate artificial clusters, as it happens with other tools15. 
Secondly, distances for all pairs of cells are calculated and the obtained distance-
matrix is used to cluster the cells (hierarchical clustering, Ward´s linkage). The distance 
between two given cells is calculated as the sum of the log10-transformed p-values of 
overdispersed genes. Cells presenting many overdispersed DE genes will cumulate 
higher sums and eventually result very distant. Only genes with DE p-values<0.01 are 
retained in the sum to ensure that only significant changes determine the final distance. 
Prior to the calculation of the numerical model and distance matrix, batch correction 
can be applied to level out the batch-related variance in expression. Briefly, batch 
correction forces each gene to follow the same distribution in each batch, condition-
wise (Supplementary Fig. 6h). In this way, the batch-effects are removed while 
preserving the original distributions of expression (Supplementary Fig. 6h,i). 
 
Convolution of large datasets  
To convolute large dataset, bigSCale performs the following pipeline. 1) The numerical 
model of the dataset is calculated. 2) For each cell, its distances against a number n of 
other random cells are calculated. The number of random cells n is normally set to 
thousands. The higher n, the longer the computational time, but the lower the distortion 
introduced by the convolution. The final output of this step is a m*n matrix, where m is 
the number of cells in the original dataset and n is the number of random cells for 
which distances are calculated. 3) A pooling algorithm is applied to the m*n distance 
matrix to determine all groups of cells that will be summed into iCells. The rationale of 
the algorithm is that, for each cell, its closest neighbor among the n other random cells 
can be considered as an analogous phenotype. To increase the convolution factor, k 
closest neighbors, instead of 1, can be chosen. The pipeline pools the cells in order of 
similarity, starting with the closest ones, up to a maximum distance determined by 
percentile values. Initially, the algorithm starts with a stringent percentile value (p=5% 
of the total computed distances) and attempts pooling k closest neighbors for each cell. 
When there are no more cells with k closest neighbors within the maximum distance 
(p=5%), k is relaxed to k-1. This cycle continues until k=1, to which point the maximum 
distance allowed is increased to p=10%. These inner (k) and outer (p) cycle continue 
until p=50%. Cells ending up with no neighbors are considered outliers and discarded. 
While it is easy to locate neighbors for cells belonging to abundant (frequent) types, for 
rare cell types it becomes harder. Essentially, the two k-p cycles maximize the 
probability to find neighbors for every cell, both common and rare ones. 
The ratio n/k is proportional to the quality of the convolution. In fact, a high n/k ratio 
implies that the k-closest neighbors chosen for each cell are selected from a much 
larger population of n random cells, which increases the chances to find the “real” 
neighbors, especially for rare cell types. Convolution of very large datasets can be split 
in multiple rounds to further reduce artifacts by using better n/k ratios, as done in the 
case of the 1.3M cells dataset (1.3 Million Brain Cells from E18 Mice, 10xGenomics). 
Specifically, we convoluted the dataset with a final factor k=75 in three rounds. In fact, 
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calculating n=4000 for 1.3M cells already requires approximately 12 hours of CPU-
time, nonetheless yielding in a bad n/k=4000/75=53,3 ratio, if convolution was in one 
round. Therefore, we proceeded with three rounds of convolution. The convolution 
factors used for each round where: (n1=4000, k1=3), (n2=5000, k2=5), (n3=7000, k2=5) 
which all showed high, good n/k ratios (1333, 1000, 1400 respectively). The first round 
reduced the size to 456,274 iCells, the second round to 110,583 iCells and the third 
round to 26,185 iCells. 
 
Patient derived neural progenitor cells 
Skin fibroblasts from two patients with Williams-Beuren (WB) and two with 7q11.23 
microduplication (Dup7) syndrome were reprogrammed to induced pluripotent stem 
(iPS) cells by retroviral delivery of the pluripotency factors OCT4, SOX2, KLF4 and 
MYC, at the Centre of Regenerative Medicine in Barcelona (CMR[B]). Individual iPS 
cells were picked to generate single clone colonies that were expanded and fully 
characterized33. Briefly, genomic stability was confirmed by karyotype; integration and 
silencing were verified by PCR and quantitative RT-PCR; pluripotency was 
demonstrated by Alkaline Phosphatase staining and expression of pluripotency 
markers by immunocytochemistry. Finally, the capacity to differentiate to mesoderm, 
ectoderm and endoderm germ layers both in vitro and in vivo was verified by embryoid 
bodies and teratoma formation followed by immunostaining. All iPS cells were 
deposited in the Stem Cell Bank repository of the Instituto de Salud Carlos III 
([SWB]FiPS1-R4F-5, [SWB]FiPS-4F-5-6, [DUP7]FiPS-4F-3-1, [DUP7]FiPS4-R4F-2). 
We generated neural progenitor cells from iPS cells following the Gibco protocol based 
on PSC Neural Induction Medium (NIM). Briefly, differentiation of iPS cell colonies was 
performed by seven days culture in NIM, followed by several passages of maturation in 
Complete Neural Expansion Medium (Neurobasal Medium, Advanced DMEM⁄F-12, and 
Neural Induction Supplement). Confirmation of expression of NPC markers was done 
by immunocytochemistry (Human Neural Stem Cell Immunocytochemistry Kit, Gibco). 
After 4-7 passages, NPC were detached with Accutase (Gibco) and resuspended. 
Single-cells were sorted in a BD Influx cell sorter to MARS-Seq plates (see below) for 
single-cell RNA sequencing (Flow Cytometry Core Facility, Univeritat Pompeu Fabra). 
 
Library preparation and sequencing 
To construct single-cell libraries from polyA-tailed RNA, we applied massively parallel 
single-cell RNA sequencing (MARS-Seq)31,32. Briefly, single cells were FACS isolated 
into 384-well plates, containing lysis buffer (0.2% Triton (Sigma-Aldrich); RNase 
inhibitor (Invitrogen)) and reverse-transcription (RT) primers. The RT primers contained 
the single-cell barcodes and unique molecular identifiers (UMIs) for subsequent de-
multiplexing and correction for amplification biases, respectively. Single-cell lysates 
were denatured and immediately placed on ice. The RT reaction mix, containing 
SuperScript III reverse transcriptase (Invitrogen) was added to each sample. In the RT 
reaction, spike-in artificial transcripts (ERCC, Ambion) were included at a dilution of 
1:16x106 per cell. After RT, the cDNA was pooled using an automated pipeline 
(epMotion, Eppendorf). Unbound primers were eliminated by incubating the cDNA with 
exonuclease I (NEB). A second pooling was performed through cleanup with SPRI 
magnetic beads (Beckman Coulter). Subsequently, pooled cDNAs were converted into 
double-stranded DNA with the Second Strand Synthesis enzyme (NEB), followed by 
clean-up and linear amplification by T7 in vitro transcription overnight. Afterwards, the 
DNA template was removed by Turbo DNase I (Ambion) and the RNA was purified with 
SPRI beads. Amplified RNA was chemically fragmented with Zn2+ (Ambion), then 
purified with SPRI beads. The fragmented RNA was ligated with ligation primers 
containing a pool barcode and partial Illumina Read1 sequencing adapter using T4 
RNA ligase I (NEB). Ligated products were reverse-transcribed using the Affinity Script 
RT enzyme (Agilent Technologies) and a primer complementary to the ligated adapter, 
partial Read1. The cDNA was purified with SPRI beads. Libraries were completed 
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through a PCR step using the KAPA Hifi Hotstart ReadyMix (Kapa Biosystems) and a 
forward primer that contains Illumina P5-Read1 sequence and the reverse primer 
containing the P7-Read2 sequence. The final library was purified with SPRI beads to 
remove excess primers. Library concentration and molecular size were determined with 
High Sensitivity DNA Chip (Agilent Technologies). The libraries consisted of 192 single-
cell pools. Multiplexed pools (2) were run in one Illumina HiSeq 2500 Rapid two lane 
flow cell following the manufacturer’s protocol. Primary data analysis was carried out 
with the standard Illumina pipeline. We produced 52 nt of transcript sequence reads. 
 
Data processing 
The MARS-Seq technique takes advantage of two-level indexing that allows the 
multiplexed sequencing of 192 cells per pool and multiple pools per sequencing lane. 
Sequencing was carried out as paired-end reads; wherein the first read contains the 
transcript sequence and the second read the cell barcode and UMI. Quality check of 
the generated reads was performed with the FastQC quality control suite. Samples that 
reached the quality standards were then processed to deconvolute the reads to single-
cell level by de-multiplexing according to the cell and pool barcodes. Reads were 
filtered to remove polyT sequences. Reads were mapped with the RNA pipeline of the 
GEMTools 1.7.0 suite34 using default parameters (6% of mismatches, minimum of 80% 
matched bases, and minimum quality threshold of 26) and the genome references for 
human (Gencode release 25, assembly GRCh38). Gene quantification was performed 
using UMI corrected transcript information to correct for amplification biases, collapsing 
read counts for reads mapping on a gene with the same UMI (allowing an edit distance 
up to 2 nt in UMI comparisons). Only unambiguously mapped reads were considered. 
The analysis of spike-in control RNA content allowed us to identify empty wells and 
barcodes with more than 15% of reads mapping to spike-in artificial transcripts were 
discarded. In addition, cells with less than 60% of reads mapping on the reference 
genome or more than 2x106 total reads were discarded. Finally, low quality cells 
featuring either of the following were discarded: 1) low mapped reads 2) low library size 
3) low library complexity (detected genes) 4) high mitochondrial content. Overall, 73 
cells did not satisfy these quality requirements and were discarded.  
 
Simulated datasets 
For data simulation we applied Splatter12 estimating parameters from NPC (sim_NPC) 
and a droplet-based experiment (2,520 random cells from: 1.3 Million Brain Cells from 
E18 Mice, 10x Genomics; sim_10xG). The datasets differed in the number of detected 
genes per cell, sparsity and heterogeneity. We recreated highly similar distributions of 
gene expression means and variances, cell library sizes and zeros counts as well as 
relationships of mean-variance and mean-zeros (Fig. 2d and Supplementary Fig. 2a). 
We preserved the number of cells and genes as in the original dataset and defined 
groups of different proportions across multiple sequencing pools. The dimensions of 
the gene x cell matrices were 41,020 x 1,847 and 27,998 x 2,520 in sim_NPC and 
sim_10xG, respectively. Each tool has been applied on the complete dataset at the 
model-building step, before defining groups of proportions 1:1 (1x), 1:2 (2x) and 1:10 
(10x). The number of DE genes between groups ranged from 18% to 30% of the total 
number of DE genes (around 47% of total genes), being lowest at 10x and highest at 
2x cases. While the composition of DE genes was similar in up-regulated and down-
regulated genes, ratios of gene average means between groups could reach levels of 
expression magnitude up to twice as much as in sim_NPC. The datasets further 
differed in the proportion of outlier genes, which was around 1% in sim_10xG and 
~2.5% in the sim_NPC.  
ROC curves and pAUCs have been performed using the R package pROC35. In all 
comparisons, only genes tested by all methods were considered. Genes were ranked 
by nominal p-values, which we used to define a score as 1-p, indicating the outcome of 
the prediction (DE or non-DE) for each tool. Predictions and true gene labels were 
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assessed at different thresholds of these scores to compute relative specificity and 
sensitivity coordinates for ROC curves.   
 
 
Data availability at GEO 
The 1.3 million brain dataset is freely accessible from 10x Genomics: 
https://support.10xgenomics.com/single-cell-gene-expression/datasets  
The adult brain dataset is available at GEO (GSE60361).  
 
The complete lists of hierarchical markers for the adult brain dataset11, the 10x 
Genomics dataset (1.3 Million Brain Cells from E18 Mice) and the Reelin 
subpopulations are available at GEO (GSE102934) in the following tables: 
Table_S1_Linnarsson.xlsx (Markers of Zeisel/Linnarsson et al. dataset) 
Table_S2_10xfull.xlsx (Markers of 10xGenomics) 
Table_S3_10x_Reln.xlsx (Markers of 10xGenomics Reelin subtypes) 
 
Availability of the source code 
All functions of bigSCale v1.0 are available at Github under the link: 
https://github.com/iaconogi/bigSCale 
We are currently working to bigSCale 2.0, a user-friendly suite in which all parameters 
are automatically set and the analysis (DE and population clustering) can be performed 
in one-click. 
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Figure legends 
 
Fig.1 | Schematic representation of the bigSCale framework for analyzing millions of 
single-cell transcriptomes. The analytical framework includes a numerical model step to 
determine distances between single cells and modules for differential expression 
analysis, cell clustering and population marker identification. An optional convolution 
strategy allows the processing of extremely large datasets (preserving the transcript 
information from individual cells). 
 
Fig.2 | Benchmarking of sensitivity, specificity and speed of bigSCale, scde, seurat, 
MAST and scDD. (a) Differential expression analysis in iPS cell-derived neuronal 
progenitor cells (NPC) from healthy and Williams-Beuren (WB) syndrome donors (WT 
vs. WB1). For the genes located in the deleted region the p-values of each tool are 
shown in Z-score scale, (blue: down-regulated; red: up-regulated). Genes correctly 
detected as down-regulated are highlighted (grey). Total numbers of correctly assigned 
genes are indicated (below). (b) Venn diagrams for WT vs. WB1 comparing the identity 
of correctly assigned genes (orange: bigSCale; blue: others) (c) Average number of 
detected down- (blue) and up-regulated (red) genes in the two WB and Dup7 patients, 
respectively, compared to healthy donor. (d) Comparison of the mean-variance 
relationship in the two simulated datasets (sim_NPC and sim_10x). (e,f) Partial AUCs 
of ROC curves computed across the tools in the two simulated datasets (sim_NPC, e; 
sim_10x, f) with group sizes having proportions 1:1 (1x). The sensitivity at high level of 
specificity (>90%) is highlighted (grey area). (g) Barplots of partial AUC across tools for 
all tested proportions (1x, 2x, 10x) in DE analyses of simulated datasets (sim_NPC and 
sim_10x). h) Average required time for computing DE in the NPC cell model (average 
739 total cells per comparison, 4 comparisons, tools run on 1 CPU-core) i) Scalability 
of bigSCale and MAST with large datasets. MAST could not be tested beyond 8,000 
cells due to excessive RAM requirements (>16Gb). 
 
Fig.3 | BigSCale analysis of scRNAseq data from 3,005 mouse cortical and 
hippocampal cells11. (a) Dendrogram and expression plots reporting examples of 
hierarchical markers. Dendrogram was cut at 20% of its total depth to segregate 9 
different clusters of cells, which correspond to the main brain cell types. In the 
expression plots, UMI counts are shown at single-cell level for markers of different 
hierarchical marker levels (Online Methods). Marker genes for decreasing marker 
levels, representing distinct brain cell types are displayed. (b) Comparison of bigSCale 
and BackSPIN11 in the detection of gene markers for astrocytes. BigSCale identified 
167 additional markers with high specificity for astrocytes (high expression, yellow; low 
expression, blue). Vice versa, markers uniquely identified by BackSPIN display a weak 
specificity and achieved low scoring in bigSCale. 
 
Fig.4 | Assessment of the cell convolution strategy in bigSCale. (a) Comparison of 
original and convoluted clustering with the Rand-index. Pairwise cell comparisons were 
performed for three increasing degrees of convolution (Conv1,2,3) into iCells (numbers 
indicated). Similarity of clustering (Rand-index, y axis) were evaluated at different 
resolution (n cluster numbers, x axis). Rand-indexes were >80% for all tested 
combinations, pointing to highly similar cluster assignment for original and iCells. (b) 
tSNE plots comparing original and convoluted clustering. The example displays a 
comparison with Rand-index = 82% and 12 clusters. The high degree of concordance 
between experiments is visible through the consistent cluster assignment of cell pairs. 
 
Fig.5 | BigSCale analysis of 26,185 iCells (convoluted from 1,306,127 single cells) of 
the embryonic pallium (E18). (a) Dendrogram of 16 iCell clusters representing the 
major cell types (split by color) and subpopulations (cluster 1-16). Single-cell 
expression plots (UMI counts) present marker genes (decreasing levels of hierarchical 
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markers) for the main subpopulations and specific markers for neuronal differentiation 
(lower panel). (b) tSNE representation of the 16 populations of pallial cells identified by 
bigSCale clustering. (c) In-situ hybridization data for Tubb3 and Slc1a3. Post-mitotic 
neurons (Tubb3 positive) locate to the outer neocortical layers, including cortical plate 
(CP) and marginal zone (MR) and radial glia and progenitors (Scl1a3 positive) are 
found in the ventricular and sub-ventricular zone (VZ). 
 
Fig.6 | Subtypes of Cajal-Retzius (CR) cells disentangled by bigSCale. (a) Dendrogram 
and heatmap of the five top-scoring population markers (CR1-8; high expression, 
yellow; low expression, blue). (b) Comparison of Reln (upper panel) and Cxcl12 (lower 
panel) expression spatially resolved. Reln consistently marks all CR cells, (tSNE, right) 
located in the Marginal Zone (MZ) and the Cortical Plate (CP) in situ immuno- (left) and 
fluorescence-staining (middle, source: Allen Mouse Brain). Cxcl12 is expressed in a 
CR subpopulation (tSNE, right and in situ experiments indicate that Cxcl12 positive 
cells are exclusively located in the marginal zone. (c) tSNE representation of Neurod2, 
Igf2 and Mt-nd1 positive subpopulations of CR cells. (d) Differential expression of 
AMPA receptor subunits in CR cells. (left) Heatmap (Z-scores) representing the relative 
expression level of each AMPA subunit in the CR subpopulations (higher expression, 
red; lower expression, blue). (right) Expression of AMPA receptors displayed by UMI 
counts (y axis). Significant differential expression is indicated (***, Z-score>10). 
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