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Recent advances in machine learning allow faster training, improved performance and increased            

interpretability of classification techniques. Consequently, their application in neuroscience is rapidly           

increasing. While classification approaches have proved useful in functional magnetic resonance imaging            

(fMRI) studies, there are concerns regarding extraction, reproducibility and visualization of brain regions             

that contribute most significantly to the classification. We addressed these issues using an fMRI              

classification scheme based on neural networks and compared a set of methods for extraction of               

category-related voxel importances in three simulated and two empirical datasets. The simulation data             

revealed that the proposed scheme successfully detects spatially distributed and overlapping activation            

patterns upon successful classification. Application of the proposed classification scheme to two            

previously published empirical fMRI datasets revealed robust importance maps that extensively overlap            

with univariate maps but also provide complementary information. We conclude that importance maps             

are superior to univariate approaches for both detection of overlapping patterns and patterns with weak               

univariate ​ ​information. 
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1.​ ​Introduction   

Multivariate pattern analysis (MVPA) has been established as an indispensable tool for fMRI research              

since its introduction by Haxby and colleagues in 2001. It has been shown to overcome limitations of                 

univariate methods by addressing voxel activation collectively in terms of distributed patterns (Norman et              

al., 2006; Lewis & Peacock, 2013; Cohen et al., 2017) and thus has emerged as a powerful analytic                  

technique in both experimental and clinical settings. MVPA typically refers to a set of machine learning                

methods,​ ​applicable ​ ​to ​ ​fMRI​ ​data,​ ​that​ ​collectively​ ​analyze ​ ​voxel ​ ​activity. 

Classification, as a subset of MVPA methods, aims at establishing discriminability between conditions             

such as brain activity patterns elicited by seeing different object categories. Studies in fMRI classification               

are often confined in reporting classification accuracy, which is an informative measure with direct impact               

in clinical diagnosis tools (Coutanche et al., 2011; Sundermann et al., 2014). However, to gain a better                 

understanding of information representation in the brain, it is equally important to identify which regions               

drive ​ ​the ​ ​classification ​ ​especially​ ​in ​ ​whole ​ ​brain ​ ​inter-subject​ ​classification. 

This is a general problem in core machine learning and image classification (Montavon et al., 2017).                

Main goal of these techniques is to extract meaningful and consistent patterns that represent the               

decision boundary of the classifier, or in other words, patterns that lead the classifier to a particular                 

decision. In the case of image classification, these patterns refer to pixels of the image while in fMRI                  

classification they typically refer to voxels. Evaluation of such methods is more intuitive in image               

classification where visual inspection is a safe option, but interpretation of brain activity patterns in a                

three dimensional space is far from trivial. Such patterns in fMRI classification have been addressed by                

previous studies and are often referred to as importance maps (Polyn et al., 2005), relevance maps                

(Åberg & Wessberg, 2008; Schrouff & Phillips, 2012) or sensitivity maps (Rasmussen et al., 2011) but                

there ​ ​is​ ​yet​ ​no ​ ​rule ​ ​of​ ​thumb ​ ​for​ ​their​ ​extraction. 

In linear classifiers, a typical approach is to visualize the weights (Pereira et al., 2009), or the                 

weights-input product (Polyn et al., 2005); this is however not feasible for nonlinear models such as                

kernel based models (Rasmussen et al., 2011) or deep neural networks. There has been no general                

proof for superiority of non-linear classifiers over linear classifiers in fMRI data analysis (Haxby et al.,                

2014; Kamitani & Tong, 2005; Misaki et al., 2010), although there are hints that such nonlinearities do                 

exist as co-activation of two or more brain regions may be necessary to trigger certain neural                

mechanisms​ ​(Kober​ ​et​ ​al.,​ ​2008). 

Failure to detect such nonlinearities is partly attributed to the “curse of dimensionality” (Cohen et al.,                

2017) where the number of parameters to be trained is much higher than the number of samples. This                  

often leads to overfitting, that is, low generalization of the model. The problem of dimensionality is                

commonly tackled by reducing the number of voxels involved in the classification either by performing a                
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univariate feature selection step prior to classification (Coutanche et al., 2011; Kohler et al., 2013;               

Sitaram et al., 2011) or by performing localized analyses. Main drawback of the former approach is that it                  

might remove voxels that contain multivariate but not univariate information (Coutanche et al. 2013). The               

latter approach has been criticized for ignoring globally distributed activity patterns and for introducing              

spatial inaccuracies (Stelzer et al., 2014). Alternatively, whole brain classifiers have been also presented              

by employing techniques that promote model generalization such as regularization (Churchill et al., 2014;              

Ryali ​ ​et​ ​al.,​ ​2010;​ ​Yamashita ​ ​et​ ​al.,​ ​2008). 

Further concerns regarding importance maps from MVPA classification pertain their extraction,           

reproducibility and visualization. As univariate feature selection has been criticized for removing            

multivariate information (Coutanche, 2013), extraction and visualization of importance maps should be            

also performed in a multivariate manner (Schrouff et al., 2013). Furthermore, since classifiers are              

typically trained through an optimization process of initially random parameters, multiple runs of the same               

classifier​ ​may​ ​generate ​ ​different​ ​importance ​ ​maps​ ​(Rasmussen ​ ​et​ ​al.,​ ​2011). 

Here we address the aforementioned issues by performing inter-subject whole brain classification of             

fMRI data. We applied a linear neural network based classifier in three simulated and two different                

empirical datasets from different domains (emotional states and viewing objects). Subsequently, we            

extracted importance maps using methods based on classifier weights, weight-input product, output            

difference and layerwise relevance propagation introduced by Montavon et al. (2017). We applied this              

scheme in a simulated dataset to demonstrate that importance extraction methods of neural network              

classifiers can efficiently localize multivariate patterns with high reproducibility. Subsequently, we applied            

our scheme to two fMRI datasets that have been successfully used for classification. In the first dataset,                 

emotions elicited by short movie clips were classified (Saarimäki et al., 2016). In the second dataset,                

visual objects were classified during an object recognition task (Haxby et al., 2001). Our results indicate                

that neural networks succeed in whole-brain classification and identifying involved brain regions with             

better​ ​sensitivity​ ​than ​ ​univariate ​ ​approaches.  

2.​ ​Methods 

2.1 ​ ​Dataset ​ ​1:​ ​Emotions ​ ​induced​ ​by ​ ​short ​ ​movie ​ ​clips 

2.1.1​ ​Participants 

Twenty-one volunteers (12 males, ages 19–33, mean age 24.9 years) participated in the experiment. All               

participants​ ​were ​ ​healthy​ ​with ​ ​normal ​ ​or​ ​corrected-to-normal ​ ​vision ​ ​and ​ ​gave ​ ​written ​ ​informed ​ ​consent.  
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2.1.2​ ​Design​ ​of​ ​experiment 

For details regarding the experimental protocol, see Saarimäki et al. (2016). Briefly, emotions were              

induced using short movie clips. Fifty 10-s movie clips were chosen from a video database validated to                 

evoke basic emotions (Tettamanti et al., 2012). We used clips that elicited the most reliable emotions in                 

five emotion categories (10 clips per category): disgust, fear, happiness, sadness, and neutral. The clips               

were randomly divided into two sets with five movies from each category in both sets. During fMRI, both                  

sets of movie clips were presented twice, thus resulting in four runs in total. Each run lasted for 12min                   

50s. Each clip was preceded by a 5-s fixation cross and followed by a 15-s washout period. The                  

participants were instructed to view the movies similarly as they would watch TV and to focus on the                  

emotional content of the movie clip. No active task was required during fMRI scanning. The stimuli were                 

delivered using Presentation software (Neurobehavioral Systems Inc., Albany, CA, USA). They were            

back-projected on a semitransparent screen using a 3-micromirror data projector (Christie X3, Christie             

Digital Systems Ltd., Mönchengladbach, Germany) and from there via a mirror to the participant. Further               

details​ ​concerning ​ ​the ​ ​experiment​ ​design ​ ​and ​ ​data ​ ​acquisition ​ ​can ​ ​be ​ ​found ​ ​in ​ ​(Saarimäki ​ ​et​ ​al.,​ ​2016). 

2.1.3​ ​MRI​ ​Data​ ​Acquisition 

MRI data were collected on a 3T Siemens Magnetom Skyra scanner at the Advanced Magnetic Imaging                

Centre, Aalto NeuroImaging, Aalto University, using a 20-channel Siemens volume coil. Whole-brain            

functional scans were collected using a whole brain T2*-weighted EPI sequence with the following              

parameters: 33 axial slices, TR = 1.7 s, TE = 24 ms, flip angle = 70°, voxel size = 3.1 x 3.1 x 4.0 mm,                         

matrix size = 64 x 64 x 33, field of view (FOV) = 198.4 mm. A custom-modified bipolar water excitation                    

radio frequency (RF) pulse was used to avoid signal from fat. High-resolution anatomical images with               

isotropic​ ​1 ​ ​x​ ​1 ​ ​x​ ​1 ​ ​mm​ ​voxel ​ ​size ​ ​were ​ ​collected ​ ​using ​ ​a ​ ​T1-weighted ​ ​MP-RAGE​ ​sequence. 

2.2 ​ ​Dataset ​ ​2:​ ​Visual ​ ​object ​ ​recognition​ ​task 

2.2.1​ ​MRI​ ​Data​ ​Acquisition 

This dataset was obtained from the OpenfMRI database (Poldrack & Gorgolewski, 2017; accession             

number ds000105). Stimuli were gray-scale images of faces, houses, cats, bottles, scissors, shoes,             

chairs, and nonsense patterns. Control nonsense patterns were phase-scrambled images of the intact             

objects. Twelve time series were obtained in each subject. Neural responses, as reflected in              

hemodynamic changes, were measured in six subjects (five female and one male) with gradient echo               

echo-planar-imaging on a GE 3T scanner (General Electric, Milwaukee, WI) [repetition time (TR) = 2500               

ms, 40 3.5-mm-thick sagittal images, FOV = 24 cm, echo time (TE) = 30 ms, flip angle = 90] while they                     

performed a one-back repetition detection task. High-resolution T1-weighted spoiled gradient recall           

(SPGR) images were obtained for each subject to provide detailed anatomy (124 1.2-mm-thick sagittal              
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images, FOV = 24 cm). Further details regarding its acquisition can be found in              

https://openfmri.org/dataset/ds000105/ as well as in the original publication (Haxby et al., 2001). Since             

the 12th run was missing from subject 5 in the open dataset, the 12th run was excluded from all subjects                    

to ​ ​achieve ​ ​equal ​ ​number​ ​of​ ​samples​ ​per​ ​subject. 

2.3 ​ ​Data ​ ​preprocessing 

Data were preprocessed using FSL 5.0 (Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009).                  

Motion was corrected using MCFLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002) and              

non-brain matter was removed using BET (Smith, 2002). High-pass temporal filtering was applied using              

Gaussian-weighted least-squares straight line fitting with sigma of 55 volumes. For inter-subject            

classification, the functional data were registered to 2 x 2 x 2 mm MNI152 standard space template using                  

FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). The brain-extracted T1-weighted images             

were first normalized to the MNI space and the normalization parameters were subsequently applied to               

the EPI images. All registrations were performed using 9 degrees of freedom. No spatial smoothing was                

applied. 

Framewise displacement (FD), was calculated for each subject as suggested by Power et al. (2012). All                

subjects in both datasets had more than 90% of time points with framewise displacement (FD) less than                 

0.5 ​ ​mm.​ ​Average ​ ​FD​ ​was​ ​0.12mm​ ​and ​ ​0.07mm​ ​for​ ​dataset​ ​1 ​ ​and ​ ​dataset​ ​2 ​ ​respectively. 

In both datasets, a 2 x 2 x 2 mm MNI152 standard brain mask was used. To reduce the number of voxels                      

in the analysis, we performed spatial downsampling to 4 x 4 x 4 mm voxels to the EPI data as well as the                       

binary​ ​mask.​ ​This​ ​resulted ​ ​to ​ ​a ​ ​total ​ ​number​ ​of​ ​28 ​ ​586 ​ ​voxels. 

Average activation maps were used as input to the classifier. Specifically, for dataset 1, we used the                 

temporal average over an 11.9 second interval (7 TRs) centered around the end of each movie clip                 

(emotional ​ ​peak​ ​experience).​ ​For​ ​dataset​ ​2,​ ​we ​ ​used ​ ​a ​ ​12.5 ​ ​second ​ ​interval ​ ​(5 ​ ​TRs)​ ​from​ ​stimulus​ ​onset. 

2.4 ​ ​Data ​ ​preparation​ ​for​ ​simulations 

The short movie clips dataset was used as the basis for the simulated data. For each time point we                   

performed random permutations of the voxels for each sample. To ensure there are no consistent mean                

effects (Junghöfer et al., 2015; Hayasaka 2013), all the samples were also randomly reordered between               

categories.​ ​The ​ ​result​ ​was​ ​used ​ ​as​ ​a ​ ​basis​ ​for​ ​generating ​ ​different​ ​simulation ​ ​scenarios. 

2.5 ​ ​Simulation ​ ​scenarios 

We generated patterns of different spatial size and amounts of overlap. More specifically we simulated               

partly overlapping patterns, completely overlapping patterns, large patterns (one 5th of the total number              

of voxels), small patterns (one 100th of the total number of voxels) and patterns where the voxels are a                   

subset of some other category’s pattern. Univariate effects were generated by adding normally             
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distributed noise with a low mean to avoid high classification performance. Three simulation scenarios              

were implemented with increasing complexity. The three simulation scenarios are presented in ​Figure             
1c ​.​ ​More ​ ​specifically​ ​the ​ ​three ​ ​scenarios​ ​were ​ ​designed ​ ​as​ ​following: 

Scenario 1 ​: Overlapping patterns with same size: Each category consisted of patterns with the size of                

one tenth of the total number of voxels. Each category had 50% overlap with the next category and the                   

other​ ​50%​ ​with ​ ​the ​ ​previous​ ​category.​ ​No ​ ​voxels​ ​were ​ ​important​ ​for​ ​only​ ​one ​ ​category.  

Scenario 2 ​: Complex patterns - same magnitudes: Different effect sizes were chosen for each category.               

The effect size for category 1 was one hundredth of the total number of voxels. Category 2 consisted of                   

one fifth of the total number of voxels. Categories 3, 4 and 5 consisted of patterns with size one tenth of                     

the total number of voxels. Category 3 had 50% overlap with category 2. Categories 4 and 5 were fully                   

overlapping, while the pattern for category 1 was a subset of the voxels of category 4 and 5. Gaussian                   

noise ​ ​with ​ ​mean ​ ​0.05 ​ ​and ​ ​unit​ ​variance ​ ​was​ ​added ​ ​to ​ ​the ​ ​regions. 

Scenario 3 ​: Complex patterns - multiple magnitudes: This scenario incorporates the patterns of Scenario              

2 two times the Scenario 2 with different magnitudes. The patterns are also shifted among categories so                 

that there are different effect sizes for each category. Gaussian noise with mean 0.05 and unit variance                 

were ​ ​added ​ ​on ​ ​the ​ ​left​ ​side.​ ​On ​ ​the ​ ​right​ ​side ​ ​the ​ ​mean ​ ​was​ ​0.07 ​ ​(see ​ ​Scenario ​ ​3 ​ ​in ​ ​​Figure ​ ​1c ​). 

2.6 ​ ​Univariate ​ ​tests​ ​for​ ​activation ​ ​differences ​ ​- ​ ​Student’s ​ ​T-test 

We applied unpaired two sample t-tests to examine univariate activation differences. For each voxel, we               

performed one-versus-rest comparisons, that is contrasting all the samples of one category versus the              

samples of the rest categories. We extracted p-values as well as t-values for each voxel and each                 

category. 

2.7 ​ ​Classifier ​ ​setup 

Artificial neural network based classifiers were used for the classification as implemented in a neural               

network toolbox for developed by Lapuschkin et al. (2016). The classifier had no hidden layers. The                

classifier utilized softmax activation function in the output layer. A low minibatch size of 20 was selected                 

in order to avoid overfitting (Keskar et al., 2017). Training was performed for 10000 epochs using                

stochastic gradient descent as an optimization algorithm. Learning factor was set by default to 0.005.               

The L1 norm was used as a loss function, which has shown shown increased robustness compared to                 

other loss functions in neural networks (Gorban et al., 2016; Wang et al., 2008; Zhao et al., 2015). The                   

model was trained using backpropagation and stochastic gradient descent (SGD) was selected as the              

optimization algorithm. (LeCun et al., 2012). The process was repeated for 1000 times.             

Leave-one-subject-out (LOSO) cross-validation was used for the evaluation of the trained classifier, both             

in terms of classification accuracy as well as for extracting importance maps. More specifically, the data                

were split to a training set consisting of all the samples from all but one subjects and a validation set                    
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consisting of the samples from the left-out subject. This process was repeated so that all subjects were                 

used as left-out subjects. MATLAB (MATLAB 2016b, The MathWorks, Inc., Natick, Massachusetts,            

United ​ ​States)​ ​was​ ​used ​ ​for​ ​the ​ ​classification ​ ​as​ ​well ​ ​as​ ​for​ ​all ​ ​steps​ ​of​ ​data ​ ​analysis​ ​and ​ ​visualization. 

 

 

Figure ​ ​1:​ ​​Classification ​ ​analysis​ ​workflow ​ ​(a),​ ​visual ​ ​representation ​ ​of​ ​the ​ ​four​ ​importance ​ ​extraction ​ ​methods​ ​(b) 

and ​ ​ground ​ ​truth ​ ​for​ ​each ​ ​simulation ​ ​scenario ​ ​(c).  

2.8 ​ ​Extracting ​ ​voxel ​ ​importances 

Four methods were tested for importance extraction. The first one uses only the weights of the trained                 

classifier in a similar fashion as suggested in Pereira et al. (2009) and here is denoted as ​W​. The second                    

one relies on the weights-activations product as proposed by Polyn et al. (2005), here denoted as ​WX​.                 

The third method measures the difference in the output of the classifier after removing one voxel. This                 

process was repeated for each voxel. Since this measure measures the classifier’s output difference, we               

refer to it as ​OD​. As the output of the classifier ranges from 0 to 1, importances extracted by the OD                     

method range from -1 to +1, reflecting the two extreme cases, where classification depends only on one                 

input and upon its removal the output changes from 0 to 1 or from 1 to 0 respectively. In practice the                     

values are much lower as their magnitude depends on the output as well as on the number of variables                   
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that contribute to the classifier. The fourth importance extraction method decomposes the classifier’s             

output to the inputs through layerwise relevance propagation (​LRP​) as introduced by (Bach et al., 2015).                

See ​ ​​Figure ​ ​1b​​ ​for​ ​a ​ ​visual ​ ​representation ​ ​of​ ​the ​ ​4 ​ ​methods. 

2.9 ​ ​Statistical ​ ​evaluation​ ​of​ ​classification ​ ​results 

2.9.1​ ​Permutation​ ​runs​ ​and​ ​significance​ ​threshold 

To generate a null-distribution for classification accuracies as well as for importance maps, we performed               

permutations by running the classifier after shuffling the output labels. More specifically, the labels were               

shuffled before splitting data to training and validation sets, therefore all labels were shuffled. This               

process was performed for 1000 times. The resulting permutations were used for contrasting             

classification accuracies against a null-distribution, as well as for setting a significance threshold for the               

importance ​ ​maps. 

2.9.2​ ​Measuring​ ​pattern​ ​reproducibility 

After extracting a significance threshold for classification accuracy and importance maps, a            

reproducibility measure was defined by measuring the number of times a voxel appeared significant              

within the 1000 runs of the classifier. This resulted to reproducibility curves showing the number of voxels                 

that​ ​appeared ​ ​significant​ ​for​ ​a ​ ​certain ​ ​number​ ​of​ ​runs. 

2.9.3​ ​Reproducibility​ ​permutations​ ​and​ ​reproducibility​ ​threshold 

To test for false positives, that is, the number of voxels that appear significantly reproducible by chance,                 

a second permutation set was generated in an identical manner as in significance threshold              

permutations. Since no voxels are expected to exceed significance threshold in permutations, the             

reproducibility threshold was selected so that no voxels from the reproducibility permutations appeared             

significant.  

3.​ ​Results 

3.1 ​ ​Classification ​ ​accuracies ​ ​&​ ​confusion ​ ​matrices    

Average classification accuracy, classification accuracy per category and confusion matrices are           
summarized ​ ​in ​ ​​Figure ​ ​2 ​​ ​for​ ​each ​ ​scenario ​ ​and ​ ​each ​ ​dataset. 
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Figure ​ ​2.​ ​Classification​ ​accuracy ​ ​violin​ ​plots ​ ​and​ ​confusion​ ​matrix ​ ​for ​ ​each​ ​simulation​ ​scenario​ ​and​ ​each 

dataset.​ ​​Classification ​ ​accuracy​ ​distributions​ ​are ​ ​shown ​ ​in ​ ​blue ​ ​and ​ ​red ​ ​for​ ​classification ​ ​runs​ ​and ​ ​permutation ​ ​runs 

respectively.​ ​The ​ ​horizontal ​ ​dashed ​ ​line ​ ​corresponds​ ​to ​ ​the ​ ​theoretical ​ ​chancel ​ ​level ​ ​accuracy.​ ​Numbers​ ​above 

each ​ ​distribution ​ ​denote ​ ​category-specific​ ​mean ​ ​and ​ ​standard ​ ​deviation ​ ​of​ ​classification ​ ​accuracy.​ ​All ​ ​distribution 

differences​ ​are ​ ​statistically​ ​significant​ ​at​ ​p<0.001. 
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3.2 ​ ​T-test​ ​results 

Univariate activation differences were calculated by applying a two sample t-test in a one-versus-all              

fashion. T-values were obtained for each voxel and each category. Results are shown in ​Figure 3 ​.                

Although t-values visually indicate the important regions, the values are not high enough to survive any                

sensible ​ ​statistical ​ ​threshold. 

 

Figure ​ ​3:​ ​Activation​ ​t-test​ ​and​ ​importance ​ ​reproducibility ​ ​results ​ ​for ​ ​each​ ​simulation​ ​scenario.​​ ​First​ ​row 

shows​ ​the ​ ​ground ​ ​truth ​ ​for​ ​each ​ ​scenario.​ ​Second ​ ​row ​ ​shows​ ​activation ​ ​t-values​ ​when ​ ​contrasting ​ ​one-versus-all 

categories.​ ​The ​ ​last​ ​four​ ​rows​ ​show ​ ​reproducibility​ ​values​ ​for​ ​each ​ ​importance ​ ​extraction ​ ​method,​ ​i.e.​ ​how ​ ​many 

times​ ​each ​ ​voxel ​ ​appeared ​ ​significant​ ​(p<0.01)​ ​out​ ​of​ ​1000 ​ ​runs.​ ​Univariate ​ ​t-values​ ​are ​ ​low ​ ​and ​ ​do ​ ​not​ ​survive ​ ​any 

significance ​ ​threshold,​ ​although ​ ​visually​ ​they​ ​indicate ​ ​important​ ​regions. 

3.3 ​ ​Reproducibility ​ ​maps, ​ ​statistical ​ ​maps ​ ​&​ ​brain ​ ​maps 

Reproducibility maps were generated by enumerating for each voxel the number of times it appeared               

significant out of the 1000 runs of the classifier. Reproducibility maps for the simulation scenarios are                
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shown in ​Figure 3 ​. An example of importance reproducibility maps for each empirical dataset is shown in                 

Figure 4 ​; the number of overlapping methods is presented for a reproducibility threshold of 500 and                

significance threshold p<0.01. This analysis workflow generated numerous brain maps for each dataset,             

each importance extraction and each category. T-value maps were generated from the univariate             

activation t-tests. Importance maps, averaged over the 1000 runs were also generated as well as               

reproducibility maps for p<0.01. For better visualization and inspection of the results for the two empirical                

datasets, two brain map collections were created in NeuroVault, one for the short movie clips dataset                

(​https://neurovault.org/collections/3032/​) and one for the visual object recognition dataset         

(​https://neurovault.org/collections/3033/​). Since the actual importance values can be too low to be            

properly shown in NIFTI format, all importance values were multiplied by 1000. All brain maps are in                 

4x4x4 ​ ​mm​ ​resolution. 

 

Figure ​ ​4.​ ​Example ​ ​importance ​ ​maps ​ ​for ​ ​each​ ​empirical​ ​dataset.​ ​​The ​ ​category​ ​with ​ ​the ​ ​highest​ ​classification 

accuracy​ ​is​ ​presented ​ ​for​ ​each ​ ​dataset​ ​(“disgust”​ ​for​ ​dataset​ ​1 ​ ​and ​ ​“faces”​ ​for​ ​dataset​ ​2).​ ​Each ​ ​map ​ ​represents​ ​the 

number​ ​of​ ​methods​ ​that​ ​exceed ​ ​reproducibility​ ​threshold ​ ​of​ ​500 ​ ​in ​ ​significance ​ ​threshold ​ ​at​ ​p<0.01.​ ​The ​ ​slices 

follow ​ ​the ​ ​neurological ​ ​convention ​ ​(right​ ​is​ ​right)​ ​and ​ ​locations​ ​are ​ ​shown ​ ​in ​ ​MNI​ ​coordinates.  

 

3.4 ​ ​Reproducibility ​ ​curves 

For each importance extraction method reproducibility curves were generated indicating the number of             

voxels that exceed the significance threshold generated by permutations. Reproducibility curves were            

also generated for the reproducibility permutations. Reproducibility curves for each simulation scenario            

and each dataset are presented in ​Figure 5 ​. For the three simulation scenarios where ground truth is                 
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known, voxel accuracy was measured (i.e. the percentage of correctly defined voxels as important or               

not) as well as False Discovery Rate (FDR) and False Omission Rate (FOR). The results for different                 

significance ​ ​thresholds​ ​are ​ ​shown ​ ​in ​ ​​Supplementary ​ ​Figure ​ ​2. 

 

Figure ​ ​5:​ ​Reproducibility ​ ​curves ​ ​for ​ ​extracted​ ​importances ​ ​for ​ ​all​ ​simulation​ ​scenarios ​ ​and​ ​datasets 

(p<0.01).​ ​​Vertical ​ ​dashed ​ ​lines​ ​indicate ​ ​the ​ ​reproducibility​ ​threshold ​ ​where ​ ​zero ​ ​voxels​ ​appear​ ​significant​ ​in ​ ​the 

reproducibility​ ​permutations.​ ​The ​ ​reproducibility​ ​threshold ​ ​generated ​ ​by​ ​permutations​ ​is​ ​too ​ ​lenient,​ ​especially​ ​for 

the ​ ​W​ ​method. 

3.5 ​ ​Univariate ​ ​versus ​ ​multivariate ​ ​information 

Reproducibility plots versus univariate t-values plots were generated to examine the relation between             

univariate and multivariate information. ​Figure 6 depicts a representative example of low univariate             

information (absolute t-value<1, degrees of freedom = 2098, p<0.15) and high reproducibility (>500). The              

activation ​ ​t-value ​ ​versus​ ​importance ​ ​reproducibility​ ​plots​ ​can ​ ​be ​ ​found ​ ​in ​ ​the ​ ​​Supplementary ​ ​Figure ​ ​1 ​. 

4.​ ​Discussion 

In this paper, we provided a better understanding of neural network based fMRI classification using               

importance extraction methods. The methods were validated using simulation scenarios to examine their             

behaviour in terms of importance reproducibility. The resulting reproducibility maps for the two datasets              

we examined show high similarity to univariate statistics but with increased statistical power. A              

particularly interesting case is the combination of high reproducibility but low univariate values (see              

Figure 6 ​), which indicates complex interaction of voxel activations. Interpreting such interactions requires             
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further research but it is important to underline that such voxels could be excluded if a univariate feature                  

selection ​ ​method ​ ​was​ ​applied ​ ​prior​ ​to ​ ​classification. 

 

 

Figure ​ ​6.​ ​Example ​ ​of​ ​low​ ​univariate ​ ​information​ ​but​ ​high​ ​importance ​ ​reproducibility.​ ​​(a)​ ​Univariate ​ ​t-values 

versus​ ​importance ​ ​reproducibility​ ​plots​ ​for​ ​category​ ​“sadness”​ ​in ​ ​the ​ ​short​ ​movie ​ ​clips​ ​dataset.​ ​Each ​ ​dot​ ​represents 

a ​ ​voxel.​ ​Yellow ​ ​area ​ ​indicates​ ​reproducibility​ ​>​ ​500 ​ ​(with ​ ​p<0.01)​ ​and ​ ​low ​ ​univariate ​ ​t-value ​ ​(<1;​ ​2098 ​ ​degrees​ ​of 

freedom),​ ​(b)​ ​A​ ​region ​ ​in ​ ​the ​ ​right​ ​superior​ ​temporal ​ ​sulcus​ ​that​ ​exhibits​ ​highly​ ​reproducibility​ ​but​ ​low ​ ​univariate 

information ​ ​for​ ​all ​ ​importance ​ ​extraction ​ ​methods.​ ​Absolute ​ ​t-values​ ​higher​ ​than ​ ​1 ​ ​are ​ ​shown ​ ​in ​ ​blue-white ​ ​gradient. 

The ​ ​number​ ​of​ ​methods​ ​that​ ​exceed ​ ​a ​ ​reproducibility​ ​threshold ​ ​of​ ​500 ​ ​are ​ ​shown ​ ​in ​ ​red-yellow ​ ​discrete ​ ​gradient. 

The ​ ​slice ​ ​follows​ ​the ​ ​neurological ​ ​convention ​ ​(right​ ​is​ ​right). 

4.1 ​ ​Classifier ​ ​selection 

Neural network classifiers have been previously used to classify fMRI data either with hidden layers               

(Bertolino et al., 2014; Floren et al., 2015; Misaki et al., 2006) or without (Polyn et al., 2005; Saarimäki et                    

al., 2016). The majority of MVPA studies use support vector classifiers (SVC) (Cox & Savoy, 2003; De                 

Martino et al., 2008, Ethofer et al., 2009; Habes et al., 2013; LaConte et al., 2005; Kamitani & Tong,                   

2005; Lahnakoski et al., 2014; Lie et al., 2013; Meier et al., 2012; Mourão-Miranda et al., 2005;                 

Mourão-Miranda et al., 2007; Rasmussen et al., 2011; see also Sundermann et al., 2014, for an                

extended list) due to fast training and good performance in ill-posed problems such as in fMRI                

classification (Etzel et al., 2013). Main drawback is that SVCs are inherently binary classifiers, hence not                

optimal for multiclass problems. There are variations that face this limitation, typically either by              
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performing classifications between each category pair or by one-versus-all (OVA) classification (Bishop,            

2006). Although evaluation of similar importance extraction approaches for other classifiers would allow a              

more general evaluation of methods and provide further insight, this would require reformulation of the               

analysis that would hinder the interpretability of the results. Since methods for neural networks are under                

intense development due to their impressive performance in several fields, we predict that there will be                

an ​ ​increase ​ ​of​ ​their​ ​application ​ ​in ​ ​neuroscience.  

4.2 ​ ​Classification ​ ​accuracy ​ ​and ​ ​confusion​ ​matrices 

4.2.1​ ​Simulation​ ​scenario​ ​1 

In the first simulation scenario the effect size and the effect magnitude for all categories were identical.                 

Therefore we expected a similar classification accuracy for all categories. Since each category shares              

overlapping representation with two other categories, misclassifications were expected to be prominent.            

Although the effect was non-linear – since coactivation of two regions is required for each category – the                  

linear classifier managed to detect this effect to some extent. This ability of linear classifiers to partly                 

detect non-linear relationships has been addressed also by Davis et al. (2014). Our results demonstrate               

that linear classifiers can indeed detect effects that rely on mutual activation of two or more regions. We                  

however expect that non-linear classifiers would show higher flexibility in the decision boundary and              

hence ​ ​better​ ​performance,​ ​yet​ ​this​ ​remains​ ​to ​ ​be ​ ​tested ​ ​in ​ ​future ​ ​studies.  

4.2.2​ ​Simulation​ ​scenario​ ​2 

Classification accuracies in the second scenario show that performance depends on the effect size,              

which is also the main benefit expected from MVPA. When the effect magnitude is identical, classification                

accuracy is proportional to the effect size. Another observation is that categories 4 and 5 exhibit                

significant classification accuracy although they consist of identical patterns. This reveals the need to              

examine confusion matrices, since the two classes are misclassified among each other but are well               

discriminated ​ ​from​ ​the ​ ​rest,​ ​leading ​ ​to ​ ​significant​ ​classification ​ ​accuracy​ ​(see ​​ ​Figure ​ ​2 ​). 

4.2.3​ ​Simulation​ ​scenario​ ​3  

This scenario was most similar to real data, since it incorporates both univariate and multivariate effects,                

different effect sizes, as well as different magnitudes. Overall, the classification performance was best of               

all the simulated scenarios since, this scenario contains similar information as scenario two plus more               

patterns with higher magnitude. Category 2 exhibits the highest classification accuracy. Although            

categories 3 and 4 have the same effect size, category 3 shows higher classification accuracy, attributed                

to the voxels that are active exclusively for that category (see pattern of category 3 in ​Figure 1c ​). The                   

results indicate that classification accuracy is proportional both to effect magnitude and effect size but               

inferring ​ ​which ​ ​is​ ​the ​ ​case ​ ​is​ ​not​ ​trivial. 
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4.3 ​ ​Interpretability ​ ​of​ ​importance ​ ​maps 

Although the weights of the classifier (presented as “W” in ​Figure 1b​) may constitute the most intuitive                 

approach to estimate importances of a linear classifier, there are a number of disadvantages. First, there                

is no direct interpretation of the magnitude and sign of the weights. For example, a negative sign                 

indicates that increasing the voxel activity causes a decrease in the classifier output. Thus, the               

contribution of a given voxel, whether it is positive or negative, depends on the sign of the activity (e.g.                   

negative input and negative weight contribute positively to the output). While from neuroscientific             

perspective, of course, both “activations” and “deactivations” do carry meaningful information (given that             

both constitute modulations of spontaneous activity and are thus constituents of functional brain states),              

being able to distinguish between these two would be desirable. The second and more important               

disadvantage comes from that the weights are defined during training and hence are prone to overfitting.                

The WX method solves the sign interpretability issue, as well as the latter problem, since the validation                 

set is used as input. However, there is no quantitative interpretation of the importances in the WX                 

method. The OD method solves the problem of quantitative interpretability since the OD importances              

range from -1 to 1, indicating the change of the classifier output when a certain voxel is removed.                  

Furthermore, it can be easily implemented and tested in other classifiers. However, all the previous               

methods have two disadvantages. First, interpretation of a multivariate classifier is derived in a univariate               

manner; each voxel importance is estimated separately ignoring of the rest of the voxels. This issue has                 

also been mentioned in a previous study (Schrouff et al., 2013). Second, they do not take into account                  

the actual output of the classifier, that is, how well the validation set was classified. These two issues are                   

addressed by the LRP approach as the classifier’s output is distributed back to the inputs. Since the                 

output is redistributed to the inputs, the sum of the importances equals the output of the classifier,                 

providing ​ ​a ​ ​direct​ ​interpretation ​ ​of​ ​each ​ ​importance ​ ​map. 

4.4 ​ ​Thresholding ​ ​of​ ​importance ​ ​maps 

Thresholding and visualizing importance maps has been a common practice in MVPA studies (McDuff et               

al., 2009; Rissmann et al., 2010; Saarimäki et al., 2016) although it has been criticized as inappropriate                 

since thresholding multivariate information in a univariate manner is a questionable practice (Schrouff et              

al., 2013). While being aware of this potential pitfall, thresholding of multivariate maps serves two major                

functions. First, thresholds generated by permutations indicate a value that is statistically unlikely to be               

result of a random classifier. Second, thresholding provides easier visualization of importance maps.             

Another important issue that to our knowledge has not been discussed in MVPA community is whether                

importance maps resemble the activation patterns per se or rather indicate the localization of the               

patterns but not the activation patterns per se. In the latter case, thresholding is a rational approach to                  

follow. Previous work on image classification, using layerwise relevance propagation, has shown that             
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importance maps indicate important features regardless of the intensity of the input (Bach et al., 2015;                

Montavon ​ ​et​ ​al.,​ ​2017). 

4.5 ​ ​Generating ​ ​significance ​ ​thresholds 

Permutation testing is an established approach for significance testing due to its intuitive and              

non-parametric approach while minimizing assumptions of the model (Stelzer et al., 2013). Its main              

drawback is its computational complexity. Furthermore, since type I errors have emerged as a major               

pitfall in fMRI analysis (Eklund et al., 2016; Lieberman & Cunningham, 2009), larger scale analyses,               

where thousands of voxels are involved, require a proportionally higher number of permutations to test               

for multiple comparisons. This may require an intractable amount of computations. We performed 1000              

permutations to extract significance thresholds for the importances of the 28586 voxels. The expected              

number of false positives at a significance level of p=0.01 is ~280 voxels. To minimize the number of                  

false positive results, we introduced a set of reproducibility permutations where the number of false               

positive occurrences is measured per voxels. Reproducibility of importance maps has been addressed             

earlier by Rasmussen et al. (2011), showing that under certain circumstances different classification runs              

may​ ​yield ​ ​similar​ ​classification ​ ​accuracies​ ​but​ ​different​ ​importance ​ ​maps.  

4.6 ​ ​Limitations 

4.6.1​ ​Time​ ​point​ ​selection 

There was no performance-driven motivation in the selection of time points for the analysis of both                

datasets. Even if time point selection is not optimal, the interpretation of the results is independent of the                  

selected ​ ​time ​ ​points​ ​and ​ ​is​ ​not​ ​expected ​ ​to ​ ​bias​ ​towards​ ​any​ ​direction. 

4.6.2​ ​Simulated​ ​dataset​ ​and​ ​limitations 

Although our simulation datasets were generated to resemble as well as possible real fMRI data there                

are certain differences and limitations. More specifically, our simulations did not address spatial             

differences between subjects. Furthermore, signal quality differences that exist between regions of the             

brain (e.g. SNR of cortical and subcortical regions) were not taken into account. Although different effect                

magnitudes were simulated (see simulation scenario 3, ​Figure 1c ​), real datasets are expected to consist               

of a wider and continuous range of effect magnitudes. Furthermore, there is no proof that activations                

follow a gaussian distribution like the effects generated in our simulations. However, the non-parametric              

nature of the statistical methods we used does not introduce any distribution related bias. Being aware of                 

these existing limitations, conclusions regarding the statistical power of importance maps in comparison             

to ​ ​univariate ​ ​statistics​ ​can ​ ​be ​ ​still ​ ​safely​ ​drawn. 
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4.6.2​ ​Inter-subject​ ​versus​ ​within-subject​ ​classification 

Intersubject classification has shown low performance compared to within-subject due to variability in             

subjective experiences, spatial inaccuracies introduced by anatomical differences and inaccuracies due           

to registration to a brain template (Haxby et al., 2014). There have been a few approaches suggested to                  

tackle such this problem, either through coregistration based on functional connectivity (Conroy et al.,              

2013) or through hyperalignment (Haxby et al., 2011). Being aware of these inaccuracies, in this study                

we focus on inter-subject classification for two major reasons. First, we reckon inter-subject classification              

of high significance both in research and clinical setup, as it addresses beyond subject-specific              

commonalities, given the existing limitations. Second, the proposed setup exploits the full dataset,             

leading to more samples per input, which is a desirable feature while training classification models.               

However, the classification analysis workflow for intra-subject classification would be identical, requiring            

only different segmentation of the dataset (e.g. leave-one-run-out setup). Hence, the applied LOSO             

cross-validation ​ ​tested ​ ​whether​ ​the ​ ​decoded ​ ​patterns​ ​generalized ​ ​across​ ​subjects. 

5.​ ​Conclusions 

The increasing use of classification tools in fMRI data analysis has necessitated methods that interpret               

the classifiers' decisions with regard to the classifier input. Such methods are in the spotlight of machine                 

learning research and we showed that they are directly applicable to fMRI classification. Our findings               

demonstrate the increased statistical sensitivity of such methods compared to univariate approaches and             

provide a better understanding of the classifiers' behaviour in the form of importance maps. Brain regions                

that exhibit high importance but low univariate information are of particular interest and require further               

research ​ ​to ​ ​interpret​ ​the ​ ​underlying ​ ​mechanisms​ ​from​ ​a ​ ​neuroscientific​ ​perspective. 
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Supplementary ​ ​material 

Supplementary ​ ​figure ​ ​1:​ ​Activation​ ​t-value ​ ​versus ​ ​importance ​ ​reproducibility ​ ​plots.​ ​Short​ ​movie 
clips ​ ​dataset​ ​(a)​ ​and​ ​visual​ ​object​ ​recognition​ ​task ​ ​(b)​ ​for ​ ​p<0.01 ​.​ ​The ​ ​categories​ ​with ​ ​the ​ ​highest 

classification ​ ​accuracy​ ​in ​ ​each ​ ​dataset​ ​exhibit​ ​the ​ ​largest​ ​t-values​ ​hinting ​ ​towards​ ​high ​ ​discriminability 

under​ ​the ​ ​presence ​ ​of​ ​strong ​ ​univariate ​ ​effects.​ ​For​ ​OD​ ​and ​ ​LRP​ ​methods,​ ​more ​ ​negative ​ ​t-values​ ​are 

assigned ​ ​high ​ ​importance ​ ​reproducibility​ ​values. 
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Supplementary ​ ​figure ​ ​2:​ ​Voxel​ ​accuracy,​ ​false ​ ​discovery ​ ​rate ​ ​(FDR)​ ​and​ ​false ​ ​omission​ ​rate 
(FOR).​ ​For ​ ​each​ ​significance ​ ​threshold​ ​(p=0.001,​ ​0.01,​ ​0.05),​ ​each​ ​simulation​ ​scenario​ ​and​ ​each 
importance ​ ​extraction​ ​method.​ ​​Methods​ ​WX,​ ​OD​ ​and ​ ​LRP​ ​exhibit​ ​similar​ ​behavior​ ​in ​ ​terms​ ​of​ ​voxel 

accuracy,​ ​FDR​ ​and ​ ​FOR,​ ​while ​ ​W​ ​method ​ ​is​ ​more ​ ​lenient​ ​and ​ ​thus​ ​requires​ ​higher​ ​reproducibility 

threshold.​ ​The ​ ​reproducibility​ ​curve ​ ​and ​ ​reproducibility​ ​threshold ​ ​for​ ​W​ ​is​ ​more ​ ​dependent​ ​on ​ ​the ​ ​dataset 

(reproducibility​ ​threshold ​ ​around ​ ​300 ​ ​for​ ​scenario ​ ​1 ​ ​and ​ ​400 ​ ​for​ ​scenario ​ ​3 ​ ​when ​ ​p<0.05)​ ​compared ​ ​to 

the ​ ​rest​ ​of​ ​methods. 
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