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JASA/Speech Motor Control Models

This paper reviews the current state of several formal models of speech motor con-1

trol with particular focus on the low level control of the speech articulators. Fur-2

ther development of speech motor control models may be aided by a comparison3

of model attributes. The review builds an understanding of existing models from4

first principles, before moving into a discussion of several models, showing how each5

is constructed out of the same basic domain-general ideas and components – e.g.,6

generalized feedforward, feedback, and model predictive components. This approach7

allows for direct comparisons to be made in terms of where the models differ, and8

their points of agreement. Substantial differences among models can be observed9

in their use of feedforward control, process of estimating system state, and method10

of incorporating feedback signals into control. However, many commonalities exist11

among the models in terms of their reliance on higher-level motor planning, use of12

feedback signals, lack of time-variant adaptation, and focus on kinematic aspects of13

control and biomechanics. Ongoing research bridging hybrid feedforward/feedback14

pathways with forward dynamic control, as well as feedback/internal model-based15

state estimation is discussed.16
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I. INTRODUCTION17

Several formal models of speech motor control have been formulated and presented in the18

speech production literature. Based on decades of observation, it seems clear that the mech-19

anisms of speech motor control are complex, and consequently benefit from the detailed and20

rigorous description that formal, mathematical models can provide. Speech motor control is,21

indeed, one of the most intricate sensorimotor activities in which humans engage. Producing22

speech requires fine timing and coordination of muscles that are interwoven, redundant and23

have complex mechanical properties, in order to move the diverse articulatory structures of24

the tongue, lips, jaw, velum and larynx into a wide range of configurations, all of which have25

a nonlinear relationship with the vocal tract’s acoustic output. Control mechanisms are26

additionally modulated by higher-level processes that determine motor planning, and also27

mediate semantic, syntactic, prosodic and phonological organization. The various aspects28

of speech motor control can be conceptualized as layered modules (see Figure 1). In such a29

layered description, the bridge between higher-level planning processes and the movements30

of the biomechanical speech-producing structures is a layer which produces motor commands31

that drive kinematics given some motor plan and potentially in light of some monitoring or32

prediction of action. The central role filled by this layer – hereafter, simply referred to as the33

control layer – has ensured that all formal models of sensorimotor control for speech have34

defined architectures that govern its functionality. The field of models that have provided a35

formal description of the control layer comprises: DIVA (Guenther, 1994, 2016), Task Dy-36

namics (Saltzman and Kelso, 1987; Saltzman and Munhall, 1989), State Feedback Control37
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(Houde and Nagarajan, 2011), ACT (Kröger et al., 2009), GEPPETO (Perrier et al., 2005),38

FACTS (Ramanarayanan et al., 2016).39

Interspeech 2016- 1

Focus of the Present Paper:
Broad Overview

Plant

Controller

Planner

Higher-Level 
Linguistic 
Processes

FIG. 1. Representation of the distinct levels of speech production modeling. This paper focuses on

modeling the speech controller, the system that takes in a speech plan and potentially feedback from

the plant and issues motor commands to the plant. Other components of the speech production

hierarchy include higher level linguistic processes (prosody, semantics, syntax), the planner (low

level sequencing of motor actions), and the plant itself (e.g. speech synthesizers including but not

limited to articulatory synthesizers such as CASY, Birkholz or Maeda).

An impediment to progress in developing rigorous speech motor control models appears40

to be the variety of distinct approaches, taken in the published literature, to explaining41

the attributes of the more prominent models of speech motor control. There is very lit-42
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tle agreement, for instance, even concerning the terminology used to describe the models.43

Nevertheless, there is reason to believe that a direct comparison of speech control models44

is possible, based on the important, high-level observation that the models presented in45

the literature are all closely related to engineering approaches to motor control, and bear46

a strong resemblance to classical control-theoretic architectures. Given that the theory be-47

hind current understanding of biological motor control largely grew out of early advances in48

engineering fields (Bellman, 1957; Wiener, 1948), it is perhaps unsurprising that the same is49

true specifically in the area of speech motor control. Indeed, engineering approaches are a50

sensible place to begin investigations into the nature of speech motor control, in part because51

our current understanding of the functional interpretation of motor control neuroanatomy52

follows the engineering architectures closely (consider, e.g., Brainard and Doupe (2002);53

Shadmehr and Krakauer (2008); Takakusaki (2017); Wolpert et al. (1998)).54

Progress in the development of speech motor control models may be facilitated by a direct55

comparison of the various models, using a common framework of domain-general (i.e., not56

speech-specific) motor control principles and unified terminology to describe their attributes.57

The purpose of the present paper is to provide such a direct comparison for models of the58

control layer that utilize mechanisms to move the plant in support of accomplishing speech59

tasks in accordance with higher-level speech goals. These models have been developed60

to attempt meaningful reproduction of speech behavior, including potentially acoustics,61

articulatory and neural signals. Demonstrations of the ability of these models to capture62

aspects of human speech production kinematics have been presented in the literature, and63

the extent and quality of these efforts may differ by model. No systematic review will be64
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offered here of experimental data, either behavioral or neurological, that has been or could65

be used to support the expressivity or biological plausibility of any model. However, a brief66

summary of the demonstrated capabilities of each model is included. This choice reflects an67

intention to focus on the model architectures themselves.68

Our review begins with general motor control principles and approaches, before moving69

into basic, domain-general models of motor control. The paper then proceeds to provide70

detailed discussions of currently proposed models of speech motor control, showing how71

each model is constructed out of these basic domain-general ideas and components. By72

showing how each model is built up on these basic elements, this approach allows for a clear73

comparison between the proposed models, showing where they differ as well as points of74

agreement. The present review focuses specifically on control of the speech articulators in75

fully developed, adult speech. Control that is adaptive (i.e., time variant), which may be76

relevant for speech acquisition and development, will only be considered in the discussion,77

and not in the primary overview framework. Formal explanations, including an appendix78

with full equations for each model, is provided where possible. Other important aspects of79

speech production, including learning and optimization, higher-level linguistic processing,80

motor program generation (i.e. the “planner”), the neurological basis of hypothesized model81

components, and biomechanical details of the speech articulators (i.e. the “plant”) will only82

be discussed to the extent necessary to clarify the nature and operation of the proposed83

control mechanisms.84
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II. BACKGROUND85

A. Motor control principles and terminology86

The first step in discussing speech motor control models is to define certain key concepts87

and terminology. To illustrate these ideas, a simple example is borrowed from the control88

of upper extremity reaching control, as shown in Figure 2, which is based on the descrip-89

tion of a simple two-link robotic arm moving on a planar surface. This commonly-used90

example, though taken from a completely different domain of motor control, shares many91

of the same concepts and terminology with speech motor control, and has the benefit of92

being low-dimensional, which makes it possible to represent the relevant spaces in a two-93

dimensional plot. Fundamental similarities and distinctions between this simple example94

and the (considerably more complex) speech production system, in terms of their assump-95

tions and structure, will be drawn where appropriate throughout the present section.96

(x1,	x2)

u1

u2

(left panel) Robot arm in its initial configuration at (x1, x2) in task
space, and the final goal (red circle). The arm’s state variables (u1, u2)

are defined as the angles of the shoulder and elbow. (u1, u2) are the
parameters directly changed by the controller and therefore exist in

mobility space. (middle panel) The trajectory in mobility space. The
evolution of the mobility space variables (u1, u2) over time may be a
non-linear trajectory despite a linear trajectory in task space. (right

panel) The final orientation of the arm in task space at the goal.

FIG. 2.
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Illustration of the difference between feedforward (top row), feedback
(middle row) and model predictive (bottom row) control using a simple

reaching example. In feedforward control, the arm traces out a fully
preplanned trajectory with no feedback about the position of the arm at
any point in time. In feedback control, an error is computed between an
observed state of the system (observation represented by the eye) and
the target. The arm progressively works to minimize this error which

drives the end effector towards the target. In model predictive control,
an error is computed internally as opposed to being derived from

feedback of the state of the system (represented by the brain with an
internal model of the robot arm). The arm’s position is updated to

minimize the predicted error of the system.

FIG. 3.

The robotic arm, as a physical structure, is the apparatus to be controlled, and can97

be referred to as the plant (G). Note that the term plant is not specific to this example,98

and could be used in the domain of speech production to specify the vocal tract and its99

component articulators, as well as possibly the larynx and the respiratory system. The100

plant’s two links are connected to each other at a revolute joint that changes the angle101

between the links, u2. The proximal end of the robot’s first link is fixed at the origin of102
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the planar surface, defined as (x1, x2) = (0, 0), but is free to rotate about this point which103

changes the angle u1. These two variables, u1 and u2 describe the configuration of the plant,104

and also define the set of possible configurations of the plant, known as mobility space1. The105

variables u1 and u2 can be considered as elements of a single 1− by− 2 vector, u, which can106

be said to specify the state of the plant in mobility space (sometimes, the mobility state).107

The distal end of the second link (i.e., the “hand”) is considered the end-effector of the108

robot, the precise positioning of which is typically the focus of controlling the plant in the109

context of reaching tasks. The variables x1 and x2, already used to define locations on the110

planar surface, can also be used to describe the location of the end-effector on that surface.111

The space of possible locations for the end-effector is known as task space, and the desired112

outcome of a controlled movement is known as a task. The variables x1 and x2 can be113

considered as elements of a single 1 − by − 2 vector, x, specifying the state of the plant114

in task space (sometimes, the task state). Tasks with respect to the robotic arm might be115

putting the end-effector as a specified location in task space (i.e., achieving a state where116

x takes on a particular value), or alternatively achieving a specific trajectory through task117

space (i.e., tracking some sequence of values for x). In speech production, task spaces might118

include, for instance, formant space or vocal tract constriction degree/location space.119

Task and mobility spaces can be viewed as “high” and “low” level spaces, respectively,120

with the variables comprising each space having a hierarchical arrangement where the task121

variables are composed of, but distinct from, mobility variables. Often this arrangement is122

many-to-one, such that many different (or, potentially infinite) locations in mobility space123

will map to the same location in task space. Task variables consequently describe the state124
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of the plant in a way that is directly relevant to the task, and which abstracts away from125

a certain amount of detail as to how that task state was achieved via some mobility state.126

Mobility variables describe the state of the plant in a way that is more relevant to control, in127

the sense that motor commands are typically defined so as to affect some change in mobility128

state. Using the robotic arm example, motor commands would typically be given in terms129

of the joint angles, and not in terms of the end-effector position. In a speech context, a130

model might assert that motor commands are issued in terms of the positions of the speech131

articulators (e.g. upper lip, lower lip, tongue tip, etc.), and not in terms of some desired132

formant values (e.g., F1 = 500 Hz) or vocal tract constrictions (e.g., lip aperture = 2 mm).133

The details of the task are specified in the reference, r, a vector representing a desired134

state. The reference vector typically resides in task space (rx), but may also be given in135

mobility space (ru) for specific applications. Reference vectors originate in the planner (P ),136

and may be part of a larger motor program maintained by the planner, toward achieving137

some higher-level sensorimotor or cognitive goal (e.g. reach to a series of targets in space,138

utter the word “dad”). As implied above, however, reference vectors will typically be insuf-139

ficient for use directly as motor commands to the plant because they reside in task space.140

The reference will need to be transformed into a motor command in mobility space. This is141

the function of the controller.142

The controller (C) is the bridge between the planner and any feedback, on the one143

hand, and movements of the plant, on the other. The ultimate purpose of the controller144

is to issue motor commands that produce movement (or lack thereof) in the plant. Note145

that the present paper assumes that motor commands take the form of vectors in mobility146
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space, u, and that those vectors can be used directly as commands to the plant. In a real147

biological system, several transformations may be required for encoding motor commands148

as neural signals, and to elicit muscle activations that bring about changes in mobility state.149

This assumption is made to promote consistency with the speech motor control modeling150

literature, and for the sake of simplicity. In any case, the motor command issued by the151

controller will depend either upon the reference directly, or upon the state error, e, a vector152

representing the difference between the reference and the plant’s state (or an estimate of153

that state, see below).154

In biological systems, the plant’s actual state may not always be directly accessible to the155

controller. It can be therefore important to develop the notion of a state estimate (x̂ or û),156

which is an internal estimate of the plant’s state, either in task space or in mobility space.157

The state estimate may be informed by sensory measurements of the plant’s actual state –158

represented by the sensory state vector y – and by predictions generated from an internal159

model of the plant – represented by the predicted state vector x̃ or ũ. The sensory state160

vector, an approximation to either x or u, may be corrupted by some combination of noise161

(e.g., neuronal noise), delays (e.g., slowed synaptic/axonal propagation) or transformations162

(e.g., warping). The predicted state vector may also be imperfect, since the internal model163

may be inaccurate or biased. For the robotic arm example, the sensory state vector would164

represent measured joint angles (yu). This contrasts with the sensory output for speech165

production, which is typically considered to be a combination of auditory (yaud) and so-166

matosensory signals (ysomat), where the somatosensory signal may include proprioceptive167

and/or tactile sensation.168
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In general, motor control can be viewed as a collection of transformations between vectors169

and spaces of different types, and the planner, the controller, and the plant can all be170

described – using the conventions developed above – as functional transformations from171

specific inputs to specific outputs. The planner generates the reference vector, r = P (α) as a172

function of some high-level motor program-related information α, and possibly as a function173

of time: r = P (α, t). The controller takes a reference vector or an error vector as input174

and generates a motor command in mobility space: (u, u̇) = C(r) or (u, u̇) = C(e). The175

plant, which can also be viewed as a transformation, converts motor commands, through176

movement, into different plant states which can be measured in both mobility and task177

space: (u, u̇,x, ẋ) = G(u, u̇). These variables are used in Figure 4, and in related diagrams178

throughout the paper. The state of the plant can then be measured by some sensory system:179

(y, ẏ) = S(u, u̇,x, ẋ), the details of which are often not explicitly treated in the literature.180

Therefore, the present review will often lump G and S together into a single component.181

B. Types of motor control models182

The purpose of this section is to lay out, in a general way, some common control architec-183

tures that are employed in various control applications, including both controlling robotic184

systems as well as describing the functional aspects of physiological control. These general185

architectures are presented as a scaffold for understanding the specific architectures used in186

various speech motor control models, and also for the purpose of clarifying the terms used in187

the present paper to refer to those architectures. To illustrate these various architectures in188

an intuitive way, the example of the planar robotic arm will continue to be employed as in189
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Interspeech 2016- 6

Speech Motor Control: 
Simplest Feedforward, or “Open Loop”

Plant, GController, C

Planner, P

rx

u, u∙ y

(a) feedforward

Interspeech 2016- 7

Plant, GController, C

Planner, P

Speech Motor Control: 
Simplest Feedback

Σ
+

–

rx

u, u∙ex y

(b) feedback
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Speech Motor Control: 
Model Predictive Feedforward

Plant, GController, C

Planner, P

Σ
+

–

Plant Model
x
~

u, u∙

rx

ex y

(c) model predictive

FIG. 4. Control architecture of a generic (a) feedforward, (b) feedback, and (c) model predictive

controller. The feedforward control architecture is distinguished from the other two because the

controller only receives information from the planner, not information from the plant or predicted

information from the plant. The feedback control and model predictive control architectures differ

in the nature of the feedback received by the controller. In feedback control, the state of the plant

(different than the output) is sent back to the controller. By contrast, in model predictive control,

the state of the plant is sent back to the controller using an estimate of the plant based on a copy

of the issued control signal.

the previous section. However, these same architectures can be used to control much more190

complex systems, such as the speech production system.191

1. Feedback control192

Figure 4b shows an example of a feedback system architecture that, by definition of the193

term, makes use of outputs from the plant for maintaining control. These feedback signals,194

which convey the sensory state vector, are compared with the reference vector from the195

planner in order to generate an error vector. The error vector, in its most basic form, simply196

represents the difference between the current state and the reference. The error vector is197

passed to the controller for determining the motor command. This type of controller is198
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often referred to as a closed-loop controller in the control theory literature, since the flow199

of signals through the system form a loop from the motor command to the error signal and200

back again. Many types of controllers exist which match this general description, only a few201

of which will be discussed here. What all feedback controllers share is the basic idea that202

the error between the state of the plant (or an estimate thereof) and the reference forms the203

basis for the motor command issued to the plant. The simplest feedback controller design is204

the proportional controller, in which the motor command is simply proportional to the error205

signal – e.g., C(ex) = Kpex, where the term Kp is a matrix of weights known as the gains.206

Larger gains lead to larger motor commands (i.e. the error has more of an effect on the207

system) while smaller gains result in smaller commands. Smaller gains are often preferable208

as large gains can lead to instability and oscillatory behavior.209

The second row in Figure 3 shows, across times t1, t2 and t3, the progress of the robotic210

arm as controlled by a feedback controller. At the beginning, the task is defined as a211

desired point in task space x = (x1, x2). This type of task is sometimes referred to as a212

point-attractor, or a target, since the system should evolve to approach this point in task213

space regardless of its initial position, given sensible motor commands that reduce the error214

signal over time. The motor commands issued at each time step are a function of the error,215

ex, between the current position of the end-effector and the point target. The error is216

determined by sensory feedback, which provides monitoring of the current state of the arm217

with respect to the position of the target.2 Although the error signal is in task space, the218

motor command issued by the controller must be given in mobility space since the only way219

to change the position of the end effector is to change the joint angles u = (u1, u2). The220
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process of determining those commands requires some kind of transformation (i.e., kinematic221

inversion) from the desired coordinates in task space to corresponding coordinates in mobility222

space. Alternatively, it is also possible for the target to be a pre-specified trajectory rather223

than a point in task space. In this case, the error would be computed between the current224

position of the end-effector and the current desired position along the trajectory (typically225

time-locked).226

Feedback control architectures have wide applicability in engineered and biological sys-227

tems. Even simple designs typically lead to systems that accurately produce desired behav-228

iors, and which can naturally handle unstable or unpredictable environments, including ex-229

ternal perturbations to the plant. However, feedback systems can require careful calibration230

to ensure stability of control. Incorrectly tuned feedback systems can result in movements231

that grow uncontrollably or oscillate indefinitely. Feedback architectures are also heavily de-232

pendent on the quality of feedback signals. If those signals are slow to propagate, or if they233

require extensive processing once received, this can lead to motor commands being issued234

based on outdated state information, resulting in poor and/or slow performance. Addition-235

ally, if feedback signals are corrupted or otherwise inaccurate, this can lead to inaccurate236

movements. These final considerations are particularly important for biological systems, as237

there are substantial delays and noise inherent to neural processing of sensory feedback.238

2. Feedforward control239

One way to avoid the problems of delayed and noisy sensory information is to cut out the240

use of feedback entirely. Figure 4a shows an example of a system architecture that makes241
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no use of any outputs from the plant for maintaining control. Rather, the signals issued242

in the system are entirely feedforward, with the motor commands depending only on the243

reference signal. This architecture is commonly referred to as an open-loop control system,244

although the terms feedforward and open-loop will be used interchangeably in the present245

paper. The term feedforward control is sometimes used more specifically to refer to control246

architectures that can monitor perturbations to the plant, and adjust the motor commands247

to compensate without the need for explicitly monitoring outputs from the plant, usually248

by employing a highly accurate mathematical model of the plant (see the section on model249

predictive control, below). To date, the authors are aware of only one modeling effort in the250

domain of speech motor control to utilize this kind of architecture (Baraduc et al., 2017),251

with preliminary results presented.252

The first row in Figure 3 shows the progress of the robot arm as controlled by a feed-253

forward controller. From the beginning, the trajectory of the end-effector is defined in254

task space as a straight line originating at the end-effector’s current position. The motor255

commands issued to the arm at each time step are directly determined by this pre-specified256

trajectory. As in a feedback controller, the reference signal is defined in task space but motor257

commands must be issued in mobility space. Again, this requires some kind of transforma-258

tion from the desired coordinates in task space to corresponding coordinates in mobility259

space. Although the trajectory in this example is specified in task space, as is often done,260

an alternative feedforward controller could define the plan in mobility space (that is, for our261

robot example, in terms of joint angles) or even simultaneously in mobility and task space.262

In any case, a key aspect of feedforward control is that no estimate of the state (that is, the263
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arm’s estimated position) is used by the controller at any point throughout its movement.264

In the absence of feedback, the simplest method of generating reasonable control signals is265

simply to have the plan pre-specify the entire trajectory in task or mobility space, and then266

issue motor commands that attempt to carry out that plan step-by-step from beginning to267

end.268

Feedforward control architectures are unsuitable for unstable or unpredictable environ-269

ments, where the plant can be perturbed by interference external to the system. Without270

the ability to detect and monitor errors in the system output, errors tend to persist, or even271

compound over time. Despite this obvious disadvantage, feedforward architectures are some-272

time attractive because they are capable of issuing motor commands quickly and without273

the need for complex handling of feedback signals.274

3. Model predictive control275

An alternative to feedforward and feedback control is model predictive control. A model276

predictive controller, like the feedforward controller, makes no use of outputs from the plant277

for maintaining control. However, this architecture does make use of an internal model of278

the plant, which takes motor commands as input and transforms them into a prediction of279

the system’s subsequent state, to predict the effects of the issued motor command. This280

effectively replaces feedback from the plant with a prediction of what the controller thinks281

that the feedback should be (Garcia et al., 1989; Miall and Wolpert, 1996). An example282

of this architecture is shown in Figure 4c. This state prediction acts as a kind of pseudo-283
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feedback which can be compared against the reference, producing an error signal that is284

provided to the controller.285

Note that model predictive control can be viewed as a special case of feedforward control,286

if the plant model is considered to be part of the controller. This special case has been287

separated out as a distinct architecture in the present framework because it is central to288

several models of speech motor control. Therefore, feedforward architectures, as discussed289

here, will specifically discount architectures that are model predictive.290

The third row in Figure 3 shows the progress of the robot arm as controlled by a model291

predictive controller. The functioning of such a controller is similar to the feedback controller292

example, above, in that the target is defined as desired point in task space, and the motor293

commands issued are a function of the error, ex, between the current position of the end-294

effector and the point target. The difference is that the error is determined by comparing295

the desired state to the output of an internal model.296

In terms of performance, the primary advantage of such an architecture is speed, since297

the delays associated with predicting the plant’s state can often be much shorter than those298

associated with feedback propagation. Additionally, a model predictive controller is one way299

to avoid the need for having an entire trajectory formulated before movement begins, as is300

often the case with feedforward architectures. Rather, plans can be more compact, such as a301

single, time invariant point in task or mobility space (this is the same type of plan often used302

in feedback controllers). The disadvantage of these systems is that accurate internal models303

can be difficult to design or learn, especially for complex, nonlinear plants such as the vocal304

tract. A poor internal model would mean that the predicted state may not match the true305
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state of the plant, which can result in inaccurate control. Even small errors in the prediction306

will accumulate over time, since there is no way of correcting the prediction. Additionally,307

model predictive controllers have similar problems as feedforward control architectures in308

dealing with unpredictable environments and perturbations.309

4. Combining feedforward and feedback controllers310

Each basic type of control system, feedback and feedforward control, has its own strengths311

and weaknesses. Feedback control is stable in the face of external perturbations, but becomes312

inaccurate or slow when sensory information is noisy or delayed (respectively), as in most313

biological systems. Feedforward control can be accomplished quickly, but is unstable when314

the state of the system cannot be predicted due to external perturbations.315

It is possible to combine some of the strengths of feedforward and feedback systems, and316

mitigate the weaknesses of each, by constructing a hybrid feedforward/feedback controller, as317

shown in Figure 5a. This hybrid architecture comprises separate feedforward and feedback318

pathways that each issue their own motor commands, a (potentially weighted) combination319

of which becomes the final motor command that is issued to the plant. Such an architecture320

has the speed of a feedforward controller, but remains sensitive to unexpected perturbations321

and accumulating errors. Typically, the presence of the feedforward pathway allows for322

lower gains to be utilized in the feedback controller, leading to better stability. The primary323

disadvantage of combining feedforward and feedback pathways into a single system is the324

introduction of more complex designs. Complex designs may be more difficult to maintain,325

and allow the potential for unnecessary or underutilized components. For instance, if output326
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FIG. 5. Control architectures of generic hybrid controllers. A hybrid controller uses two of the

three simple control architectures discussed in Figure 4. Diagrammed here are (a) a feedforward-

feedback hybrid, (b) a model predictive-feedback hybrid with simple summation of state predictions

(i.e., a Smith predictor) and (c) a model predictive-feedback hybrid with full integration of state

predictions (i.e., a Kalman filter). Architectures (b) and (c) are distinguished by the specific way in

which model predictions and feedback are combined. In (b), the current state is estimated through

a three-part error comparison processes. Architecture (c) also uses a three-part comparison, but

also incorporates an observation model that maps the model prediction into sensory space, and a

gain that allows for potentially variable weighting of model predictions and sensory measurement

error.

from the plant always equals the reference (e.g., if the environment is entirely predictable),327

then the feedback pathway is not utilized and essentially unnecessary, since the feedforward328

pathway would be sufficient for control by itself.329

One of the most useful applications of model predictive control is as a component of larger,330

hybrid architectures. For instance, internal model predictions can provide quick pseudo-331

feedback that can be used in conjunction with true feedback to provide fast, reliable control332

even in the face of long feedback propagation delays. Such methods are more stable than true333
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model predictive control, since internal predictions do not need to be perfectly accurate, and334

small deviations between the predicted and actual states of the plant can be corrected via335

the feedback signal. An example of an architecture that exemplifies this concept is the Smith336

predictor (Ghosh, 2005; Smith, 1959), as shown in Figure 5b. A Smith predictor effectively337

has three error comparison processes, generating state errors serially through comparing the338

state with a delayed version of the internal model prediction, which in turn is compared339

to a non-delayed internal model prediction, with this final comparison being subsequently340

compared against the desired state from the reference signal. The integrated mechanisms341

involved in combining model predictions with feedback signals are sometimes referred to in342

the literature as the “observer”. The present view adopts this terminology. Note that the343

observer and speaker, in this conceptualization, are the same individual, as speakers observe344

their own speech.345

A Smith predictor is not the only controller that uses both state predictions from an346

internal model and feedback signals. Prominent alternative approaches also use a three-part,347

cascaded error comparison process, but incorporate (a) an observation model, that maps the348

model prediction into sensory space for direct comparison with sensory measurements, and349

(b) a gain that allows for potentially variable weighting of model predictions and sensory350

measurement error. These additional aspects can afford more accurate estimation of the351

plant’s current state. This is the approach taken by such classic control designs as the352

Kalman filter (Kalman et al., 1960) (Figure 5c), which provides an optimal3 state estimate353

with noisy feedback under certain strict assumptions. Importantly, the estimated state that354

results from combining internal predictions and feedback can be compared with the desired355
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state to generate a motor command (Todorov, 2004), just as in a pure feedback controller.356

This type of controller is sometimes referred to as state feedback control.357

C. Speech models358

The present discussion will now move from domain-general motor control theory to models359

of speech motor control. Among the speech production models presented in the literature,360

perhaps the two most prominent are DIVA (Directions Into Velocities of Articulators) and361

the Task Dynamics model. The development of DIVA has been driven since the mid-362

1990’s (Guenther, 1994) primarily by a team of researchers at Boston University, led by363

Frank Guenther. Task Dynamics has been developed by researchers associated with Haskins364

Laboratories, with Elliot Saltzman playing a key role, and with the theoretical groundwork365

being laid about five years prior to DIVA (Saltzman and Kelso, 1987; Saltzman and Munhall,366

1989). More recent models include State Feedback Control (Houde and Nagarajan, 2011),367

the Feedback Aware Control of Tasks in Speech (FACTS) model (Parrell et al., 2006), ACT368

(Kröger et al., 2009), and GEPPETO (Perrier et al., 2005).369

Any model of speech production control must include, at a basic level, the ability to370

generate motor commands based on some motor plan. Those motor commands in turn371

activate a vocal tract model, possibly resulting in the generation of an acoustic signal. While372

complete models of speech production also need to include the formulation of motor plans,373

these elements are beyond the scope of the present paper, which focuses more narrowly374

on controlling the vocal tract for speech. An important reason for limiting the scope of375

the present paper is that the longstanding debate over acoustic vs. articulatory targets376
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of speech production tasks is often intertwined with the critical issue of how the vocal377

tract is controlled. For example, DIVA’s tasks are formulated primarily in acoustic space,378

whereas applications of Task Dynamics (e.g., the Articulatory Phonology of (Browman and379

Goldstein, 1986) often assume tasks to be constrictions in the vocal tract. The choice of380

task space, however, is almost completely independent of the control formulations that are381

the focus of the current paper, and it is generally possible to reformulate any given control382

architecture using different task spaces. Therefore, the present work will discuss the task383

space used for each model, as the specific choice of task variables comprising the task spaces384

does differ between models, but will make no attempt to discuss the relative merits of the385

different task spaces used in different models. The concept of a task space is general enough386

to sit over and above the specific choice of task variables, while being well-defined enough as387

a concept to allowing meaningful comparisons of the control architectures underlying task388

space control.389

Control elements that are relevant to any model of speech motor control, and which will390

be discussed in depth for each model in the following section, include: (a) the nature of391

feedforward mechanisms of control, including the formulation of the planner, (b) the nature392

and importance of feedback signals, (c) modeling of potentially imperfect sensory systems393

and/or perceptual processing of feedback, (d) the consequences of delays in feedforward and394

feedback pathways (e) the potential role of forward models in state prediction, and (f) the395

potential integration of both feedback and state predictions for state estimation, (g) the396

implementation of transformations between task space, mobility space, and sensory space,397

(h) the design of the controller for generating and issuing motor commands to the plant.398
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It is noted here that most current speech models are examples of purely kinematic con-399

trollers. That is, they do not account for dynamics or biomechanical considerations of the400

vocal tract. It is typically assumed that inertial parameters, centrifugal/coriolis forces and401

stationary external forces like gravity can all be ignored for the purposes of controller design402

and forward modeling. This may owe to the fact that several prominent models of the plant403

are purely kinematic: for instance, Maeda’s model (Maeda, 1982) and the Haskins Config-404

urable Articulatory Synthesizer (CASY) (Iskarous et al., 2003; Rubin et al., 1981, 1996).405

The focus on kinematics may also reflect an implicit assumption that dynamics of the plant406

can be ignored in the domain of speech motor control. Such an assumption is quite common407

in robotics and human motor control, and amounts to conceptualizing the plant as a collec-408

tion of stiff articulators, akin to an industrial robotic arm. However, there is evidence that409

biomechanical factors play non-negligible roles in speech motor control (Buchaillard et al.,410

2009; Derrick et al., 2015; Nazari et al., 2011; Ostry et al., 1996; Perrier et al., 2003; San-411

guineti et al., 1998; Shiller et al., 2002), and more recent vocal tract models such as Artisynth412

(Lloyd et al., 2012) incorporate dynamic and biomechanical aspects in their design.413

III. PROMINENT MODELS OF SPEECH PRODUCTION414

In the following section, each of the current models of speech motor control will be415

discussed in turn, explaining the architecture of the control system as it relates to the simple,416

domain-general systems discussed previously. Where necessary, additional components of417

each model will be touched upon, such as motor program generation. How each model418

addresses the key control elements listed above will also be discussed.419

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/197285doi: bioRxiv preprint 

https://doi.org/10.1101/197285
http://creativecommons.org/licenses/by-nc-nd/4.0/


JASA/Speech Motor Control Models

A. DIVA420

The Directions Into Velocities of Articulators (DIVA) model is a hybrid control system421

combining a model-predictive controller with separate auditory and somatosensory feedback422

controller loops (Golfinopoulos et al., 2011; Guenther et al., 2006; Tourville and Guenther,423

2011). Being arguably the most complete computational model of speech motor control,424

DIVA has been developed to address a number of theoretical issues, primarily focused around425

replicating human speech production at behavioral, neurological, and developmental levels.426

The use of both model predictive and feedback control in DIVA is conceptually similar427

to a Smith Predictor. However, while a Smith Predictor uses serial error calculations to428

issue a single motor command, DIVA generates independent errors from each controller429

simultaneously. Each error is then individually transformed into a separate motor command.430

These three commands are then combined into a single motor command which is passed to431

the plant. The plant in DIVA has historically been Maeda’s model (Tourville and Guenther,432

2011), but this has recently been replaced with a custom plant model (Guenther, 2016).433

The basic component of the planning process in DIVA is the “speech sound”, which can434

be a phoneme, syllable, or multisyllabic chunk. Each speech sound is linked to three distinct435

tasks, each a function of time: an articulatory trajectory (often called “motor” trajectory in436

the DIVA literature) defined in mobility space ru(t), an auditory sensory trajectory raud(t),437

and a somatosensory trajectory rsomat(t). The “speech sound map”, which corresponds438

to the planner in Figure 4b, stores all three-component sets of mobility and sensory state439

trajectories. Each trajectory of the set serves as the reference signal to one of the controllers440
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FIG. 6. Control architecture of the DIVA model. The DIVA model has two feedback paths, auditory

and somatosensory, that are schematically identical, and a model-predictive pathway. The feedback

pathways compute an error between the planner’s signal and the output of the plant. This error is

then used in conjunction with the state of the plant, u, to create a feedback control signal similar

to the integrated model predictive-feedback control in Figure 5c. The model predictive pathway

compares the desired position of the speech articulators with their current predicted position.

in DIVA: the articulatory trajectory serves as input to the model-predictive controller, and441

the sensory trajectories serve as input to the respective auditory and somatosensory feedback442

controllers. The three-component representation of speech sounds in DIVA means that each443

speech unit has a fully-specified articulatory trajectory and time-locked sensory expectations.444

Uniquely among models discussed in the present paper, the sensory expectations are not445

generated online through an internal model, as in a state feedback controller.446
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The model predictive component of DIVA compares the predetermined desired position447

of the speech articulators at each point in time, ru(t), with their current predicted position,448

ũ, generating a control signal, u̇mp. Implicitly, this assumes the existence of an internal449

model (not explicitly shown) that is able to predict the kinematic consequences of the motor450

commands with perfect accuracy. In order to generate the mobility state prediction, DIVA451

integrates the control signal over time. This enables comparison of the estimated state of the452

vocal tract articulators ũ with the reference signal ru(t) independently of sensory feedback.453

Although the model-predictive controller is typically referred to as the “feedforward” con-454

troller in the DIVA literature, it is not a typical feedforward controller in the sense of “open455

loop” control traditionally described in control systems, because it relies on a comparison be-456

tween the predicted current model state and a reference. In its current implementation, the457

predicted state also incorporates some auditory and somatosensory feedback information,458

as well, since those pathways converge with the model predictive pathway. However, if the459

auditory and somatosensory feedback controllers in DIVA are entirely removed, the model460

predictive controller would function appropriately in the absence of sensory information.461

In the model predictive controller, the control signal is generated from the following462

equation: u̇mp = gmpG[ru(α, t)− ũ], where gmp is a scalar amplification gain applied to the463

motor command, and G is an additional gain that can be interpreted as a “go” signal, ranging464

between 0 (no movement) and 1 (maximal movement speed) as in Bullock and Grossberg465

(1988). Thus, the motor command is essentially a scaled version of an error signal, where the466

relevant error is between the articulatory reference signal and the predicted current position467

of the plant in mobility space. Note that the version of u that is used in computing the468
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error signal is neither the true position of the articulators in mobility space, nor the one469

measured from the plant via sensory feedback, but an internal estimate of this state, ũ. This470

estimate is generated by integrating the summed motor commands from all three controllers,471

and is equal to the motor position command issued to the plant. Effectively, the quantity472

ru(α, t) − ũ is an approximation of u̇ prior to scaling. The predicted current position of473

the plant is used purely as a way of converting the reference signal into a velocity, because474

the reference signal (a set of articulatory positions) cannot be used directly as a motor475

command (which must specify a change in those positions). Alternative ways of computing476

the motor command would eliminate the need for the model-predictive component of the477

feedforward controller, converting it into a true “open-loop” system. For example, the478

planner could approximate the first derivative of the entire articulatory plan, and issue that479

as the reference signal. Alternatively, the planner could issue the reference signal within a480

window surrounding the current time point, which would allow the controller to approximate481

the first derivative. Further details can be found in Appendix A.482

The auditory and somatosensory feedback controllers closely follow the generic feedback483

control architecture. The auditory task space in DIVA is defined as the first three formants484

(F1-F3) and the somatosensory task space is defined as the positions of the individual ar-485

ticulators (proprioception) as well as the degree of contact between separate articulators486

(tactile sensation). Several publications have also envisioned the somatosensory space in-487

cluding representations of constriction locations and degrees, as in Task Dynamics (refer488

to sections describing Task Dynamics, below). The computations performed by the sen-489

sory feedback controllers in DIVA begin with a comparison between the reference signal490
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and the sensory output of the plant to produce an error signal in sensory space. For the491

sake of simplicity, only the auditory feedback computations will be presented here, but the492

form is the same for the somatosensory pathways. The auditory error signal is defined as:493

eaud = raud(α, t)− yaud. This auditory task-space error is then transformed into a mobility-494

space error via the inverse kinematic equation: u̇aud = gaudJ(ũ)−1eaud. The matrix J(u) is495

known as the Jacobian, which provides a mapping between changes in mobility space and496

changes in task space. This mapping is dependent on the current mobility state (u) or, as in497

DIVA, a prediction of that state (ũ). Specifically in DIVA, the Jacobian contains the rate of498

change for each of the dimensions of the task space for a corresponding change in mobility499

space. The matrix J(u)−1, is a pseudoinverse of the Jacobian, which allows for transforming500

task-space changes into mobility-space changes. The final motor command is then generated501

as the transformed error signal multiplied by a fixed gain, gaud. This represents a kind of502

proportional control, where the motor command, ignoring transformations for the moment,503

is simply a scaled version of the error signal. Further details can be found in Appendix A.504

The output of the model predictive controller and sensory feedback controllers are505

summed to generate the final control signal, u̇. Thus, the final control signal passed to506

the plant is the velocity of the articulators (or u̇) needed to produce the desired change in507

the position of the articulators (termed motor movement command). The control signal508

additionally includes the integration of u̇ over time (u, or motor position command). This509

combined motor movement and position command is passed to the plant to drive changes510

in the position of the articulators. The plant also produces sensory outputs based on the511

position of articulators at each time point, yaud and ysomat. In DIVA, the output of the512
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plant is in the space of the reference signal (F1-F3 for the auditory reference, position of513

the articulators as well as articulator contact for the somatosensory reference). This avoids514

needing to model an auditory or somatosensory perceptual system.515

An important detail to note is that the auditory and somatosensory reference signals516

are specified not as unique trajectories with a single value at each time point, but as time-517

varying regions. The error signal for each space (auditory or somatosensory) is the distance518

from the current state to the edge of these regions. Thus, larger regions will allow greater519

variability in production, as no corrective error signal will be generated for any production520

that falls within the target region.521

DIVA simulations have been able to qualitatively match human behavioral responses522

to auditory and mechanical perturbations (Guenther et al., 2006; Tourville et al., 2008;523

Villacorta et al., 2007). The model has also been used to derive variable productions of /r/524

(Nieto-Castanon et al., 2005) based on a particular auditory target (low F3), a so-called525

“trading relationship” or “motor equivalence” where multiple articulatory configurations526

can be used for the same phoneme. Some older versions of DIVA that used time-invariant527

targets are also able to model carry-over and anticipatory coarticulation through the use of528

convex target regions (Guenther et al., 1995).529

Speech acquisition and learning have also received substantial consideration in the devel-530

opment of DIVA. The primary mechanism for learning within the model involves updating531

the motor plan based on generated auditory and somatosensory feedback motor commands.532

Details of this adaptive modification to the motor plan fall outside the scope of the present533

review. Nonetheless, this pathway is indicated by an open, labelled arrow in Figure 6.534
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In addition to establishing the architecture of the speech motor control system, one of the535

primary motivations behind DIVA is establishing the neural basis of speech motor control.536

Individual components of DIVA have been mapped onto particular brain regions based on537

experimental neuroimaging results and model simulations (Bohland et al., 2006; Ghosh et al.,538

2008; Golfinopoulos et al., 2011; Guenther et al., 2006; Tourville et al., 2008), and simulation539

studies have provided good matches to behavioral and neural activity recorded from human540

speakers during auditory and somatosensory perturbation experiments (Golfinopoulos et al.,541

2011; Niziolek et al., 2013; Tourville et al., 2008; Villacorta et al., 2007).542

B. Task Dynamics543

The primary focus of the Task Dynamics model has been to model how invariant linguistic544

targets can generate continuous and context-dependent articulatory movements. The central545

hypothesis of this model is that articulatory movements are directed by the evolution of a546

task-level dynamical system whose invariant parameters are determined by the linguistic547

content of an utterance. TD was formulated by Saltzman and Kelso (1987) in general548

motor terms, and then by Saltzman and Munhall (1989) in the particular context of speech549

production (see Figure 7). TD is essentially a feedback control architecture, as described in550

Figure 7. The controller uses a feedback comparator to relate the desired state issued by the551

planner (rx(α, t)) to the current state of the system (x). On the basis of this comparison (ex),552

the controller computes a desired acceleration in task space (ẍ) which is then transformed553

into a desired acceleration in mobility space (ü). A crucial aspect of Task Dynamics is that554

both the desired state issued by the planner and the comparison performed by the controller555
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occur in task space, not mobility space. This necessitates a transformation of the desired556

acceleration in task space into mobility space before it can be utilized as a motor command.557

The plant in the Task Dynamics model is the CASY model (Iskarous et al., 2003; Rubin558

et al., 1996), which is a geometric model of the vocal tract, similar in spirit to Maeda’s559

model.560
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FIG. 7. Control architecture of the Task Dynamics model. The system state, x, is broken out as

both the state and change in state (first derivative), ẋ. This information is used by the controller

in the rectangle. Comparing this diagram to Figure 4b, one can see TD is a feedback control

architecture.

One view represented in the literature and in the community of Task Dynamics is that561

it does not incorporate a feedback process. This misconception was perhaps most recently562

mentioned in print by Kröger and Birkholz (2007) who stated that a serious problem with563

the Task Dynamics approach has been the fact that “perception [presumably feedback] as564

a control instance for production is not considered”. Based on the discussion above, it565
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should be clear that Task Dynamics is, in fact, primarily a feedback-driven system. One566

criticism that could be made of task dynamics, however, is that the model, as implemented,567

treats the feedback process as noiseless and instantaneous, which is overly simplistic. Given568

that the focus in task dynamics was on the development of the dynamic control law, this569

simplification would seem to stem from the specific emphases and interests of the authors,570

rather than some central conceptualization of speech motor control. Such was suggested571

by the authors in at least one publication (Saltzman and Kelso, 1987). It is also true that572

TD does not incorporate auditory feedback, which may, indeed, be a central property of573

the model. Similarly, the model assumes that the current state of the plant in mobility574

space is directly reflected via somatosensory feedback. Note that this is essentially the575

same assumption that DIVA makes, where part of the sensory feedback signal is simply the576

positions of the articulators.577

The computations performed by the controller in TD begin with a comparison between578

the (task-space) reference signal and the task-space position of the plant to produce an error579

signal: ex = rx(α, t) − x. The error signal is then used, along with the task-space velocity580

of the plant, ẋ, to update the task-space acceleration of the plant via the feedback control581

law (called the “forward dynamics equation” in the literature): ẍ = −M−1Bẋ−M−1Kex,582

where M is a diagonal matrix of inertial parameters, B is is a diagonal matrix of damping583

coefficients, and K is a matrix of stiffness coefficients. Thus, the feedback control law takes584

the form of a second-order dynamical system that transforms the error signal into the second585

derivative of the task-space variable x. Since the task-space acceleration cannot be used586

directly as a motor command, it is necessary to transform this task-space acceleration into587
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a mobility-space acceleration (ü). This is accomplished through the use of a pseudo-inverse588

Jacobian function: ü = J−1(u)[ẍ− J̇(u, u̇)u̇]. This mobility space acceleration can then be589

integrated to produce mobility-space velocity and position signals, (u, u̇), that can be used590

by the plant to drive changes in the position of the speech articulators. Further details can591

be found in Appendix A.592

TD views speech motor control as a problem of point attractor dynamics. That is, motor593

tasks are conceptualized as points in task space, toward which the system is drawn by means594

of some governing control law which is a function of the system state. Task Dynamics de-595

scribes the control law as a damped oscillator system (i.e., second-order dynamical system).596

Damped oscillator dynamics have a number of desirable properties in terms of defining a597

control law. In addition to the fact that damped oscillator dynamics are well-understood598

and easily characterized, the use of such dynamics to model task-directed behavior has the599

advantages that action patterns will be globally smooth and continuous.600

TD is closely related to proportional-derivative control. It is common practice in engi-601

neering control systems to take integral or derivative information of the error signal into ac-602

count (e.g., the ubiquitous proportional-derivative, PD, and proportional-integral-derivative,603

PID, controllers – e.g., Åström and Hägglund (1995)). Integrating the feedback error, for604

instance, allows a controller to recognize accumulated errors, which it can then attempt605

to nullify. Using the derivative of the feedback error, on the other hand, can minimize606

undesirable future trends in the error signal, such as overshoot, oscillation and instabil-607

ity. In PD control, the control signal uPD is simply a weighted combination (given some608

weight matrices KP and KD) of the error signal and its first derivative with respect to time:609
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uPD = KPex + KDėx. This equation looks remarkably similar to the feedback control law610

from TD: ẍ = −M−1Bẋ−M−1Kex, except that weights are specified, and ẋ is substituted611

for ėx. It can be easily shown that ẍ = uPD, given that KP = M−1K and KD = M−1B,612

and knowing that rx has a constant value, and therefore ṙx = 0. Thus, TD is equivalent to613

PD control up to the generation of the task variable acceleration signal, but differs in the614

additional transformation of the task space variables into mobility space, and integration of615

the mobility space variables.616

The task space in TD is defined in terms of high-level articulatory tasks (in contrast to617

the positions of the individual articulators themselves). For speech, the tasks are suggested618

to be constriction actions (i.e., gestures) of the vocal tract, such as achieving closure of the619

lips, rather than the positions of the individual speech articulators (for the lip closure task,620

these would include the upper and lower lips as well as the jaw). A point attractor task621

is derived by the planner from a time-varying “gestural score” that issues the desired task622

state as a function of the currently active articulatory gestures. This definition allows TD to623

be easily put together with Articulatory Phonology (Browman and Goldstein, 1986). These624

two components form the basis for the perspective on speech production widely associated625

with Haskins Laboratories. Nevertheless, Task Dynamics and Articulatory Phonology are626

separate models that address different questions. Articulatory Phonology – proposed roughly627

in parallel with Task Dynamics – asserts that articulatory gestures are the primitive units628

of spoken language. Gestures themselves are conceptualized with AP as discrete vocal tract629

constriction actions, which can be composed into gestural “scores” that function as a motor630

program for a given utterance. Therefore, in broad terms, Articulatory Phonology addresses631
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the question of how speech tasks should be defined, and how they can be composed into a632

motor program, whereas Task Dynamics addresses the question of how those tasks can be633

achieved and how that motor program can be realized in a physical system.634

Use of second-order dynamics directly connects TD to research on action planning and635

execution in biological systems. For instance, the VITE model is an influential neural-636

inspired network model for explaining kinematic trajectory formation of directed movement637

(Bullock and Grossberg, 1988). VITE comprises a network of three interacting hypothesized638

neural populations, each coding a distinct quantity that is needed in the generation of the639

motor command, given some target position. These neural populations encode quantities640

related to the present position of the system, the desired target position, and the difference641

between the target and the present position. These interacting populations are configured642

in such a way that there are many structural similarities to the control architecture of TD.643

The result of these similarities is that the present position of a population will move in a way644

that is consistent with a 2nd-order dynamical system, much like Task Dynamics (as pointed645

out by, e.g., (Beamish et al., 2006)).646

One of the strengths of the model is accounting for coarticulatory effects. Coarticulation647

in this model is seen as arising from temporal overlap of independent and invariant articu-648

latory gestures – the so-called coproduction model of coarticulation (Browman et al., 1992,
649

1995; Fowler et al., 1993). Other coarticulatory effects, such as clear vs. dark /l/ alterations,650

have been modeled at the planning level as changes in the temporal organization of gestures651

(Browman et al., 1992, 1995; Zsiga et al., 1994).652
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Very early results from the Task Dynamics model showed that it was capable of repro-653

ducing the compensatory behavior seen in mechanical perturbation experiments, where a654

lowered jaw position during production of a bilabial stop is compensated for by a higher655

lower lip and lower upper lip (Saltzman et al., 1986). However, the model is unable to656

account for auditory perturbations, as there is no auditory feedback channel.657

Task Dynamics can produce simple speech-rate effects by changing the dynamical pa-658

rameters of the control law – e.g., by making the task-space motions more or less damped.659

In addition to these linear rate effects, the Task Dynamics model is able to produce a wide660

range of non-linear temporal effects seen in speech. Through the π-gesture model (Byrd661

et al., 2003), the model is able to capture the non-linear slowing found adjacent to prosodic662

boundaries as well as capture many of the spatial effects, such as larger movements (Fougeron663

et al., 1997), seen at those boundaries within a single framework. More recent work has ex-664

tended the model to account for syllable structure and prosodic prominence (Saltzman et al.,665

2008). While some recent work has started to explore neural mechanisms for some of the666

components of the model (Tilsen et al., 2016), and a connection to the VITE neural model667

(Lammert et al., 2018) has been established, the components of TD have not been explicitly668

related to specific neural structures.669

C. State Feedback Control670

The State Feedback Control for speech production (SFC) model is a speech-specific in-671

stantiation of the general Kalman filter-type architecture in Figure 5c (Houde and Chang,672

2015; Houde and Nagarajan, 2011). The primary focus of SFC has been to apply the in-673
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sights gained from state feedback approaches in other motor domains to speech. This type674

of model is used widely in current theories of motor control in non-speech domains (e.g.,675

work from Diedrichsen et al. (2010); Scott (2004); Shadmehr and Krakauer (2008); Todorov676

(2004); Todorov and Jordan (2002)), and is an evolution of a traditional feedback control677

system (Fig 4b). Recall that a primary challenge of feedback control is that sensory feed-678

back is typically noisy and delayed, making the instantaneous state of the plant impossible679

to know with perfect accuracy. By adopting a Kalman filter-type architecture (Fig 5c), SFC680

presents, in a speech motor control context, one method by which sensory feedback may be681

integrated with internal model predictions to produce improved estimates of the state of the682

plant.683

In the SFC model (shown in Figure 8), estimation of the plant state is done by an observer684

(refer to Fig 5c). This observer receives a copy of the outgoing motor command issued by685

the control law (also known as the efference copy) 4. Based on this signal, the observer686

predicts how the plant will move at the next time step ((x̃, ˜̇x)) as well as the auditory and687

somatosensory feedback that will be received based on that predicted movement ((ỹ, ˜̇y)).688

The predicted sensory feedback is then compared with actual sensory feedback to calculate689

a sensory error ((ey, ėy)). This error is then converted to a task state error (or task gain),690

via a gain function. Finally, the task state ((x̂, ˆ̇x)) is estimated using the predicted state as691

well as the weighted sensory errors for both auditory and somatosensory predictions. As the692

gains associated with the sensory errors are assigned to optimize the final estimation, the693

observer in SFC functions is a Kalman filter (Todorov and Jordan, 2002), which provides694

the optimal a posteriori estimate of the state, under the assumption of linear processes of695
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FIG. 8. Control architecture of the State Feedback Control (SFC) model. The final state estimate

passed back to the controller as a feedback signal, (x̂, ˆ̇x), is derived from a combination of a state

prediction process and sensory processes. Comparing this diagram to Figure 5c, one can see that

SFC is an integrated model predictive feedback control architecture.

prediction and sensory feedback. Note that the sensory feedback the observer receives at any696

time point reflects the past state of the plant, while the state prediction reflects the current697

state. This delay is accounted for by delaying the sensory prediction before computation of698

sensory errors.699

The model does not make explicit mention of a reference signal or a planner, and by700

extension does not make explicit mention of any comparison between sensory feedback and701

a reference. Providing a detailed description of the controller has not been a focus in702

the development of SFC, and therefore the controller, as presented in the literature, is703
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represented by a generalized feedback control law which is a function U(x̂, ˆ̇x) of only the state704

estimate. This control law could take almost any form. However, the authors of this review705

expect any feedback control law that produces reasonable speech production behavior would706

need to be a function of some kind of reference, whether an explicitly planned trajectory or707

a gestural score. Indeed, specifying the details of this feedback control law in SFC, and the708

addition of a planner module, have been a primary motivation for the development of the709

FACTS model, described below.710

By combining a state prediction with sensory feedback to estimate the current state, the711

SFC model is able to act quickly by operating principally on an internal prediction of the712

plant state. This also allows the system to operate in the absence of sensory feedback, either713

when that feedback is too delayed to be of use (as for very fast speech movements) or when714

sensory feedback is unavailable (as when speaking in loud noise or in cases of non-congenital715

deafness). Yet, the system is still able to respond when the internal predictions do not716

match the incoming sensory feedback (either due to errors in the prediction process or due717

to external perturbations of the plant). Thus, this system combines the major advantage of718

traditional feedback control systems (robustness to perturbations) with that of feedforward719

control (fast, accurate movement even in the absence of sensory feedback).720

Note that, in SFC as currently implemented, there is no distinction between task space721

and mobility space; they are effectively collapsed into a single space, such that commands722

are issued in task space. This means that the current implementation of SFC is only able to723

model a system where the goals of speech production are the same as the mobility space of724

40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/197285doi: bioRxiv preprint 

https://doi.org/10.1101/197285
http://creativecommons.org/licenses/by-nc-nd/4.0/


JASA/Speech Motor Control Models

the system. SFC has been implemented to control pitch, where the fundamental frequency725

of vocal fold vibration maps onto a one-dimensional mass-spring system.726

This model has been shown to accurately reproduce the behavior patterns of human727

participants in pitch-alteration studies (Houde et al., 2006). The model has also been shown728

to reproduce two neural effects seen in human speech: 1) the reduction seen in cortical729

electroencephalography (EEG) or magnetoencephalography (MEG) signals when speaking730

compared to listening to the one’s own speech played back over headphones or speakers731

(speech induced suppression) and 2) the enhancement of the EEG /MEG signals when seen732

when one’s speech is externally perturbed compared to when it is unperturbed (speech733

perturbation).734

D. FACTS735

Recently, a new model – the Feedback Aware Control of Tasks in Speech (FACTS) model736

– has been proposed that combines aspects of both Task Dynamics and State Feedback737

Control (Parrell et al., 2006). Building on TD and SFC, FACTS combines elements of feed-738

back control and model predictive control. FACTS is an attempt to combine the strengths739

of each model, while addressing the major shortcomings of each. Specifically, the Task740

Dynamics model includes a well-developed control law that relates the movements of the741

speech articulators to high-level tasks, but assumes perfect knowledge of the state of the742

vocal tract. Conversely, State Feedback Control focuses principally on how the state of the743

plant can be estimated from sensory information given the noise and time delays inherent744

in auditory and somatosensory perception, but has to date only been used to control a very745
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simplistic one-dimensional model of pitch. FACTS combines the concept of state prediction746

and estimation from SFC with the planning model and vocal tract control of TD.747
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FIG. 9. Control architecture of the Feedback Aware Control of Tasks in Speech (FACTS) model.

FACTS builds upon the architecture of the Task Dynamics model by substituting an estimate of

the mobility-space state for the true state through an observer module. The observer generates

this mobility state estimate through a combination of an internal mobility state prediction and

multisensory feedback. As such, FACTS is an implemenation of an integrated model predictive

controller, like SFC.

The architecture of FACTS is shown in Figure 9. The control component of the model is748

the same as that for the Task Dynamic model, with a planner generating a gestural score,749

which is passed to a feedback controller to generate changes at the task (ẍ) and mobility750

(ü) levels. This final motor command, ü, is passed to the plant to produce articulator751
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movements as in Task Dynamics. However, where Task Dynamics passes the current plant752

and tasks states directly back to the feedback controller, FACTS uses an observer to estimate753

the task and plant states, as in the earlier SFC model. The final motor command ü is passed754

to an internal model of the plant to generate predicted articulator positions ((ũ, ˜̇u)), as well755

as auditory and somatosensory feedback ((ỹ, ˜̇y)). The estimated sensory feedback is then756

compared with sensory feedback from the plant to generate a sensory error ((ey, ėy)). The757

estimated mobility state is generated from the predicted mobility state and the sensory758

error via an unscented Kalman filter, an extension of the linear Kalman filter to nonlinear759

systems (Wan and Van Der Merwe, 2001). The estimated mobility state is then converted to760

an estimated task state, needed by the feedback controller to generate the motor command761

at the next time point, via the same forward kinematics function as in Task Dynamics.762

The FACTS model is relatively new, and so remains mostly untested. However, the model763

is able to qualitatively reproduce human responses to external perturbations, including full764

compensation for mechanical perturbations and partial compensation for auditory pertur-765

bations (Parrell et al., 2006). This partial compensation is a function of both auditory and766

somatosensory acuity. One of the features of FACTS is that it builds on the successes of the767

Task Dynamics model. Since many of the mechanisms of the controller are shared between768

the two models, FACTS can reproduce the successes of the Task Dynamics model, including769

coarticulatory effects.770
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E. ACT771

The primary focus in the the ACTion-based model of speech production, speech per-772

ception, and speech acquisition (ACT) model is the acquisition and development of speech773

motor control. Kröger et al. (2009) introduced ACT as a neurocomputational model that774

draws elements from both DIVA and Task Dynamics. The architecture of ACT, shown in775

Figure 10, is essentially a feedforward controller when viewed between the motor plan and776

the plant. DIVA-style dual auditory/somatosensory feedback pathways are also part of the777

model. However, those pathways feed indirectly to the planner, by way of high-level com-778

parisons against abstract phoneme templates. Within the present framework, information779

used to modify the motor plan is considered to be part of the planner, and is therefore out-780

side the scope of low-level control, as defined here. This pathway is indicated by an open,781

labelled arrow in Figure 10. The plant in ACT is a three-dimensional kinematic model with782

articulatory control parameters similar to the Maeda and CASY models (Birkholz et al.,783

2006).784

The planner in the ACT model relates to both the speech sound map of DIVA and785

the gestural score in the Task Dynamics model. Like in DIVA, the basic unit of speech786

is assumed to be the syllable, and each syllable is represented by a model neuron in the787

phonemic map (cf. the speech sound map in DIVA). As in DIVA, these abstract syllable788

representations are linked to specific motor and sensory plans. This is accomplished in789

ACT through the phonetic map. Unlike in DIVA, where the motor plan is represented as790

a time-varying desired articulatory position signal, the motor plans in ACT are defined in791
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FIG. 10. Control architecture of the ACTion-based model of speech production, speech percep-

tion, and speech acquisition (ACT model). ACT draws from both DIVA and Task Dynamics

for its architecture, with the model comprising both feedforward and feedback pathways (both

somatosensory and auditory), but relying on point-attractor dynamics for its reference signal.

terms of high-level dynamic tasks (or gestures) as in Task Dynamics. Each motor plan is,792

in effect, a gestural score, which defines the activation levels and temporal extent of each793

speech gesture, with each speech gesture being defined as a dynamical point-attractor (rx).794

The phonetic map, in addition to linking the syllable to the motor plan, also links the795

syllable to associated sensory (auditory and somatosensory) expectations. One conceptual796

difference between ACT and DIVA is that DIVA views the sensory plans as the targets797

of speech that have associated motor plans, while in ACT the targets are the high-level798

task gestures with associated sensory expectations. This conceptual difference is reflected799

principally in terms of how the models are trained (an issue not taken up within the scope800
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of the present review), but the basic architecture of the models is essentially the same: a801

high-level syllable activates a motor plan used for feedforward or model-predictive control802

and a sensory plan which can be compared against afferent sensory information.803

The core control architecture in the ACT model borrows ideas from Task Dynamics, but804

is quite distinct. As discussed above, TD makes use of task-space comparisons between805

a reference, derived from the task-based gestural score, and the current (somatosensory)806

system state to control task-space movements given a control law that is consistent with807

damped oscillator dynamics. ACT, on the other hand, uses the reference, similarly derived,808

to directly drive motor action in a feedforward fashion. This is accomplished by the motor809

execution module, which uses the reference rx(α, t) to generate a trajectory in task space810

(x(t)) that is consistent with damped oscillator dynamics. The task-space trajectory must811

be transformed into a mobility-space trajectory (u(t)) that can be used as a control signal812

to drive movements of the plant. This transformation is accomplished by the primary motor813

map. A subsequent neuromuscular processing step exists in the model, and is presently814

implemented as a direct, linear mapping. Plans exist for this component to eventually815

map control signals onto individual and/or combined muscle groups in a neuromuscular816

model. An additional pathway for somatosensory feedback processing is also planned. This817

is indicated by dashed lines in Figure 10. This feedback pathway, included in published818

figures representing ACT, would be used to “control motor execution”, presumably in a819

fashion similar to DIVA. This pathway has not yet been implemented, and the details of its820

properties have not been fully developed.821
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Like DIVA, the ACT model also has dual somatosensory and auditory feedback pathways.822

The principal way these feedback pathways are used in the model is to compare the current823

state of the plant against pre-learned templates representing the desired somatosensory and824

auditory states. A crucial difference between ACT and other models is that this error signal825

is used to influence the motor plan, rather than as part of the controller. That is, sensory826

feedback is used to detect sensory errors for updating the phonetic map to drive trial-to-trial827

adaption, a model of development and learning.828

One difference between the ACT model and others is that the mappings that relate the dif-829

ferent signals (syllables 7→rx, syllables 7→ry, rx 7→ru, ru 7→u̇, etc.) are implemented via tunable830

neural networks rather than as closed-form mathematical expressions. These networks are831

tuned during a learning phase. Some versions of DIVA presented in the literature, especially832

earlier in DIVA’s development, had neural networks involved in these mechanisms (Guenther,833

1994). The use of trained neural network models for these transformations allows for flexi-834

bility in the form of the transformations. It opens the possibility that the transformations835

might take forms that deviate in unexpected, and potentially even biologically-plausible,836

ways when compared to mathematically-driven transformations typically adopted. The use837

of neural networks also makes it likely, however, that key transformations, such as the control838

law and the inverse kinematic transformations, cannot be easily written down analytically839

in closed form.840

The ACT model is able to produce motor equivalence in articulators linked to the same841

gesture due to the use of high-level tasks rather than articulatory positions as the basic unit842

of the motor plan (Kröger et al., 2009). The model is also capable of adaptive learning843
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based on high-level auditory errors or somatosensory perturbations, by changing the motor844

plan. However, the lack of feedback pathways in the controller means online compensation845

to these perturbations is not accounted for. The ACT model includes hypotheses about the846

neural structures that underlies the different components but to date has not been used to847

generate simulated neural activity to compare to neural data.848

F. GEPPETO849

The GEPPETO (GEstures shaped by the Physics and by a PErceptually oriented Targets850

Optimization) model (Patri et al., 2015; Perrier et al., 1996, 2005; ) is a model of speech851

control based on the equilibrium point hypothesis (Feldman, 1986). The primary focus of852

GEPPETO has been to investigate the hypotheses that 1) targets for speech production853

are discrete and phonemic, 2) biomechanics plays a non-trivial role in speech motor control,854

and 3) speech motor control employs optimal planning principles. In GEPPETO, as in the855

equilibrium point hypothesis, control occurs at the level of individual muscle lengths. Thus,856

the mobility space in GEPPETO is composed of lengths, uk, of individual muscles k. The857

command generated by the central controller is a muscle length, or threshold, above which858

motor neurons will be recruited to contract the muscle. This threshold length is known as859

the equilibrium point or λ. Afferent feedback from the muscle about the current muscle860

length is compared against the current λ, and contractile force is generated if the muscle861

length is above the threshold. In GEPPETO, the activation (A) of each muscle at time862

t is based on both the current muscle length u and the current change in muscle length863

u̇: A(k,t) = [uk(t) − λk(t) + γku̇k(t)]
+, where γ is a damping parameter that stabilizes the864
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system. Muscle activation is only generated when the muscle length is greater than λ:865

[A]+ = {A, ifA >= 0; 0, otherwise}.866
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FIG. 11. Control architecture of the GEPPETO model. GEPPETO is based on the equilibrium

point hypothesis, employing feedback control at the level of individual muscles, with relatively

realistic biomechanics to move the speech articulators. Control is mediated by a feedforward

process that transforms acoustic speech targets into equilibrium point values.

The muscle activation generated by the feedback controller then leads to the generation of867

force (f) in the individual muscles at the level of the plant: fk(λk, t) = ρk[exp(ckAk(λk, t)−868

1)],where ρ is a magnitude parameter related to the cross-sectional area of the muscle and869

c is a feedback gain. In this feedback control architecture, force can be generated either870

by changes in the current λ or by changes in the length of the muscles. Importantly in871

this approach, the ultimate position of the plant results from a combination of descending872

control (λ values), plant biomechanics, and physical constraints.873
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The GEPPETO model, shown in Figure 11, combines the low-level feedback control874

structure of an equilibrium point model with a high-level feedforward controller that takes875

acoustic speech targets, defined as convex regions in acoustic (F1-F2-F3) space, as input and876

output λ values that are passed to the feedback controller. Thus, the task space for GEP-877

PETO is acoustic in nature (though see for a recent extension of the model to additionally878

include somatosensory targets). Critically, given the emphasis on the physics of the speech879

plant, GEPPETO uses a dynamical biomechanical model of the plant with control occur-880

ring at the level of muscles rather at the level of geometric model parameters/articulators881

as in the Maeda or CASY plant models. Most published papers on GEPPETO include only882

the tongue as a controllable articulator. It is modeled as a finite-element model with six883

muscles whose lengths can be independently controlled. The other vocal tract surfaces and884

articulators are fixed.885

The output of the planner in GEPPETO is a series of n acoustic speech targets886

(φ1, . . . , φn), each of which has an intended duration (T 1, . . . , T n). This duration can887

be affected by variables such as speech rate or stress. An additional constraint sets the888

amount of effort to be used for each speech target (w1, . . . , wn) , where effort is based on889

the amount of force that will be generated to produce that target across all the muscles of890

the plant, categorized into three levels: w ∈ {“weak′′, “medium′′, “strong′′}.891

This time series of targets rx(t) = {(φ1, w1, T 1), . . . , (φn, wn, T n)} is then passed to the892

feedforward controller to generate a time series of λ values for each of the six muscles in the893

plant, (λ1(t), . . . , λ6(t)). These λ trajectories are generated for each utterance using an op-894

timization procedure that minimizes displacements in mobility space (i.e. changes in muscle895
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lengths) while producing tongue movements that will achieve the required acoustic targets896

at the required time with the required amount of effort. In this optimization process, learned897

internal models are used to estimate the amount of force and acoustic signal generated for898

any given motor command.899

GEPPETO shares certain characteristics with other models. First, speech goals are de-900

fined as regions in acoustic space (F1-F2-F3), as in DIVA. Second, feedback signals are901

never directly compared against the output of the planner, as in ACT. GEPPETO differs902

in key ways from other models, however. First, the speech targets in GEPPETO are hy-903

pothesized to be discrete in time, rather than time-varying regions as in DIVA. Second,904

the feedforward and feedback controllers in GEPPETO are arranged in a unique, serial or905

hierarchical arrangement, such that the output of the feedforward controller is used as the906

input to the lower-level feedback controller. Third, unlike the preplanned trajectories in907

DIVA, GEPPETO generates new movement plans for each utterance. Finally, it is notable908

that GEPPETO is unique in the fact that the plant’s inputs are not given in mobility-space909

variables.910

The largest success of the GEPPETO model has been to replicate many of the character-911

istic kinematic patterns of speech movements, including velocity profiles (Payan et al., 1997),912

tongue loops in velar stops (Perrier et al., 2003), and the relationship between velocity and913

movement curvature (Perrier et al., 2008). This work shows that many of these phenomena914

need not be directly controlled, since in GEPPETO they are emergent properties of linear915

changes in λ values. One of the drawbacks of the optimization approach in GEPPETO is916

that it produces identical trajectories each time the same utterance is produced, unlike the917
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variability seen in natural speech. Recently, however, the GEPPETO model was expanded918

by implementing it in a probabilistic Bayesian framework (B-GEPPETO) that is able to ac-919

count for token-to-token variability (Patri et al., 2015; ). This newer model also incorporates920

somatosensory phonemic targets in addition to auditory targets.921

G. Other models922

All the above models include, at a minimum, the ability to generate motor commands923

based on some motor plan. These motor commands are then used to move a vocal tract924

model of some kind. While such complete models are the primary focus of the current review,925

it is important to also mention more conceptual models which have not been implemented to926

the same degree. The Hierarchical State Feedback Control model (HSFC) (Hickok, 2012a,b,
927

2014) is an attempt to combine speech motor and psycholinguistic approaches to speech pro-928

duction. It is a version of an integrated predictive/feedback controller, sharing some aspects929

with the State Feedback Control model of speech production (Houde and Nagarajan, 2011).930

Tian & Poeppel (Tian and Poeppel, 2010) propose a hybrid model predictive/feedback con-931

trol model of speech motor control. The overall architecture is also very similar to the State932

Feedback Control model (Houde and Nagarajan, 2011).933

A few other models of speech motor control have been proposed that have focused primar-934

ily on the biomechanical properties of the plant rather than on the control architecture per935

se (Dang and Honda, 2002, 2004; Laboissiere et al., 2018; Ostry et al., 1996; Perrier et al.,936

1996; Sanguineti et al., 1990). While these models do not relate control to linguistic speech937

targets (i.e. describe how or why certain muscle contraction patterns would be used), the938
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success of these models in recreating measured articulatory trajectories deserves mention in939

the context of the present review.940

One class of these models (reviewed in Sanguineti et al. (1998), is based on the equilibrium941

point control. While this is the same general approach as taken by the GEPPETO model,942

the focus of this work differs. Rather than implementing control of the speech motor system943

in terms of higher-level linguistic or task-directed (auditory, articulatory) control, these944

models focus principally on how muscle forces are generated to move the speech articulators.945

Typically, the goal is to drive movements to match measured human speech kinematics.946

These models essentially implement a feedback controller, albeit one that functions entirely947

at the level of the plant without any distinction between task and mobility space. A separate948

set of biomechanical models assumes that muscle activations are the output of the controller,949

rather than equilibrium points (Dang and Honda, 2002, 2004). This is a purely feedforward950

control architecture.951

Both the equilibrium point models (Sanguineti et al., 1998) as well as the direct activation952

models (Dang and Honda, 2004) have been shown to fit articulatory data well using similar953

biomechanical models. Interestingly, results from both models suggest that motor commands954

to certain muscles (or muscle groups) will drive the speech articulators towards a similar955

location regardless of their initial position. This suggests that speech motor control may956

be simplified by the use of muscle synergies that will drive the system to a target spatial957

configuration without the need for complex inverse dynamics models that calculate the958

precise muscle activations needed for each individual movement.959
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One important thing to note is that, because they focus on the generation of muscle forces960

given some given motor commands, this class of models is generally complementary to and961

compatible with control models that output motor commands as articulatory positions, and962

ignore the generation of muscle activations (such as DIVA, TD, ACT, and FACTS). With963

some modifications, the output of these models could serve as the input to an equilibrium964

point model or the Dang & Honda model. In fact, equilibrium point control has been965

implemented within the DIVA architecture (Zandipour et al., 2004).966

IV. DISCUSSION967

The primary goal of the current paper has been to clearly lay out the architectures of a968

crucial component of existing speech motor control models: the control layer (see Figure 1),969

that attempts to produce accurate tracking of speech articulation kinematics given a motor970

plan. Common terminology and basic principles of motor control were used to describe each971

model, to understand the commonalities between these models, as well as how they differ.972

It was shown that these models can be cast as special cases of generalized feedforward (Fig973

4a), feedback (Fig 4b), and model predictive (Fig 4c) controllers. The models discussed974

here differ in which of these components are used (e.g., some are lacking either feedforward975

or feedback elements of control), and in the detailed implementation of these mechanisms.976

These differences are summarized in Table I. Speech production is, however, a complex977

process with many additional and important considerations, including higher-level motor978

planning, linguistic, communicative and even social considerations, as well as learning and979

developmental aspects, all of which contribute to the wide variety of speaking styles observed980
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DIVA TD SFC FACTS ACT GEPPETO

Feedback Pathway Y Y* Y Y Y Y

Feedforward Pathway N N N N Y Y

Internal Prediction/State Estimation Y N Y Y N N

Principal Reference Tourville and Guenther (2011) Saltzman and Munhall (1989) Houde and Nagarajan (2011) Ramanarayanan et al. (2016) Kröger et al. (2009) Perrier et al. (2005)

TABLE I. Summary of which aspects of motor control modeling are present in each model.

in real human speech. These aspects are beyond the scope of the present paper, but would981

make an interesting subject future reviews.982

There are clear differences among models in terms of how their final execution of speech983

motor control is influenced by feedback signals originating from the plant. ACT, for instance,984

incorporates no explicit feedback into its control mechanisms. SFC implements proportional985

control, meaning that the motor commands are linearly proportional to the feedback error.986

DIVA’s also implements proportional control which, for its hybrid architecture means that987

motor commands are linearly proportional to both the error (in the feedback pathway) and988

the reference (in the feedforward pathway) signals. The simplicity of these designs relative989

to common engineering approaches is notable. As mentioned above, and by way of example,990

engineering control systems often take information about the integral or derivative of the991

error signal into account in order to provide quicker convergence to the target and to deal992

with persistent errors, respectively. TD – as well as FACTS, by way of adopting key control993

elements from TD – provides slightly more complexity through a form of PD control, albeit994

not strictly in the traditional engineering sense of PD control.995

A related distinction between the models under consideration is how they function in the996

absence of feedback. TD, for instance, is solely a feedback architecture, and cannot function997
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in the absence of feedback signals. Similarly, GEPPETO would not be able to function in998

the absence of proprioceptive feedback about muscle length. Other models could continue999

to function without feedback. DIVA is a hybrid feedback/model predictive architecture that1000

could rely exclusively on its model predictive mechanisms to generate motor commands in1001

the absence of explicit feedback. With the presence of feedback signals, SFC and FACTS1002

can utilize that feedback to produce optimal or near-optimal state estimates (under certain1003

strong assumptions, such as linearity of the plant (Kalman et al., 1960)), but in the absence1004

of feedback can still rely on the internal state prediction component of their broader state1005

estimation process to continue functioning through model predictive control. ACT is a1006

purely feedforward architecture that can function as designed in the absence of sensory1007

feedback. However, this also means that it is not sensitive to sensory feedback, unlike the1008

human speech motor control system.1009

Among models that incorporate feedback, one of the most basic differences is whether1010

certain feedback signals are treated as idealized signals that are directly and instantaneously1011

observable, or whether they are treated as true sensory signals that may be potentially1012

noisy/delayed, subject to conditioning by internal models and that correspond with known1013

neurological signals. While it seems intuitively correct that any model of biological motor1014

control should focus on the latter, the former has been sometimes intentionally chosen1015

in specific aspects of the models, in the interest of focusing on other aspects of control.1016

TD provides only an idealized view of feedback concerning the positions and velocities of1017

articulators that does not model the sensory processes in any meaningful way. DIVA, TD1018

and FACTS also make simplifying assumptions about the somatosensory feedback signal,1019
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which is assumed to be more or less equivalent to the plant’s mobility variables. DIVA’s1020

auditory and somatosensory feedback are slightly less idealized in that they correspond1021

to known, independent neurological pathways and can incorporate delays associated with1022

sensory transduction and processing. SFC and FACTS begin with the assumption that1023

sensory feedback will be noisy and/or inaccurate, and use that assumption to motivate the1024

well-elaborated integration of sensory feedback with internal model predictions to provide1025

more accurate estimates of the state of the plant. GEPPETO provides perhaps the most1026

realistic implementation of somatosensory feedback given that the feedback in the model1027

(muscle length and change in muscle length) corresponds to well-known afferent signals1028

from muscle spindles. However, no current models seriously attempt to model the sensory1029

system itself – they take it as given that critical information (e.g., formants, articulatory1030

positions) can be extracted from the raw sensory input.1031

Most models are purely kinematic in how they approach control, in that motor commands1032

are stated in kinematic terms (i.e., as state configurations, and not as forces) and do not1033

account for dynamical considerations related to the effects of inertia, centrifugal and cen-1034

tripetal forces, and the effects of gravity. Control systems that are strictly linear, rigid and1035

slow-moving, highly damped, or that have specialized designs can sometimes operate purely1036

kinematically. It seems likely, however, given existing literature (e.g., Derrick et al. (2015);1037

Ostry et al. (1996)) that such considerations may be non-negligible for speech production1038

in the biological case. A kinematic approach can be, in the opinion of the authors, partially1039

attributed to models of the plant used in most speech motor control models, which are nearly1040

all kinematic in nature. It is worth noting that other plant models are attempting to provide1041
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enhanced biomechanics (Derrick et al., 2015; Gick et al., 2011; Lloyd et al., 2012) as well,1042

even if a full review of biomechanical vocal tract models is beyond the scope of the present1043

review. GEPPETO represents a notable effort to move beyond kinematic treatment of con-1044

trol, and of the plant, by incorporating a mobility space that represents muscle lengths, as1045

well as motor commands that represent muscle activations that are used to generate muscle1046

forces in a relatively realistic biomechanical model of the tongue.1047

All architectures rely on a motor plan of some kind – whether an explicitly planned1048

trajectory or a gestural score – that is formed at a higher level of motor processing, and1049

which is issued to the controller in order to be carried out. SFC is a partial exception to this1050

general statement in that, as mentioned above, that model does not explicitly mention the1051

incorporation of a plan, even though the generalized structure of its controller would be able1052

to incorporate a planning module if more detailed specification required it (a specification1053

which FACTS has subsequently elaborated upon). Models of speech motor planning have1054

been discussed and elaborated upon in the literature (Bohland et al., 2010; Byrd et al.,1055

2009; Civier et al., 2013; Saltzman et al., 2008), and display a surprising amount of variety.1056

Although the planning level is beyond the scope of this paper, it is worth noting the variety1057

of planning mechanisms that have been proposed in order to help narrow some of the longest-1058

standing debates concerning speech motor control. In particular, drawing a clear distinction1059

between control architectures and planning mechanisms, as this review has attempted to do,1060

makes it apparent that much of the debate over the quality of competing models of speech1061

production would appear to be concentrated at the planning level, and not at the level of1062

control. For instance, issues surrounding the nature of production goals (e.g., acoustic vs.1063
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articulatory) and the composition of those goals into utterance-size units would primarily1064

be a concern of the planning level. Any role for muscle synergies (Ramanarayanan et al.,1065

2014) and motor primitives would be most naturally incorporated into the planning level,1066

and not the level discussed in this review. The nature of speech production goals has been1067

the subject of particularly strong debate for decades, and is reflected in the nature of the1068

feedback and reference signals in the models, which may be auditory and/or somatosensory,1069

as in DIVA and SFC, or articulatory, as in Task Dynamics. Interestingly, the nature of the1070

feedback signals would appear to have little bearing on the specific architectural choices of1071

the models – the architectures being general enough to handle a range of signals without1072

substantial changes to their configuration.1073

The parameters that determine the overall characteristics of control are time-invariant1074

in most current models, thereby limiting the models in their ability to capture specific1075

aspects of behavior that require those parameters to change over time. Models may struggle,1076

for instance, to account for interspeaker differences, or long-term changes in speech motor1077

control that occur during development and aging, that could be modeled by adjustments1078

to control parameters. Controllers that adapt their parameters over time are the subject of1079

adaptive control (Åström and Wittenmark, 2013). This well-studied branch of control theory1080

may provide a foundation for models of speech production to incorporate such parameter1081

adjustments as a way to represent the mechanisms of differences or changes mentioned above.1082

A full treatment of adaptive control is outside the defined scope of the present paper, as1083

are issues surrounding speech development. Nonetheless, it should be noted that inroads1084

into adaptive control have been made by some of the models discussed here. ACT allows1085
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for motor planning to be adapted based on sensory feedback errors. DIVA, too, adapts1086

planned trajectories based on the feedback controller output. This adaptation is of primary1087

importance during development, but can lead to changes at any time.1088

Shorter time-scale cognitive and physiological factors – for instance, due to attention,1089

fatigue and motivation – as well as stochastic variability (Munhall et al., 1994; Saltzman1090

et al., 1995; Tilsen, 2017) may also most naturally be handled through adjustments to1091

control-level parameters. Efforts have been made to model learning and adaptation at1092

the planning level (e.g., GODIVA). However, the value of the proportional gain in DIVA’s1093

controller, as well as the weights assigned to the feedback and model predictive pathways1094

in their contribution to the motor command, are assumed to be fixed in fully adult speech.1095

Similarly, the damping and stiffness parameters of the controller in TD are fixed in value. A1096

notable counterexample to this generalization comes from Kalman filter-based architectures,1097

such as SFC and FACTS, which change the weight assigned to sensory feedback and internal1098

model predictions, toward combining them into a single state estimate, based on the degree of1099

statistical reliability of those two pathways. Such adaptation may be useful in modeling the1100

impact of sensory feedback impairment on speech motor control. Another notable example1101

of this type is DIVA’s GO signal, which can be adjusted by higher-level processes in order1102

to control the initiation of movement and overall speaking rate.1103

A clear understanding of how the various models are structured can aid in clearly defining1104

theoretical questions of interest. For instance, the many similarities of the models discussed1105

in this review naturally raise questions about what is gained by allowing the remaining1106

model dissimilarities to persist, and whether the models can converge to a single, unified1107

60

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/197285doi: bioRxiv preprint 

https://doi.org/10.1101/197285
http://creativecommons.org/licenses/by-nc-nd/4.0/


JASA/Speech Motor Control Models

model of the control layer in speech motor control. There is no mathematical reason why the1108

feedforward/feedback pathways embodied by DIVA couldn’t be combined with the forward1109

dynamic control of TD, as well as the feedback/internal model-based state estimation in1110

SFC. Indeed, FACTS, as a combination of complementary elements of TD and SFC, has1111

already taken a step toward beginning these potentially useful combinations. Whether1112

such a unification is sensible from a theoretical point of view, and precisely what form1113

that unification might take, can be stated very precisely in mathematical terms using the1114

model architectures. In general, models can help in defining and circumscribing the space1115

of possible architectures and solutions to a specified biological control problem (Schaal and1116

Schweighofer, 2005).1117

A related, empirical question is whether a model unification is useful for explaining ob-1118

servations from human speech data. Among the many benefits of developing formal models1119

of speech motor control is that models can be used to make specific, quantitative predictions1120

about human speech behavior that are testable in light of data. The predictive capabilities1121

of formal models can also guide the design of new experiments to test specific aspects of1122

theory and modeling, inspired by the behavioral predictions of the model, and perhaps pi-1123

loted in silico. Empirical questions regarding the models need not be limited to observable1124

behaviors, either. Models can also facilitate clearer connections to be drawn between specific1125

model mechanisms and their observed neurological counterparts, either through structural or1126

functional neuro-imaging. The connection between engineering and biological mechanisms1127

has been well developed in several domains of motor control, including speech motor control1128
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(Guenther et al., 1998) and oculomotor control (Lisberger, 1988; Robinson, 1981; Shibata1129

and Schaal, 2001).1130

The utility of speech motor control models additionally extends beyonds clarifying and1131

formalizing our understanding of speech motor control itself. Models can also be useful for1132

practical applications in speech synthesis. Control models, coupled with faithful mechanical1133

models of the vocal tract, hold promise for applications in flexible and expressive speech1134

synthesis. This kind of synthesis is typically called articulatory synthesis. Shadle and1135

Damper (2002) outlined several complementary advantages that articulatory synthesizers1136

should have over now widely adopted data-driven approaches like concatenative synthesis1137

(Black, 2002) and Hidden Markov Model-based synthesis (Schroeter, 2006). Among these1138

advantages are (a) the promise of producing speech associated with extraordinary speakers1139

(e.g., an exceptional opera singer) or hypothetical speakers, from whom data can be difficult1140

or impossible to collect, (b) the promise of changing the quality or type of speaker without1141

having to perform additional statistical training of the synthesizer, (c) the promise of having1142

meaningful parameters that can be helpful in fixing or adjusting the synthesizer output, in1143

addition to providing insights into human speech production.1144

The models discussed here, in addition to being formal and mechanistic, are also causal,1145

by intention of their development and by virtue of their historical context. Causal mod-1146

els can, as such, serve to encapsulate current theoretical understanding of the mechanisms1147

underlying speech motor control into a compact and rigorous form. Analysis of speech be-1148

havior, even in response to challenging or contrived situations, may not always be sufficient1149

for inferring the causal mechanisms of those behaviors. An individual’s sensorimotor behav-1150
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ior is, in general, the result of a complex mixture of stable and mature control mechanisms,1151

learned and adaptive strategies, and possible individual-specific speaking strategies and im-1152

pairments. Therefore, inferring the underlying mechanisms that contribute to observed1153

behaviors is exceedingly difficult without an underlying framework. Neurologically relevant,1154

mechanistic models of sensorimotor control provide a neurocomputational substrate which1155

can aid in establishing causal relationships among the many component pathways and model1156

parameters. By modeling and resynthesizing human behaviors, mechanistic models can infer1157

the mechanisms underlying observed responses, including both impairment mechanisms and1158

neural adaptation to those impairments. This process is termed system identification in an1159

engineering context, and recent advances in methods for system identification have facili-1160

tated application to biological multivariate, closed-loop control systems (Engelhart et al.,1161

2016) and human sensorimotor control systems (Boonstra et al., 2013; Engelhart et al.,1162

2015). Inroads have also recently been made in applying similar approaches in the domain1163

of typical (Mitra et al., 2010) and pathological (Ciccarelli et al., 2016) speech motor control.1164

V. CONCLUSION1165

In scanning the published literature on formal models of speech motor control, it is1166

perhaps understandable to be left with the impression that a dizzying variety of qualitatively1167

distinct models have been presented. Among all the models, DIVA and TD stand out as1168

having a relatively long history of representation in the literature, and the efforts to develop1169

them have remained almost entirely separate. SFC and FACTS make clear and related1170

modeling contributions that enable the expressive power to explain specific empirical results1171
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in speech production. ACT is inspired by both DIVA and TD, but has a structure all1172

its own. GEPPETO is the result of yet another distinct effort at model development; it1173

is concerned with biomechanical considerations in the plant. Clearly, there is a healthy1174

amount of variety in the various model architectures, especially in their specific use and1175

method of combining the three essential functional components: feedforward, feedback and1176

model predictive. However, it is nonetheless possible to view these models as belonging to a1177

single, coherent framework. The present paper has attempted to cut through the difficulties1178

associated with varying presentation and terminology, and to directly compare the models1179

against the backdrop of such a framework. By presenting a clear comparison of the points1180

of agreement and disagreement among the various models, as well as establishing areas1181

where all models can be improved, this work can provide a foundation for future model1182

development to improve our understanding of the speech motor system.1183

RESOURCES1184

Several of the models discussed in this paper (DIVA, TD, CASY and the Maeda model)1185

have been implemented as software tools, and are available for download online. Their1186

addresses on the World Wide Web are included in the references below.1187
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Appendix A1194

To aid the speech motor control practitioner, this Appendix consolidates the key algo-1195

rithmic steps of three control architectures: Task Dynamics (TD), Directions into Velocities1196

of Articulators (DIVA), and State Feedback Control (SFC). Bold lower case letters represent1197

vectors, and bold upper case letters represent matrices. A single overhead dot represents a1198

time derivative, and a double dot represents a second order time derivative.1199

1. Directions Into Velocities of Articulators (DIVA)1200

The Directions Into Velocities of Articulators (DIVA) model is a control architecture1201

developed by (Guenther et al., 2006) that uses a hybrid of feedback control and model1202

predictive control. The model has been realized in software, and is available online (Nieto-1203

Castanon, 2016).1204

a. Algorithm1205

In the DIVA model predictive controller, the mobility space, u, and state of the plant, x,1206

are identical, so u = x. Table II describes the variables in DIVA.1207

1. Compute a model-predictive control signal (termed feedforward in the published liter-1208

ature on DIVA).1209
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(a) Compute an error using the reference target in mobility space and the current1210

predicted state of the plant.1211

eu = ru (t)− ũ (1)

(b) Compute a feedforward control update by scaling the error signal.1212

u̇mp = gmpGeu (2)

2. Compute a feedback-driven control signal using the reference target and the sensed

plant output to compute an error in task space. Then, use a pseudoinverse Jacobian

to convert the error from task space to mobility space. Do this in both the auditory

and somatosensory feedback pathways.

eaud = raud (t)− yaud (3)

u̇aud = gaudJ(u)−1eaud (4)

esomat = rsomat (t)− ysomat (5)

u̇somat = gsomatJ(u)−1esomat (6)

3. Combine the feedforward and feedback control updates to determine the new plant

state.

u =

∫
(u̇mp + u̇aud + u̇somat) dt (7)

ũ = u (8)

66

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/197285doi: bioRxiv preprint 

https://doi.org/10.1101/197285
http://creativecommons.org/licenses/by-nc-nd/4.0/


JASA/Speech Motor Control Models

TABLE II. DIVA variables.

Variable Description

eu Error between reference target in mobility space and last command issued to the plant

eaud, esomat Error between the reference target in task space and sensed task space output

ru (t) Reference target in mobility space. Defined at each point in time as a region with a center and

bounds of acceptable performance.

raud (t), rsomat (t) Reference target in task space. Defined at each point in time as a region with a center and

bounds of acceptable performance.

u̇aud u̇somat Change in mobility space position based on error in task space. A task space velocity update.

u̇ff Change in mobility space position based on error in mobility space. A task space velocity

update.

u Mobility space position. Computed by integrating the feedforward and feedback mobility space

velocities.

yaud, ysomat Task space output

gff Gain applied to feedforward velocity update

gaud, gsomat Gain applied to feedback velocity update

G Gain with a value between 0 and 1 that constrains velocities in mobility space from 0 to their

maximum.

J(u)−1 Pseudoinverse of the Jacobian. The pseudoinverse converts errors in task space to changes in

velocity in mobility space. The pseudoinverse can be computed as the Moore-Penrose

pseudoinverse.

2. Task Dynamics1213

Task Dynamics is a feedback control architecture developed by (Saltzman and Kelso,1214

1987; Saltzman and Munhall, 1989). The architecture has been realized in software in the1215

Task Dynamics Application (TADA) (Nam et al., 2006) and available online (Nam, 2012).1216
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a. Algorithm1217

The Task Dynamics algorithm is described below, and all variables are defined in Table1218

III.1219

1. Compute error in task space. In Task Dynamics, the task space, y, and the state, x,1220

are identical, so y = x, and the error is1221

ex = rx (α, t)− x. (9)

2. Use a dynamical system description of the controller, a second order ordinary differ-1222

ential equation, to compute the new acceleration state of the plant in task space as1223

1224

ẍ = −M−1Bẋ−M−1Kex. (10)

3. Use a pseudoinverse Jacobian to convert the task space acceleration to mobility space1225

acceleration by1226

ü = J−1(u)
[
ẍ− J̇ (u, u̇) (u)

]
. (11)

4. Integrate mobility space acceleration to get velocity and position in mobility space, so

u̇ =

∫
üdt (12)

u =

∫∫
üdt (13)

3. State Feedback Control1227

The State Feedback Control is a hybrid feedback/model-predictive control architecture1228

proposed by (Houde and Nagarajan, 2011). Note that the notation used here follows the1229
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TABLE III. Task dynamic variables.

Variable Description

x, ẋ, ẍ Task space position, velocity, and acceleration, m by 1 vectors

u, u̇, ü Mobility space position, velocity, and acceleration, n by 1 vectors

rx (α) Reference target in task space, m by 1 vector

M Inertial coefficients, m by m diagonal matrix

B Damping coefficients, m by m diagonal matrix

J Jacobian transformation from mobility space to task space. An m by

n matrix with elements Jij = ∂xi
∂uj

J−1 The (pseudo) inverse of the Jacobian. The Moore-Penrose

pseudoinverse may be used, or other constraints can be applied to

allow inversion of a non-square Jacobian.

J̇ The time derivative of each element of the Jacobian.

originally-published notation, and differs slightly from the simplified notation used in the1230

main body of the present paper.1231

a. Algorithm1232

1. Create a control update using the current estimate of the plant state by1233

ut−1 = Ut (x̂t−1) . (14)

2. Create the new, true plant state using the true plant dynamics, Gdyn, by1234

xt = Gdyn (ut−1,xt−1) . (15)
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3. Create a new, predicted estimate of the plant state using the previous estimate of1235

the plant state, x̂t−1, the previous control signal, ut−1, and an estimate of the plant1236

dynamics, Ĝdyn, by1237

x̃t|t−1 = Ĝdyn (ut−1, x̂t−1) . (16)

x1238

4. Generate the subsequent plant output using the true plant transformation from plant1239

state to plant output by1240

yt = Gout (xt) . (17)

5. Create a correction term to the plant state estimate using the sensed feedback from

the true plant by

yt−N = Gout (xt−N) (18)

ỹt−N̂ = Ĝout

(
ut−1, x̂(t|t−1)−N̂

)
(19)

eyt−N̂ = yt−N − ỹt−N̂ (20)

ex̃t = Kt

(
eyt−N̂

)
. (21)

6. Combine the initial plant state estimate and the correction term to create the current1241

estimate of the plant state by1242

x̂t = x̃t|t−1 + ex̃t . (22)
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TABLE IV. State feedback control variables.

Variable Description

xt True plant state at time t.

x̂t Estimate of the plant state at time t using both the sensed plant output and the predicted plant state.

eyt−N Error between the sensed plant output and the predicted plant output.

ex̃t Error update applied to the predicted estimate of the plant state to create x̂t

ỹt−N The predicted plant output, derived from estimates of the plant state, estimates of the feedback delay,

and estimate of the plant transform from state to output.

Kt

(
eyt−N̂

)
Transformation (e.g. a Kalman gain) applied to the error between the predicted and sensed plant

output. The transformation allows the actual plant output to influence the estimate of the plant state.

x̃(t|t−1)−N̂ Predicted estimate of the plant state using only the previous estimate of the plant state, the control

signal, and the estimated plant dynamics.

Gdyn, Ĝdyn True and estimated plant dynamics.

Gout, Ĝout True and estimated transformation from plant state to plant output.

yt True plant output.

ut Control update to the plant.

x̂(t|t−1) Estimate of the plant state based on the control update to the plant, the estimate of the plant

dynamics, and the previous estimate of the plant state.

Ut (xt) Controller that issues a control update based on the current estimated state of the plant. While a

reference target is not shown in Houde (2011), presumably the reference is internal to Ut.

N , N̂ Actual delay and estimated delay between the plant output and the sensing of the plant output.

Appendix B1243

This appendix presents two articulatory speech synthesizers commonly referenced in the1244

literature: the Configurable Articulatory Synthesizer (CASY), and the Maeda model. Bold1245

lower case letters represent vectors, and bold upper case letters represent matrices. A single1246
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overhead dot represents a time derivative, and a double dot represents a second order time1247

derivative.1248

4. Configurable Articulatory Synthesizer1249

The Configurable Articulatory Synthesizer (CASY) is a geometric model of the vocal tract1250

based on the work of Mermelstein (1973) and developed by Rubin et al. (1996) and Iskarous1251

et al. (2003). The governing equations are presented below, taken from Lammert (2013).1252

The “q” variables in Lammert et al. (2013), that represent the articulators in mobility space,1253

have been renamed to “u” in this paper for consistency of notation (see Tables V and VI1254

for details about the variables/constants).1255
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xPRO = ulx (23)

xLA = lut sin (aut) + llt cos (uja) + uuy − uly (24)

a = ucl sin (uja + uca) (25)

b = −ucl cos (uja + uca) (26)

xTBCL = acos

 a− ox√
(a− ox)2 + (b− oy)2

 (27)

xTBCD = rts −
(√

(a− ox)2 + (b− oy)2 + rtb

)
(28)

c = uja + uta + stb (ucl − ltb) (29)

d = a+ rtb sin (uja + atc) + utl sin (c) (30)

e = b− rtb cos (uja + atc)− utl cos (c) (31)

xTTCL = acos

 d− ox√
(d− ox)2 + (e− oy)2

 (32)

xTTCD = rtb −
√

(d− ox)2 + (e− oy)2 (33)

5. Maeda Articulatory Synthesizer1256

The Maeda articulatory speech synthesizer is a variable cross-sectional area, tube model1257

of the vocal tract. Resonances of the tube can be computed, and these resonances are the1258

formants. The formants can then be used to shape a vocal source (voiced or unvoiced) to1259

create speech. A MATLAB instantiation of the Maeda synthesizer was created by Ghosh1260

and available for download (Nieto-Castano, 2017).1261
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TABLE V. CASY variables.

Variable Description

x Task space variable

u Mobility space variable

LX Lip protrusion

UY Upper lip vertical displacement

UT Upper teeth

LY Lower lip vertical displacement

JA Jaw angle

CA Tongue body angle

CL Tongue body length

TL Tongue tip length

TA Tongue tip angle

LA Lip aperture

PRO Lip protrusion

TBCD Tongue body constriction degree

TBCL Tongue body constriction location

TTCD Tongue tip constriction degree

TTCL Tongue tip constriction location

Ciccarelli (Ciccarelli, 2017) created a polynomial approximation to the vocal tract compo-1262

nent to allow fast formant computation and fast, tractable computation of the pseudoinverse1263

of the Jacobian. The polynomial approximation was determined by running the Ghosh im-1264

plementation of the Maeda model across a set of parameters, uniformly sampled from the1265

mobility space of the model, to create a lookup table of parameters and formant values.1266
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TABLE VI. CASY constants.

Constant Value

lut 1.1438

aut -0.1888

llt 1.1286

ox 0.7339

oy -0.4562

rts 0.4

rtb 0.02

atc 1.7279

ltb 0.8482

stb 4.48

Formant points outside the standard vowel quadrilateral as determined by visual inspection1267

were excluded. The remaining pairs of articulator points and formants were then fit using1268

a least squares polynomial approximation. The order of the polynomial was a compromise1269

between the fit to the data and the complexity of the polynomial. It was found that a sec-1270

ond order polynomial achieved a reasonable balance between these two requirements. While1271

the mapping from articulators to formants is preserved to within a certain error, it has not1272

been evaluated whether the relationship between articulators encoded by the polynomial1273

fundamental alters the trajectories of articulators in previous implementations of the Maeda1274

model.1275
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1In the speech motor control literature, the term ‘articulatory space’ is often used instead of ‘mobility space’.1276

The latter term is adopted from the robotics literature (Sciavicco et al., 2012) here to provide a neutral1277

terminology for referring specifically to the configuration of the plant, whereas terminology used in the1278

literature often leads to confusion over whether the term ‘articulatory’ refers to low-level descriptions of1279

the plant or high-level tasks spaces defined in articulatory terms.1280

2For this example, the simplifying assumption is made that the feedback signal is in task space, i.e. yx1281

3optimal here means closest to the true state of the plant, where “closest” means having the smallest mean1282

squared error1283

4The description of SFC presented here uses a different notation than in Houde and Nagarajan (2011),1284

simplified for clarity of presentation. For a more complete mathematical description, see Appendix A.1285
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