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In eukaryotic cells, transcription factors (TFs) are thought to
act in a combinatorial way, by competing and collaborating
to regulate common target genes. However, several ques-
tions remain regarding the conservation of these combina-
tions among different gene classes, regulatory regions and
cell types. We propose a new approach named TFcoop to
infer the TF combinations involved in the binding of a tar-
get TF in a particular cell type. TFcoop aims to predict the
binding sites of the target TF upon the binding affinity of all
identified cooperating TFs. The set of cooperating TFs and
model parameters are learned from ChIP-seq data of the
target TF.We used TFcoop to investigate the TF combina-
tions involved in the binding of 106 TFs on 41 cell types and
in four regulatory regions: promoters of mRNAs, lncRNAs
and pri-miRNAs, and enhancers. We first assess that TFcoop
is accurate and outperforms simple PWMmethods for pre-
dicting TF binding sites. Next, analysis of the learnedmodels
sheds light on important properties of TF combinations in
different promoter classes and in enhancers. First, we show
that combinations governing TF binding on enhancers are
more cell-type specific than that governing binding in pro-
moters. Second, for a given TF and cell type, we observe that
TF combinations are different between promoters and en-

∗Equally contributing authors.

1



2

hancers, but similar for promoters of mRNAs, lncRNAs and
pri-miRNAs. Analysis of the TFs cooperating with the dif-
ferent targets show over-representation of pioneer TFs and
a clear preference for TFs with binding motif composition
similar to that of the target. Lastly, ourmodels accurately dis-
tinguish promoters associatedwith specific biological pro-
cesses.

| INTRODUCTION

Transcription factors (TFs) are regulatory proteins that bind DNA to activate or repress target gene transcription.
TFs play a central role in controlling biological processes, and are often mis-regulated in diseases [1]. Technological
developments over the last decade have allowed the characterization of binding preferences for many transcription
factors both in vitro [2, 3] and in vivo [4]. The current view is that TF combinations underlie the specificity of eukaryotic
gene expression regulation [5], with several TFs competing and collaborating to regulate common target genes. As
reviewed inMorgunova et al. [6] and Reiter et al. [7], multiple mechanisms can lead to TF cooperation. In its simplest
form, cooperation involves direct TF-TF interactions before anyDNA binding. But cooperation can also bemediated
through DNA, either with DNA providing additional stability to a TF-TF interaction [8], or even without any direct
protein-protein interaction. Different mechanisms are possible for the later. For example, the binding of one TFmay
alter the DNA shape in a way that increases the binding affinity of another TF [6]. Another system is the pioneer/settler
hierarchy described in Sherwood et al. [9], with settler TFs binding DNA only if adequate pioneer TFs have already
bound to open the chromatin. Lastly, other authors have hypothesized a non-hierarchical cooperative system, with
multiple concomitant TF bindings mediated by nucleosomes [10]. This is related to the “billboard” system proposed for
enhancers [11]. On the other hand, TFs that belong to the same protein family usually share identical or similar motifs
andmay compete for sites that match bothmotifs [12].

Several papers have studied the combinatorics of TFs from a statistical point of view. Most works aim to identify
co-occurring TF pairs, i.e. pair of TFs showing binding sites that are in closest proximity than one would expect by
chance. These analyses have been done either on the basis of TF binding sites (TFBSs) predicted in silico [13, 14]
or with TFBSs obtained from ChIP-seq experiments [15, 16]. Depending on the approach, different difficulties may
arise. In silico predicted TFBSs are known to include large amount of false positives (see below), which may bias the
analyses and impede the discovery of co-occurring TFBSs. On the other hand, studies based on ChIP-seq data require
as many ChIP-seq data as the number of studied TFs, and hence are intrinsically limited by the availability of these
data. Moreover, with hundreds (or even thousands) of sequences, a small co-occurrence tendencymay be statistically
significant, even if the effect is actually very weak and would not be biologically relevant. A fewworks have studied
TF combinations in amore global way, above the TF pair level. For example, Teng et al. [17] have applied the “frequent
itemset” methodology to identify sets of co-occurring TFBSs on the basis of ChIP-seq data. However, many questions
remain on themolecular determinants orchestrating TF binding and combinations [18]. Notably, with the expanding
coding capacity of the human genome [19, 20], it remains to determinewhether the expression of all gene classes, in
particular codingmRNAs, long non-coding(lnc)RNAs andmicro(mi)RNAs, is controlled by similar TF combinations in a
given cell type. Likewise, TFs control gene expression through the binding of promoters and enhancers, which harbor
similar but also specific genomic features [21]. It is then not clear whether the binding preferences of a given TF are
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similar in enhancers and promoters.

Here, we analyze global TF combinations from a different perspective. Rather than identifying TF pairs/sets that co-
occurmore frequently than expected by chance, we aim to identify TF combinations that can be predictive of the binding
of a target TF.More formally, given a class of regulatory sequences (for example 500bp around the TSSs of the coding
genes) and a ChIP-seq experiment targeting a specific TF in a specific cell type, we aim to identify the combinations of
TFs whose predicted TFBSs can be used for predicting which sequences are effectively bound by the target TF in this
cell type. Hence, rather than using purely statistical co-occurrence analysis, we study TF combinations in the framework
of a TFBS prediction problem. The approach has several advantages. First, a single ChIP-seq experiment is theoretically
sufficient to identify all TFs cooperating/competing with the target TF in the target cell type. Next, if a TF is selected
in the combination, this means that its predicted binding sites are indicative of the presence of the target TF, which
limit the number of false positives and the problems of spurious statistical significances. Finally, the approach takes into
account all TFs and can therefore identify all possible TF combinations not just TF pairs.

TFBSs are traditionally modeledwith position weightmatrices (PWMs) [22]. Several databases such as JASPAR
[23], HOCOMOCO [24], and Transfac [25], propose position frequencymatrices (PFM, which can be transformed in
PWMs) for hundred of TFs. These PWMs can be used to scan sequences and identify TFBSs using tools such as FIMO
[26] orMOODS [27]. However, while a PWMusually identifies thousands of potential binding sites for a given TF in the
genome [28], ChIP-seq analyses have revealed that only a fraction of those sites are effectively bound [29]. Theremay
be different reasons for this discrepancy between predictions and experiments. First, PWMs implicitly assume that
the positions within a TFBS independently contribute to binding affinity. Several approaches have thus been proposed
to account for positional dependencies within the TFBS (see for example [30, 31]). Other studies have focused on the
TFBS genomic environment, revealing that TFs have a preferential nucleotide content in the flanking positions of their
core binding sites [32, 33]. Beyond the primary nucleotide sequence, structural constraints may also affect TF binding.
For example, it is thought that TFs use DNA shape features to distinguish binding sites with similar DNA sequences
[34, 35]. Some attempts have thus beenmade to integrate DNA shapes information with PWMs [36, 37]. Other studies
have investigated the link between TF binding and epigenetic marks, showing that many TFs bind regions associated
with specific histone marks [38]. Similarly, ChIP-seq experiments also revealed that most TFBSs fall within highly
accessible (i.e., nucleosome-depleted) DNA regions [39]. Consequently, several studies have proposed to supplement
PWM information with DNA accessibility data to identify the active TFBSs in a given cell type [40, 41, 42]. However, it
remains unclear whether these chromatin states are a cause or a consequence of TF binding [43]. Hence, while these
approachesmay be very informative for predicting TF binding, they should be usedwith caution if the goal is also to
identify the DNA determinants of the binding. Besides, these approaches do not take into account TF combinations,
which, as already discussed, may be important determinants of TF binding. For this reason, studying TF combinations
through a TFBS prediction problem appears as an appealing approach.

It is important to note that beyond approaches based on known PWMs, several ab initiomethods have also been
proposed recently for predicting TFBSs from raw data sequences. Notably, deep learning approaches based on neural
networks have proved to give higher prediction accuracy than simple PWM-basedmethods [44, 45]. However, ab initio
methods, and particularly neural network approaches, are difficult to interpret (the inherent trade-off between accuracy
and interpretability). Although someattempts havebeenmade topost-analyze learnedneural networks (see for example



4

[46]), studying TF combinations andDNA determinants of TF binding from thesemodels is not straightforward.
Hence, we devised a simple non ab initio strategy names TFcoop that predicts if a target TF binds a sequence of

interest using two kinds of variables: i) the binding affinity (i.e. PWM affinity score) of the target TF as well as any
other TF identified as cooperating with the target TF; and ii) the nucleotide composition of the sequence. TFcoop is
based on a logistic model. The set of cooperating TFs and themodel parameters are learned fromChIP-seq data of the
target TF via LASSO penalization [47]. Learning can be done using amoderate amount of data, which allows us to learn
specific models for different types of regulatory sequences. Using ChIP-seq data from the ENCODE project, we applied
TFcoop to investigate the TF combinations involved in the binding of 106 different TFs on 41 different cell types and
in four different regulatory regions: promoters of mRNAs, lncRNAs andmiRNAs, and enhancers [48, 19, 49, 20]. We
first showed that the approach outperforms simple PWMmethods and has surprisingly good accuracy, close to that of
ab initiomethods like DeepSea [44]. We next assessedwith independent experimental data that the cooperative TFs
predicted by TFcoop actually bind the same regulatory sequences as the target TF. Then, we used TFcoop to analyze TF
combinations in different cell types and regulatory regions. First, we show that TF combinations governing the binding
of the target TF on promoters are similar for different cell-types but distinct in the case of enhancer binding. Second, for
a given TF, we observe that TF combinations are different between promoters and enhancers, but similar for promoters
of all gene classes (mRNAs, lncRNAs, andmiRNAs). Analysis of the composition of TFs cooperating with the different
targets show over-representation of pioneer TFs [9], especially in promoters, as well as binding sites with nucleotide
composition similar to that of the target TF.We also observed that cooperating TFs are enriched for TFs whose binding
is weakened bymethylation [50]. Lastly, our models can accurately distinguish promoters into classes associated with
specific biological processes.

| RESULTS

| Computational approach

Givena target TF, theTFcoopmethod identifies theTFBS combination that is indicative of theTFpresence in a regulatory
region. We first considered the promoter region of all mRNAs (defined as the 1000bp centered around gene start).
TFcoop is based on a logisticmodel that predicts the presence of the target TF in a particular promoter using two kinds of
variables: PWMaffinity scores and (di)nucleotide frequencies (seeMaterial andmethods). For each promoter sequence,
we computed the affinity score of the 638 JASPAR PWMs (redundant vertebrate collection), and the frequency of every
mono- and dinucleotide in the promoter. These variableswere then used to train a logisticmodel that aims to predict the
outcome of a particular ChIP-seq experiment in mRNA promoters. Namely, every promoter sequence with a ChIP-seq
peak is considered as a positive example, while the other sequences are considered as negative examples (see below). In
the experiments below, we used 409 ChIP-seq datasets from ENCODE and different models. Eachmodel targets one TF
and one cell type. Given a ChIP-seq experiment, the learning process involves selecting the PWMs and (di)nucleotides
that can help discriminate between positive and negative sequences, and estimate themodel parameters that minimize
prediction error. Note that the learning algorithm can select any predictive variable including the PWMof the target TF.
SeeMaterial andmethods for more details on the data and logistic model.
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We used two different procedures for selecting the positive and negative examples. Each procedure actually
defines a different prediction problem. In the first case, we kept all positive sequences (i.e. promoters overlapping a
ChIP-seq peak in the considered ChIP-seq experiment), and randomly selected the same number of negative sequences
among all sequences that do not overlap a ChIP-seq peak. In the second case, we used an additional dataset that
measures gene expression in the same cell type as the ChIP-seq data. We then selected all positive sequences with
non zero expression level and randomly selected the same number of negative sequences among all sequences that
do not overlap a ChIP-seq peak but that have a similar expression level as the selected positive sequences. Hence, in
this case (hereafter called the expression-controlled case), we learn a model that predicts the binding of a target TF
in a promoter knowing that the corresponding gene is expressed. On the contrary, in the first case we learn amodel
that predicts the bindingwithout knowledge about gene expression. The purpose of the expression-controlled case
is to decipher TF combinations independently of the effect of epigenetic modifications that are linked to expression
(e.g. DNAmethylation and various histonemarks). As all selected sequences are associated with expressed genes, the
positives and negatives sequences are likely to be associated with the same epigenetic marks.

| TFcoop assessment

We ran TFcoop on the 409 ChIP-seq datasets and for the two prediction problems. The accuracy of eachmodel was
assessed by cross-validation bymeasuring the area under the Receiver Operating Curve (ROC). For comparison, we
also measured the accuracy of the classical approach that discriminates between positive and negative sequences using
only the affinity score of the PWMassociatedwith the target TF. In addition, we estimated the accuracy of the TRAP
method, which uses a biophysically inspiredmodel to compute PWMaffinity [51] and that of the approach proposed in
[36], which integrates DNA shape information with PWMs. As shown in Figure 1 and Supp. Figures 1 and 2, TFcoop
outperforms these PWM-based approaches onmany TFs. Note that these comparisons are rather unfavourable for
ourmethod because they integrate all 69 CTCF experiments, while TFcoop has similar accuracy than classical PWM
methods on this TF (see Supp. Figures 2). Note also that we ran TFcoopwith tri- and quadri-nucleotide frequencies in
addition to di-nucleotide frequencies. Although a consistent AUC improvement was observed, the increase was very
slight most of the time (Supp. Figure 3). Lastly, we compared TFcoop accuracy to that of the deep learning approach
DeepSea [44] and observed very close results (see Figure 1(b)). Hence, TFcoop performances appear to be in the range
of that of classical ab initiomethods.

Next, we sought to assess the TF cooperations inferred by the models. If true, they should be apparent in the
ChIP-seq experiments. Namely, if the PWMof TF B is among the selected variables for predicting the presence of TF
A, then we should observe many common targets among the ChIP-seq experiments of TFs A and B. To test this, we
first randomly selected onemodel for each different TF, and restricted our analyses to TFs associatedwith ENCODE
ChIP-seq experiments. Then, for each model A, we measured the Jaccard index between promoters bound by TF A
and promoters bound by a TF B whose PWM has been selected in model A (cases B = A were not considered), and
we compared these scores to the same scores computed on TFs whose PWMs have not been selected in model A. A
t-test score attests that Jaccard indexes are larger for selected TFs than for non-selected TFs (p-value < 1.e−16 and
Figure 1(c)), and hence that the inferred TF cooperations are supported by experimental data.

Finally, we sought to take advantage of the relative redundancy of target TFs in the set of 409ChIP-seq experiments
to investigate the specificity of the learned models. Namely, we compared pairs of models learned from ChIP-seq
experiments targeting (i) the same TF in the same cell-type, (ii) the same TF in different cell-types, (iii) different TFs in
the same cell-type, and (iv) different TFs in different cell-types. In these analyses, we used themodel learned on one
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F IGURE 1 Accuracy and specificity onmRNA promoters. (a) Violin plots of the area under the ROC curves obtained
in the 409 ChIP-seq. Best hit (red), TRAP (blue), DNAshape (green), TFcoopwith no expression control (purple), and
TFcoopwith expression control (orange). ROC curves for Best hit, TRAP andDNAshapewere computed in the non
expression-controlled case. (b) Comparison of AUC achieved by TFcoop andDeepSea approach [44]. Comparison was
done on 214 ChIP-seq experiments for which the DeepSea server provides predictions. (c) Intersection between pairs
of ChIP-seq experiments associated with TFs identified as cooperating in promoters. These violin plots report the
distribution of Jaccard indexes computed between different pairs of Chip-seq experiments. Left: for each TF A, we
measured the Jaccard index between promoters bound by A and promoters bound by a TF Bwhose PWMhas been
selected in the TFcoopmodel learned for A (cases B = Awere not considered). Right: for each TF A, wemeasured the
Jaccard index between promoters bound by A and promoters bound by TFs whose PWMs have not been selected in the
Amodel. (d-e) Distribution of AUC differences obtained when using amodel learned on a first ChIP-seq experiment to
predict the outcome of a second ChIP-seq experiment. Different pairs of ChIP-seq experiments were used: experiments
on the same TF and same cell type (red), experiments on the same TF but different cell type (yellow), experiments on
different TFs but same cell type (light blue), and experiments on different TFs and different cell types (blue). For each
pair of ChIP-seq experiment A-B, wemeasured the difference between the AUC achieved on A using themodel learned
on A, and the AUC achieved on A using themodel learned on B. AUC differences weremeasured on the non
expression-controlled case (c) and on the expression-controlled case (d).
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ChIP-seq experiment A to predict the outcome of another ChIP-seq experiment B, andwe compared the results to those
obtained with themodel directly learned on B.More precisely, wemeasured the difference of the Area under the ROC
Curves (AUC) between themodel learned on A and applied on B and themodel learned and applied on B. To avoid any
effect driven by the over-representation of CTCF in ChIP-seq data, we randomly selected only 10 ChIP-seq experiments
targeting this TF in these analyses. As shown in Figure 1(d) and 1(e), models learned on the same TF (whether or not on
the same cell-type) have overall smaller AUC differences thanmodels learned on different TFs.

We then analyzed cell and TF specificity more precisely. Cell specificity refers to the ability of a model learned on
one TF and in one cell type to predict the outcome of the same TF in another cell type. Oppositely, TF specificity refers to
the ability of a model learned on one TF in one cell type to predict the outcome of another TF in the same cell type. Cell
and TF specificities were evaluated by the shift between the associated distributions of AUC differences in Figure 1(d):
cell specificity was assessed by the shift between red and yellow distributions, while TF specificity was assessed by the
shift between red and light blue distributions. We used a standard t-test tomeasure that shift. Low p-values indicate
high distribution shifts (hence high cell/TF specificity), while high p-values indicate low shifts (hence low specificity).
Our results indicate very low cell specificity (p-values 0.91 and 0.95 in the non-controlled and expression-controlled
cases, respectively) and high TF specificity (1 · 10−61 and 3 · 10−83). The fact that the TF specificity is slightly higher
in the expression-controlled case suggests that part of the TF combinations that help discriminate between bound
and unbound sequences is common to several TFs in the non-controlled case. It is indeed known that the majority
of ChIP-seq peaks are found in open and active promoters [39]. Thus, most positive examples are associated with
open chromatinmarks. However, in the non-expression-controlled case, a large part of the negative examples are in
closed chromatin and are therefore likely associated with other chromatin marks. As a result, in this case, TFcoop
presumably also learns the TFBS signature that helps differentiate between these chromatin marks. Oppositely, in the
expression-controlled case, the positive and negative examples have similar chromatin states, and TFcoop unveils the
TFBS signature specific to the target TF.We can also observe that this renders the former problem slightly easier than
the second one, as illustrated by the difference of TFcoop performances in Figure 1(a). Finally the low cell specificity
means that the general rules governing TFBS combination in promoters do not dramatically change from one tissue to
another. This is important in practice because it enables us to use amodel learned on a specific ChIP-seq experiment to
predict TBFSs of the same TF in another cell type.

| Analysis of TFBS combinations in promoters

Wenext analyzed the different variables (PWMscores and (di)nucleotide frequencies) that were selected in the 409
learnedmodels. Overall, 95% of the variables correspond to PWMscores. Although only 5% of the selected variables
are (di)nucleotide frequencies, almost allmodels include at least one of these features. Asmentioned earlier, the learning
algorithm does not use any prior knowledge and can select the variables that best help predict the ChIP-seq experiment
without necessarily selecting the PWMof the target TF. Our analysis shows that, for 75% of themodels, at least one
version of the target PWMwas selected. Moreover, it is important to note that similar PWMs tend to have correlated
scores. Hence, another PWMmay be selected instead of the target. To overcome this bias, we also considered all PWMs
similar to the target PWM.We used Pearson correlation between PWMscores in all promoters tomeasure similarity
and set a threshold value of 0.75 to define the list of similar PWMs. With this threshold, 90%models include the target
or a similar PWM. Analysis of the remaining 10%models shows that they often correspond to ChIP-seq experiments
with low number of positive sequences (median number 955 vs. 2477 for all ChIP-seq experiments). This may be due
either to technical problems, to lowly expressed TFs, or to TFs that rarely bind promoters.

We further analyzed themost selected PWMs. To avoid any bias linked to the number of CTCFChIP-seq experi-
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ments, we only considered 10 CTCFmodels that were randomly selected for the analyses. We ranked the PWMs by
the number of models in which they appear, and look for enrichment of certain JASPAR structural families (bHLH, Zinc
finger, . . . ). A gene set enrichment analysis (GSEA) [52] shows that “tryptophan cluster factors” (FDRq-val< 10−4), “C2H2
zinc finger factors” (FDR q-val< 10−4) and “basic leucine zipper factors” (FDR q-val= 2 · 10−3) are themost represented
classes of PWMs selected in themodels (Supp. Figure 4). We then looked at the differences betweenmodels learned in
the expression-controlled experiments andmodels learned in the non-controlled experiments. For each non-controlled
model, we enumerated the variables that are selected in this model and not selected in the corresponding expression-
controlledmodel. Several PWMs are over-represented in this list (see Supp. Table 1). Specifically, a GSEA analysis shows
that the FOX family is particularly enriched (FDR q-val 7 · 10−3). Because FOXA is a well known pioneer factor [53], this
enrichment is in agreement with our idea that, in the non-controlled case as opposed to the expression-controlled case,
TFcoop also learns TFBS signatures linked to active/inactive chromatin marks.

Next, following the analyses of Levo et al. [32] and Dror et al. [33] we used our models to investigate the link
between the nucleotide composition of the target PWMand that of the TFBS flanking region. First, we did not observe
a significant link between target PWMcomposition and the (di)nucleotide variables that were selected in themodels
(Kolmogorov-Smirnov test p-val=0.448; see Supp. Figure 6). However, the (di)nucleotide composition of target PWM
exhibited strong resemblance to that of the other selected PWMs (see Figure 2(a)). Specifically, the nucleotide and
dinucleotide frequencies of the target PWMwere strongly positively correlated with that of the PWMs selected with a
positive coefficient. For PWMs selectedwith a negative coeficient the correlations aremoderate or negative. This is
in accordancewith the findings of Dror et al. [33], who show that TFBS flanking regions often have similar nucleotide
composition as the the TFBS.

We next evaluated the possibility of clustering the 409 learned models using the selected variables. As shown
in Supp. Figure 7, the models can be partitioned in a few different classes with a k-means algorithm (5 classes were
used in this figure). Supp. Figure 8 reports themost used variables in these different classes. We can first observe that,
in agreement with our analysis of model specificity, themodels associatedwith the same TF tend to cluster together.
For example, the 4t h class of our clustering is exclusively composed of CTCF models. Note that we did not observe
any enrichment for the classical TF structural families (bHLH, Zinc finger, . . . ) in the different classes (data not shown).
Actually, the clustering seems to be essentially driven by the nucleotide composition of the PWMs belonging to the
models (see Supp. Figure 9).

Pioneer TFs are thought to play an important role in transcription by binding to condensed chromatin and enhancing
the recruitment of other TFs [9]. As shown in Figure 2(b) and by a GSEA analysis (Supp. Figure 5), pioneer factors clearly
are over-represented in the selected variables of themodels, whereas they represent less than 14% of all TFs. These
findings are in agreement with their activity: pioneer TFs occupy previously closed chromatin and, once bound, allow
other TFs to bind nearby [9]. Hence the binding of a given TF requires the prior binding of at least one pioneer TF.We
also observed that TFs whose binding is weakened bymethylation [50] are enriched in all models (Supp. Figure 10). This
result may explain howCpGmethylation can negatively regulate the binding of a given TF in vivowhile methylation of
its specific binding site has a neutral or positive effect in vitro [50]: regardless of themethylation status on its binding
site, the binding of a TF can also be influenced in vivo by the sensitivity of its partners to CpGmethylation.

| TFBS combinations in lncRNA and pri-miRNA promoters

We then ran the same analyses on the promoters of lncRNAs and pri-miRNAs using the same set of ChIP-seq experi-
ments. Results are globally consistent with what we observed onmRNA promoters (see Figure 3 for the expression-
controlled case). Overall, models show good accuracy and specificity on lncRNAs. Models are less accurate and have
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F IGURE 2 Selected PWMs inmRNA promoters. (a) Pearson correlation between nucleotide composition of the
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respectively) in 409models. Grey: correlation achieved by randomly selecting the same number of PWMs for each
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lower specificity for pri-miRNAs but this likely results from the very low number of positive examples available for these
genes in each ChIP-seq experiment (Supp. Figure 11), which impedes both the learning of themodels and estimation of
their accuracy.

Next we sought to compare the models learned on mRNA promoters to the models learned on lncRNA and pri-
miRNA promoters. For this, we interchanged themodels learned on the sameChIP-seq experiment, i.e.we used the
model learned onmRNA promoters to predict the outcome on lncRNA and pri-miRNA promoters. One striking fact
illustrated by Figure 3(c) is that models learned on mRNA promoters and those learned on lncRNA promoters are
almost perfectly interchangeable. This means that the TFBS rules governing the binding of a specific TF in a promoter
are similar for both types of genes. We obtained consistent results when we used the models learned onmRNAs to
predict the ChIP-seq outcomes on pri-miRNA promoters (Figure 3(c)). Accuracy is even better than that obtained by
models directly learned on pri-miRNApromoters, illustrating the fact that the poor performance achieved on pri-miRNA
promoters likely results from the small number of learning examples available for these genes.

| TFBS combinations in enhancers

Wenext applied the same approach on 38,554 enhancers defined by the FANTOM consortium [49]. We used the same
ChIP-seq experiments as for the promoters. All enhancer sequences overlapping a ChIP-seq peak in the considered
ChIP-seq experimentwere considered as positive examples. As for promoters, we used two strategies to select positives
and negative examples: in a first case we did not apply any control on their expression, while in a second case, we used
CAGE expression data in the different tissues to only select expressed enhancers.

As observed for promoters, TFcoop outperforms classical PWM-based approaches onmany TFs (see Figure 4(a)
and Supp. Figure 12) and achieves results close to that of DeepSea [44] (Figure 4(b)). Here again, the non expression-
controlledproblemseems slightly easier than the controlledone. Using the same “Jaccard index test” used for promoters,
we also assessed that the TF cooperations inferred by themodels can be observed in ChIP-seq data and hence are likely
to be biologically valid (p-value < 1.e−16 and Figure 4(c)).

However, analysis of model specificity reveals somewhat different results from that observed for promoters.
Globally, models have good TF specificity: models learned on the same TF have more similar prediction accuracy
thanmodels learned on different TFs. However, in contrast to promoters, cell specificity is high in the non-controlled
case (p-value 2 · 10−45; see peak shift in Figure 4(d)), althoughmuch lower in the expression-controlled case (p-value
1.6 · 10−12). Additionally, TF specificity seems slightly higher in the expression-controlled case than in the non-controlled
case (p-values 1.7 · 10−102 vs. 1. · 10−114). This is in accordance with our hypothesis formulated for promoters, that
part of the TF combinations learned by TFcoop in the non-controlled case actually differentiates between active
and inactive chromatinmarks. This also seems to indicate that these TF combinations are cell-type specific, while the
remaining combinations aremore general (as illustrated by the 1.6 ·10−12 p-valuemeasured on the expression-controlled
case). Moreover, analysis of selected variables reveals that models learnedwithout expression control involvemuch
more variables thanmodels learned with expression control (median numbers 18 vs. 11; t-test p-value ∼ 10−9). As a
consequence, several variables are statistically more abundant in non-controlledmodels than in the cognate expression-
controlled models (see Supp. Table 1). Interestingly, among the four variables with the most important differences,
three are dinucleotides CpG, TpC and ApT. This may indicate that part of the active/inactive chromatin marks is linked
to the dinucleotide composition of the underlying sequence. This proposal is in line with findings revealing the existence
of sequence-level instructions for chromatin modifications[44, 45, 54]. Moreover, a GSEA analysis shows that the
PWMswith the strongest differential enrichments belong to the “three-zinc finger kruppel-related factors” ((FDR q-val
1 ·10−2)). As some of these factors, in particular KLF1 [55], are linked to chromatin remodeling, this enrichment supports
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F IGURE 3 Accuracy and specificity on lncRNA and pri-miRNA promoters. Top: Model specificity on promoters of
lncRNA (a) and pri-miRNAs (b). These figures represent the distribution of AUC differences obtainedwhen using a
model learned on a first ChIP-seq experiment to predict the outcome of a second ChIP-seq experiment. Different pairs
of ChIP-seq experiments were used: experiments on the same TF and same cell type (red), experiments on the same TF
but different cell type (yellow), experiments on different TFs but same cell type (light blue), and experiments on
different TFs and different cell types (blue). For each pair of ChIP-seq experiment A-B, wemeasured the difference
between the AUC achieved on A using themodel learned on A, and the AUC achieved on A using themodel learned on B.
AUC differences weremeasured on the expression-controlled case. Bottom: Promoter models are interchangeable. For
each ChIP-seq experiment, we computed the AUC of themodel learned and applied onmRNAs (pink), learned and
applied on lncRNAs (yellow-green), learned and applied on pri-miRNAs (blue), learned onmRNAs and applied to
lncRNAs (green), learned onmRNAs and applied to pri-miRNAs (purple).
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the idea that TFcoop also identifies TF combinations linked to epigenetics. The fact that cell-type specificity is more
apparent for enhancers than for promoters in the non expression-controlled case (2 · 10−45 for enhancers vs. 0.91 for
promoters) is in accordance with the fact that, contrary to promoters, most enhancers are expressed in a cell-specific
manner (Supp. Figure 13 and ref. [49]).

As for promoters, we observed that the selected PWMs tends to have similar (di)nucleotide composition as the
target PWM (Figure. 5(a)). Moreover, models can also be partitioned in a few different classes according to the selected
variables (Supp. Figures 14 and 15). These classes mostly correspond to the nucleotide composition of the target and
selected PWMs (Supp. Figure 16). Pioneer TFs are also over-represented in the selected PWMs (Figure 5(b) and Supp.
Figure 5).

Next we sought to compare the models learned on enhancers to the models learned on promoters. First, we
observed that enhancermodels involve PWMs that are different from that used in promotermodels (Supp. Table 2).
Note for instance that several AP-1 TFs (FOS/JUN) are enriched in enhancers, in accordance with their prominent role
in enhancer selection [56]. The same three structural classes are found enriched, but in different proportions, with
more “C2H2 zinc finger factors” in promoters and more “basic leucine zipper factors” in enhancers (Supp. Figure 4).
In term of prediction, promoter and enhancermodels have globally similar accuracy (see Figure 6 on the expression-
controled cases). However, a pairwise comparison of the models learned on each ChIP-seq experiment shows that
the prediction accuracy is only moderately correlated (Pearson correlation 0.33; see Supp. Figure 17). Moreover, if
we interchange the two models learned on the same ChIP-seq experiment, we observe that the model learned on
promoters is generally not as good on enhancers as it is on promoters and vice-versa (Figure 6). Hence, while the rules
learned on enhancers (promoters) in a given cell type are globally valid for enhancers (promoters) of other cell types,
they do not apply to promoters (enhancers) of the same cell type. Note that AUCs of models learned on promoters
and applied to enhancers are greater than that of models learned on enhancers and applied to promoters (Figure 6).
This result might be explained by the existence of promoters able to exert enhancer functions [57, 58]. Conversely, the
FANTOMdefinition of enhancers precludes potential promoter functions [49].

| Using TFcoop scores to describe regulatory sequences

Wenext exploredwhether TFcoop scores could be used to providemeaningful descriptions of regulatory sequences.
This was assessed in twoways. First, we used the TFcoopmodels to cluster mRNA promoters and searched for over-
represented gene ontology (GO) terms in the inferred clusters. We randomly selected onemodel for each TF, and used
the 106 selectedmodels to score the 20,846mRNA promoter sequences. Each promoter sequence was then described
by a vector of length 106. We next ran a k-means algorithm to partition the promoters into 5 different clusters, and we
searched for over-represented GO terms in each cluster. For comparison, we ran the same procedure using two other
ways to describe the promoter sequences: the classical PWMscores of the same106 selected TFs (so promoters are also
described by vectors of length 106), and the (di)nucleotide frequencies of the promoters (vector of length 12). Globally,
the sameGO terms appear to be over-represented in the different gene clusters and the three different clusterings:
defense response, immune system process, cell cycle, metabolic process, and developmental process. We noticed that
the p-values obtainedwith the TFcoop scores were invariably better than the two others. To avoid any clustering bias,
we repeated the k-means clusterings several times, with various numbers of clusters. Namely, for each approachwe
ran 3 clusterings for each number of clusters ranging between 3 and 10 (resulting in 24 different clusterings for each
approach) and computed over-representation p-values for the 5 GO terms in each cluster. As shown in Figure 7(a), the
TFcoop scores substantially and systematically outperform the other scoring functions, indicating that the classification
obtainedwith this score is more accurate to functionally annotate promoters than the others. Implicitly, these results
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F IGURE 4 Accuracy and specificity on enhancers. (a) Violin plots of the area under the ROC curves obtained in the
409 ChIP-seq. Best hit (red), TRAP (blue), DNAshape (green), TFcoopwith no expression control (purple), and TFcoop
with expression control (orange). ROC curves for Best hit, TRAP andDNAshapewere computed in the non
expression-controlled case. (b) Comparison of AUC achieved by TFcoop andDeepSea approach [44]. Comparison was
done on 214 ChIP-seq experiments for which the DeepSea server provides predictions. (c) Intersection between pairs
of ChIP-seq experiments associated with TFs identified as cooperating in enhancers. These violin plots report the
distribution of Jaccard indexes computed between different pairs of Chip-seq experiments. Left: for each TF A, we
measured the Jaccard index between enhancers bound by A and enhancers bound by a TF Bwhose PWMhas been
selected in the TFcoopmodel learned for A (cases B = Awere not considered). Right: for each TF A, wemeasured the
Jaccard index between enhancers bound by A and enhancers bound by TFs whose PWMs have not been selected in the
Amodel. (d-e) Distribution of AUC differences obtained when using amodel learned on a first ChIP-seq experiment to
predict the outcome of a second ChIP-seq experiment on enhancers. Different pairs of ChIP-seq experiments were
used: experiments on the same TF and same cell type (red), experiments on the same TF but different cell type (yellow),
experiments on different TFs but same cell type (light blue), and experiments on different TFs and different cell types
(blue). For each pair of ChIP-seq experiment A-B, wemeasured the difference between the AUC achieved on A using
themodel learned on A, and the AUC achieved on A using themodel learned on B. AUC differences weremeasured on
the non expression-controlled case (b) and on the expression-controlled case (c).
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are also consistent with amodel in whichmost biological processes are controlled by specific combinations of TFs.
Next, we used the TFcoopmodels to discriminate betweenmRNA promoters and enhancers. We randomly split

the sets of promoters and enhancers in training and test sets, and learned a K-nearest neighbor (KNN) classifier
for discriminating between promoter and enhancer sequences on the basis of scores of the TFcoop models learned
on promoters. As above, we also used the classical PWM scores of the same 106 selected TFs and (di)nucleotide
frequencies of the sequences. We resumed the procedure with a number of neighbors (K) varying between 1 and
20, and computed the number of errors obtained by each approach on the test set (Figure 7(b)). Here again, TFcoop
description outperforms other descriptionmethods, with an error rate around 2% for TFcoop vs. 15% and 25% for the
other approaches. This result confirms the existence of DNA features distinguishing enhancers frommRNA promoters
[49, 21] and identifies TF combinations as potent classifiers.

| Identifying TFs responsible for gene expression change

As a final test, we sought to use TFcoop to identify the TFs responsible for gene expression change in various gene ex-
pression experiments. For this, we used the compendium collected byMeng et al. [59]. The interest of this compendium
is that each data corresponds to a particular TF for which the activity has been modified (repressed or enhanced),
hence the TF responsible for deregulation (hereafter called as the “responsible TF”) is known. In each experiment, we
selected the top 500 genes with the highest positive log fold change, and computed the difference of score distribution
of the responsible TF in the top 500 promoters and in all other promoters with a Kolmogorov-Smirnov test. This was
done using the classical PWMscoring function andwith the TFcoop scores. Of the 21 experiments, 5 responsible TFs
achieved enrichment p-values below 1%with the classical PWM scoring function, while this number rises to 13with the
TFcoop score (see Supp. Table 3).

One striking fact however is that numerous TFs (not solely the responsible TF) appear to be also enriched in the
top 500 promoters (Supp. Table 3). Note that this effect is not restricted to the TFcoop scoring. The classical PWM
scoringmethod also has numerous enriched TFs on the experiments for which it yields good p-values on the responsible
TF. There can be different explanations for this effect. First, modifying the activity of the responsible TFmay induce
a cascade of activations/repressions of other TFs. Second, if two TFs A and B often bind together in promoters, they
may share a high number of target genes. In this case, TF Bmay appear as over-represented in the promoters of genes
deregulated by TF A, even if TF B is not itself deregulated. This provides us with an interesting way to assess our models.
Namely, when this appends (and if ourmodels aremeaningful) then TFA should be present among the selected variables
of the TF B model. For each experiment, we therefore enumerated all TFs enriched in the top 500 promoters and
checkedwhether the responsible TFwas present in their models. We used a Fisher exact test to assess whether this
appends more often than expected in the different experiments (Supp. Table 3). Of the 18 testable experiments, 13
yield a p-value below 5%, indicating that the responsible TF is often involved in the TF combinations associated with the
TFs enriched in the top 500 promoters.

| DISCUSSION

In this paper we proposed a method to identify TF combinations that can be predictive of the binding of a target TF.
Our approach is based on a logistic model learned fromChIP-seq experiments on the target TF. Cross-validation study
showed that the approach is effective and outperforms classical PWMbased approaches onmany TFs. It is important to
note that TFcoop combinations do not necessarily reflect just cooperation, but also competition. For instance, a TF A
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F IGURE 7 Using TFcoop scores for describing regulatory sequences. (a) GO term enrichment obtainedwith
different promoter descriptions. Promoters were described using three different representations—TFcoop scores (red),
(di)nucleotide frequencies (green), classical PWM scores (blue)— and then partitioned several times with different
k-means and different class numbers (seemain text). For each clustering we identified the best p-value (Fisher exact
test) associated with 5 GO terms (“defense response”, “immune system process”, “cell cycle”, “metabolic process”,
“developmental process”) in any cluster. (b) Classification errors achievedwith KNN classifiers discriminating between
promoter and enhancer sequences. Boxplots describe the errors obtained using TFcoop scores (red), (di)nucleotide
frequencies (green), and the classical PWM scores (blue), using different number of neighbors (K).
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competing with a TF Bmay be useful to predict the binding of B andwould thus appear in the TF Bmodel while A and B
do not cooperate.

We distinguished two prediction problems associated with two situations, depending whether the aim is to predict
binding in any promoter/enhancer or solely in expressed promoters/enhancers. For expressed promoters/enhancers,
our experiments showed that the learnedmodels have high TF specificity and quite low cell-type specificity. On the
other hand, for the problem of expressed and not expressed promoters/enhancers binding, the learned models are
less TF specific andmore cell-type specific (especially for enhancers). These results are in accordance with a two-level
model of gene regulation: (i) cell-type specific level that deposits specific chromatinmarks on the genome, and (ii) non,
or poorly, cell-type specific level that regulates TF binding in all DNA regions associated with appropriate marks.

An important property highlighted by ourmodels is that rules governing TF combinations are very similar in the
promoters of the three gene types analyzed (mRNA, pri-miRNA and lncRNA), but different between promoters and
enhancers. This is further confirmed by our experiments for discriminating between promoter and enhancer sequences
showing that scores produced by TFcoopmodels allow accurate classification between the two types of sequences. Our
results thus argue for a prominent role of transcription factor binding as the fundamental determinant of regulatory
activity able to distinguish enhancers and promoters [21]. Furthermore, as promoters and enhancers produce different
RNAmolecules [49, 21], our results also suggest that the production of enhancer RNAs (eRNAs) on one hand, and that
of mRNAs, lncRNAs, andmiRNAs on the other hand, requires a specific and distinct subset of TFs.

Our approach could be improved in several ways. A quite straightforward improvement would be to use the
DNAshape score developed byMathelier et al. [36] instead of the classical PWM score. This could improve TFcoop
accuracy for several TFs, especially for TFs such as CTCF for which TFcoop does not outperform classical PWM scoring.
More profoundly, one drawback of TFcoop is that the logistic model enables us to learn only a single TF combination for
each target TF. However, we can imagine that certain TFsmay be associatedwith two ormore different TF combinations
depending on the promoter/enhancer they bind. A solution for this would be to learn a discrimination function based on
several logistic models instead of a single one.

| MATERIAL AND METHODS

Promoter, enhancer, long non-coding RNA andmicroRNA sequences.
Wepredicted TF binding in both human promoters and enhancers. For promoters, sequences spanning ± 500bp around
starts (i.e. most upstream TSS) of protein-coding genes, long non-coding RNAs andmicroRNAswere considered. Starts
of coding and lncRNA genes were obtained from the hg19 FANTOMCAGEAssociated Transcriptome (CAT) annotation
[48, 19]. Starts of microRNA genes (primary microRNAs, pri-miRNAs) were from [20]. For enhancers, sequences
spanning ± 500bp around the mid-positions of FANTOM-defined enhancers [49] were used. Lastly, our sequence
datasets are composed of 20,845 protein coding genes, 1,250 pri-microRNAs, 23,887 lncRNAs, and 38,553 enhancer
sequences.

Nucleotide and dinucleotide features.
For each of these sequences, we computed nucleotide and dinucleotide relative frequencies as the occurrence number
in the sequence divided by sequence length. Frequencies were computed in accordance with the rule of DNA reverse
complement. For nucleotides, we computed the frequency of A/T andG/C. Similarly, frequencies of reverse complement
dinucleotides (e.g.ApG and CpT) were computed together. This results in a total of 12 features (2 nucleotides and 10
dinucleotides).
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PWM.
Weused vertebrate TF PFMs from JASPAR [23], including all existing versions of each PFM, resulting in a set of 638
PFMs with 118 alternative versions. PFMs were transformed into PWMs as described inWasserman and Sandelin
[22]. PWM scores used by TFcoop for a given sequence were computed as described in [22], keeping themaximal score
obtained in any position of the sequence. Namely, each PWMwas used to scan the entire sequence and score each
position, and themaximal score was used as potential predictive feature by TFcoop.

ChIP-seq data.
We collected ChIP-seq data from the ENCODE project [60] for human immortalized cell lines, tissues, and primary
cells. Experiments were selected when the targeted TF were identified by a PWM in JASPAR. Thus we studied 409
ChIP-seq experiments for 106 distinct TFs and 41 different cell types. The most represented TF is CTCF with 69
experiments, while 88% of the experiments are designed from immortalized cell lines (mainly GM12878, HepG2 and
K562). The detailed list of all used experiments is given in Supplementary materials. For each ChIP-seq experiment,
regulatory sequences were classified as positive or negative for the corresponding ChIP targeted TF.We used Bedtools
v2.25.0 [61] to detect intersection between ChIP-seq binding sites and regulatory sequences (bothmapped to the hg19
genome). Each sequence that intersects at least one ChIP-seq binding region was classified as a positive sequence. The
remaining sequences formed a negative set. The number of positive sequences varies greatly between experiments and
sequence types. Mean and standard deviation numbers of positive sequences are respectively 2661(±1997) for mRNAs,
1699(±1151) for lncRNAs, 216(±176) for microRNAs, and 1516(±1214) for enhancers.

Expression data.
To control the effect of expression in our analyses, we used ENCODE CAGE data restricted to 41 cell lines. The
expression per cell line was calculated as the mean of the expression observed in all corresponding replicates. For
microRNAs, we used the small RNA-seq ENCODE expression data collected for 3,043maturemicroRNAs in 37 cell lines
(corresponding to 403 ChIP-seq experiments). The expression of microRNA genes (i.e. pri-microRNAs) was calculated
as the sum of the expression of the correspondingmaturemicroRNAs.

| Logistic model

Wepropose a logisticmodel to predict the regulatory sequences bound by a specific TF. Contrary to classical approaches,
we not only consider the score of the PWM associated with the target TF, but also the scores of all other available
PWMs. Themain idea behind this is to unveil the TF interactions required for effective binding of the target TF.We also
integrate in our model the nucleotide and dinucleotide compositions of the sequences, as the environment of TFBSs are
thought to playmajor role in binding affinity [32, 33].

For each ChIP-Seq experiment, we learn different models to predict sequences bound by the target TF in four
regulatory regions (promoters ofmRNA, lncRNA and pri-miRNA, and enhancers). For a given experiment and regulatory
region, our model aims to predict response variable ys by the linear expression

α +
∑

m∈Mot i f s

βm × Scor em,s +
∑

n∈Nucl

βn × Rat en,s + εs ,

where ys is the Boolean response variable representing the TF binding on the given sequence s (ys = 1 for TF binding,
0 otherwise); Scor em,s is the score of motifm on sequence s ; Rat en,s is the frequency of (di)nucleotide n in sequence
s ; α is a constant; βm and βn are the regression coefficient associatedwithmotifm and (di)nucleotide n , respectively;
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and εs is the error associated with sequence s .Mot i f s and Nucl sets respectively contain 638 JASPAR PWMs and 12
(di)nucleotide frequencies.

To perform variable selection (i.e. identifying cooperating TFs), we used the LASSO regression minimising the
prediction error within a constraint over l 1-norm of β [47]. The weight of the LASSO penalty is chosen by cross-
validation by minimising the prediction error with the R package g l mnet [62]. As the response variable is Boolean,
we used a logistic regression giving an estimation of the probability to be bound for each sequence. We evaluate the
performance of themodel using 10-fold cross validation. In each validation loop, 90% of sequences (training data) are
used to learn the β parameters and the remaining 10% (test data) are used to evaluate the predictive performance of
themodel.

| Alternative approaches

We compared the predictive accuracy of our model to three other approaches.

Best hit approach
The traditional way to identify TF binding sites consists in scanning a sequence and scoring the corresponding PWMat
each position. Positions with a score above a predefined threshold are considered as potential TFBS. A sequence is then
considered as bound if it contains at least one potential TFBS.

TRAP score
An alternative approach proposed by Roider et al. [51] is based on a biophysically inspiredmodel that estimates the
number of bound TFmolecules for a given sequence. In this model, the whole sequence is considered to define a global
affinity measure, which enables us to detect low affinity bindings. We use the R package t R ap [62] to compute the
affinity score of the 638 PWMs for all sequences. As proposed in [51], we use default values for the two parameters
(R0(wid th), λ = 0.7).

DNA shape
In addition to PWMs,Mathelier et al. [36] considered 4DNA shapes to increase binding site identification: helix twist,
minor groovewidth, propeller twist, and DNA roll. The 2nd order values of these DNA shapes are also used to capture
dependencies between adjacent positions. Thus, each sequence is characterized by the best hit score for a given PWM
plus the 1st and 2nd DNA shape order values at the best hit position. The approach based on gradient boosting classifier
requires a first training step with foreground (bound) and background (unbound) sequences to learn classification rules.
Then the classifier is applied to the set of test sequences. We used the same 10-fold cross-validation scheme that we
used in our approach. We applied twomodifications to speed-up themethod, whichwas designed for smaller sequences.
First, in the PWMoptimization step of the training phase, we reduced the sequences to± 50bp around the position with
highest ChIP-Seq peak for positive sequences and to ± 50bp around a random position for negative sequences. Second,
after this first stepwe also reduced sequences used to train and test the classifiers to ± 50bp around the position for
which the (optimized) PWMgets the best score.

DeepSEA
Zhou and Troyanskaya [44] proposed a deep learning approach for predicting the binding of chromatin proteins and
histonemarks fromDNA sequences with single-nucleotide sensitivity. Their deep convolutional network takes 1000bp
genomic sequences as input and predicts the states associatedwith several chromatinmarks in different tissues. We
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used the predictions provided by DeepSEA server (http://deepsea.princeton.edu/). Namely, coordinates of the
analyzed promoter and enhancer sequences were provided to the server, and the predictions associated with each
sequence were retrieved. Only the predictions related to the ChIP-seq data we used in our analyses were considered
(i.e. 214 ChIP-seq data in total).

| SUPPORTING INFORMATION

The R code for learning a TFcoop model from a ChIP-seq experiment is available in an R Markdown file at address
https://gite.lirmm.fr/brehelin/TFcoop

This file also provides the R scripts for reproducing themain experiments described in the paper. The different models
learned onmRNA, lncRNA, miRNA promoters and enhancers are available as R object (.RData) at the same address.
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