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Abstract

Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image
analysis approaches have great potential to increase precision of diagnosis and help reduce human error.

In this study, we utilize various computational methods based on convolutional neural networks (CNN)
and build a stand-alone pipeline to effectively classify different histopathology images across different types
of cancer. In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of
lung cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer. In addition, we apply
our pipeline to discriminate among four immunohistochemistry (IHC) staining scores of bladder and breast
cancers.

Our classification pipeline utilizes a basic architecture of CNN, Google’s Inceptions within three training
strategies, and an ensemble of two state-of-the-art algorithms, Inception and ResNet. These strategies
include training the last layer of Google’s Inceptions, training the network from scratch, and fine-tunning
the parameters for our data using two pre-trained version of Google’s Inception architectures, Inception-V1
and Inception-V3.

We demonstrate the power of deep learning approaches for identifying cancer subtypes, and the robustness
of Google’s Inceptions even in presence of extensive tumor heterogeneity. Our pipeline on average achieved
accuracies of 100%, 92%, 95%, and 69% for discrimination of various cancer types, subtypes, biomarkers,
and scores, respectively. Our pipeline and related documentation is freely available at https://github.com/
ih-lab/CNN_Smoothie.

1 Introduction
Evaluation of microscopic histopathology slides by experienced pathologists is currently the standard procedure
for establishing a diagnosis and identifying the subtypes of different cancers. Visual-only assessment of well-
established histopathology patterns is typically slow, and is shown to be inaccurate and irreproducible in
certain diagnosis cases of tumor subtypes and stages [58]. Several recent studies attempted to employ machine
learning approaches for determining subtypes of malignancies [19, 87]. These computational approaches can
be complementary with other clinical evaluation methods to improve pathologists’ knowledge of the disease
and improve treatments [21, 4]. For example, previous studies have shown more accurate diagnosis results
are derived by integrating information extracted from computational pathology with patients’ clinical data for
various cancer types such as prostate cancer [6, 17], lung cancer [28], breast cancer [83, 16], colorectal cancer [42],
and ovarian cancer [36]. In particular, computerized image processing technology has been shown to improve
performance, correctness, and robustness in histopathology assessments [47].

While new advanced approaches have improved image recognition (e.g., normal versus cancerous), the image
interpretation of heterogeneous populations still suffers from lack of robust computerization approaches [66, 11,
26, 37]. Current available automatic methods focus on classification of just one type of cancer versus the
corresponding normal condition. Although these studies achieved reasonable accuracy in detecting normal or
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cancerous conditions in specific kind of cancers, leveraging methods such as training Convolutional Neural
Networks (CNNs)[46], they have certain limitations which we address in this work:

1. Developing ensemble deep learning methods to employ state-of-the-art algorithms for improving train-
ing approaches in diagnosis and detection of various cancer subtypes (e.g., adenocarcinoma versus cell
squamous lung cancer).

2. Improving the speed of deep learning, and investigating the trade-offs between performance (i.e., the size
of the training set) and efficiency (i.e., the training speed).

3. Making decisions on selecting proper neural networks for different types of data set.

One of the main challenges of computational pathology is that tumor tissue images often vary in color
and scale batch effects across different research laboratories and medical facilities due to differences in tissue
preparation methods and imaging implements [43]. Previous studies have shown that technicians’ variance or
technique differences lead to differences in staining substantially [55] also causes difficulties in extracting clinical
information robustly. Furthermore, erroneous evaluation of histopathology images and decision-making using
tissue slides containing millions of cells can be time-consuming and subjective [87, 43].

In addition, cancer is known to be a heterogeneous disease. i.e., a high degree of genetic and phenotypic
diversity exists “within tumors” (intra-tumor) and/or “among tumors” (inter-tumor) [64]. Tumor heterogeneity
leads to an important effect of disease progression and resistant responses to targeted therapies [30]. We also aim
to evaluate deep learning approaches for discrimination of digital pathology images from intra- and inter-tumor
heterogeneous samples.

Deep learning approaches are emerging as leading machine-learning tools in medical imaging where they have
been proven to produce precious results on various tasks such as segmentation, classification, and prediction
[24]. In this paper, we present an innovative deep learning based pipeline, CNN_Smoothie, to discriminate
various cancer types, subtypes, and their relative staining markers and scores.We combine pathological images
of three cancer types with the ones related to the immunohistochemical markers of tumor differentiation to
train CNNs for analyzing and identifying specific clinical patterns in different staining markers and scores of
breast and bladder cancers. In addition, we applied deep learning methods on immunohistochemistry (IHC) and
hematoxylin & esoin (H&E) stained images of squamous cell carcinoma and lung adenocarcinoma to investigate
the performance of various classifiers.

To the best of our knowledge, this is the first comprehensive study of applying a wide range of CNN
architectures (all integrated in a single pipeline) on histopathology images from multiple different datasets. We
evaluate performance of different architectures to detect and diagnosis of tumor images. Our results clearly
demonstrate the power of deep learning approaches for distinguishing different cancer types, subtypes, IHC
markers and their expression scores. Source codes and documentation of our pipeline containing training,
evaluation and prediction methods are publicly available at https://github.com/ih-lab/CNN_Smoothie.

2 Materials and Methods

2.1 Histopathology images resource
Our datasets come from a combination of open-access histopathology images, The Stanford Tissue Microarray
Database (TMAD) and The Cancer Genome Atlas (TCGA). A total of 12139 whole-slide stained histopathology
images were obtained from TMAD [53]. TMA database enables researchers have access to bright field and
fluorescence images of tissue microarrays. This archive provide thousand human tissues which are probed
by antibodies simultaneously for detection of protein abundance (immunohistochemistry; IHC), or by labeled
nucleic acids (in situ hybridization; ISH) to detect transcript abundance. The extracted data included samples
from three cancer types: (1) lung, (2) breast, comprising five biomarker types (EGFR, CK17, CK5/6, ER,
and HER2), and (3) bladder with four biomarker types (CK14, GATA3, S0084, and S100P). Characteristics
of all three cohorts and the comprised classes are summarized in Table 1. From the extracted TMA datasets,
one dataset is stained by H&E method (BladderBreastLung) and one dataset is stained by both H&E and
IHC methods (TMAD-InterHeterogeneity). The remaining datasets (BladderBiomarkers, BreastBiomarkers,
BladderScores, and BreastScores) are stained by IHC markers including different polyclonal antiserums such
as CK14, GATA3, S0084, S100P, EGFR, CK17, CK5/6, ER, and HER2 for their related proteins which play
critical roles in tumor progression.
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The markers are widely used in clinical immunohistochemistry as biomarkers for detection of various neo-
plasm types [32, 80]. Several studies have acquired the expressions of biomarkers in biopsy samples of various
cancer types to improve the distinction of specific pathological subtyping and understanding of molecular path-
ways of different cancers. For example, we can refer to the attempts made to discriminate morphologic subtyping
of non-small call lung carcinoma (NSCLC), lung adenocarcinoma (LUAD) versus lung squamous cancer (LUSC)
[71, 39, 15, 20]. Antiserums staining tissue are sub-classified according to the staining grade. Each tissue sample
in this cohort was scored by a trained pathologist using a discrete scoring system (0, 1, 2, 3). A score zero
represents no significant protein expression (negative) because there is no staining color, whereas a score three
indicates high expression. Positive results were scored based on both the extent and the intensity of staining.
For score three, intense staining was required in more than 50 percent of the cells. Other scores including one
and two staining comprise in fewer than 50 percent of the total cells [32].

We also obtained the TCGA [62, 61] images by extracting them from the Cancer Digital Slide Archive
(CDSA) [27] that is accessible to the public and, at the time of writing this, hosts 31999 whole-slide images
from 32 cancer types. For the purpose of this study, we analyze 1520 H&E stained whole-slide histopathology
images as well as 1629 H&E stained high resolution image patches (40X magnification) of two TCGA lung
cancer subtypes (i.e., LUAD versus LUSC).

2.2 Classification and diagnostic framework
This study presents a framework (see Figure 1) to discriminate different cancer types, subtypes, immunohis-
tochemistry markers, and marker staining scores of histopathology images (Table 1). For the first step of our
study, the stained whole-slide images with 1504 × 1440 and 2092 × 975 pixels were obtained from TMA and
TCGA databases, respectively. Note that we did not use any pre-processing methods such as color deconvolu-
tion to separate the images from staining [79] or any watershed algorithms to identify cells [81] manually. The
whole images directly used as the input to the pipeline.

The images are then divided in different classes based on the classification aims and the CNN algorithms
are applied on these classes. For each class, images divided in three groups including training, validation, and
test groups. For this purpose, 70% of all images are allocated to the training group and 30% of the remaining
images devoted to validation and test sets.

Figure 1: This flowchart demonstrates the pipeline, which includes extracting data, training and evaluation of
CNN algorithms, and prediction of various classes. A: tumor image preparation of biopsy samples, B: extracting
biopsy-derived tissue slides from TMA and TCGA databases, C: analysis of images using CNN_smoothie, and
D: evaluation of the algorithms performance and annotation of the output results.

2.3 Convolutional Neural Networks (CNNs)
In this study, we use various architectures of CNN algorithms (i.e., deep neural network methods). Neural
networks which are the basis of most deep learning approaches comprise certain parameters Θ = {W,B}, where
W is a set of weights and B a set of biases. A neural network also consists of neurons with the activation α
which represents a linear combination of the input x to the neuron and the parameters. In addition, the neural
networks contain an element-wise non-linearity sigma(.) that refer to a sigmoid and hyperbolic tangent function
as α = σ(wTx+ b). Consequently, the most well-known traditional neural networks is called the multi-layered
perceptrons (MLP) that have many layers of transformations. A neural network which contains multiple hidden
layers, in between the input and output, is considered a "deep neural network". A survey on deep neural
network approaches and their application in medical image analysis is described in [49].
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Convolutional neural networks have become the technique of choice for using deep learning approaches
in medical images analysis since the first time in 1995 by [51]. Before deep neural networks (DNN) gained
popularity, they were considered hard to train large networks efficiently for a long time. Their popularity
indebted to good performance of training DNNs layer by layer in an unsupervised manner (pre-training),
followed by supervised fine-tuning of the stacked network. In this project, we are going to utilize DNNs for
histopathology image analysis. They are the most successful type of models for image analysis because they
comprise multiple layers which transform their input with convolution filters [5, 33, 34].

The general concept of a convolutional network is to obtain simple features with higher resolution, and then
return them into more complex features at a coarser resolution [73]. The CNNs use the spatial structure of images
to share weights across units and benefit of some parameters to be learned a rotation, translation, and scale
invariance. So, each image patch around each image can be extracted and directly used as input to CNNs model.
One of the very first successful application of deep CNNs was shaped for hand-written digit recognition in LeNet
[46]. Then, various novel techniques were developed for training deep networks through efficient ways. The
contribution of Krizhevsky and his colleagues [44] to the ImageNet challenge made a watershed advance in core
computing systems. They proposed a new architecture of CNN, AlexNet, that won the mentioned competition in
December 2012. Currently, the CNNs with deeper architecture and hierarchical feature representation learning
have made dramatic changes in object recognition related problems [69, 44, 75, 74, 12].

Simonyan and Zisserman [74] explored much deeper networks containing 19-layer model which called Ox-
fordNet and won the ImageNet challenge of 2014. Then, Szegedy et al. [75] introduced a 22-layer network named
GoogLeNet which later referred to as Inception and made use of so-called inception blocks [48], a module that
replaces the mapping defined in the Xk

l = σ(W k
l−1 ∗X l−1+bk

l−1) equation with a set of convolutions of differ-
ent sizes. This Inceptions family architectures allow a similar function to be represented with less parameters.
Also, the ResNet architecture [31] won the ImageNet challenge in 2015 and consisted of so-called ResNet-blocks.
However, the majority of recent landmark studies in the field of medical imaging use a version of GoogLeNet
called Inception-V3 [25, 19, 50]. Recently Esteva et al. [19] utilized a deep CNN as a pixel-wise classifier which
is computationally demanding in cancer research to detect melanoma malignant with high performance.

The advantage of Google’s Inception architectures is their good performance even under strict constraints on
memory and complexity of computational problems. For example, GoogLeNet [75] used 5 million parameters,
which represented a significant reduction in parameters with respect to AlexNet [44] and VGGNet [74]. This is
the reason of using Inception networks in big data analysis where huge amount of data needed to be processed
at reasonable time and computational cost [59, 72]. Various version of Inceptions are the attempt of Google
team to scale up deep networks. For example, in 2014 [75] proposed Inception-V1 and then in 2015 [35] revealed
batch normalization. Then, the authors proposed Inception-V2; they presented a derivative form of Inception-v2
which refers to the version in which the fully connected layer of the auxiliary classifier is also-normalized. Then,
they call the new model as Inception-v3 which comprising Inception-V2 plus batch-normalization (BN) auxiliary
[76]. The Google team also tried various versions of the residual version of Inception such as Inception-ResNet-
V1 which is high computational cost version of Inception-v3. Another version is Inception-ResNet-V2 that its
computational cost matches with the newly introduced Inception-V4 network [77]. However, the Inception-V4
proved to be significantly slower due to the larger number of layers. One of the major technical difference
between the residual and non-residual Inception variants is that using BN only on top of the traditional layers
in the case of Inception-ResNet [77].

2.4 Transfer learning
Image classification was one of the first areas in which deep learning made a principal contribution to medical
image analysis. In medical image classification multiple images are considered as inputs with a single diagnostic
result as output (e.g., cancerous or normal). A dataset comprising diagnostic image samples have typically
bigger sizes with smaller numbers compared to those in computer vision. The popularity of transfer learning for
such applications is therefore not surprising that essentially refers a method with two popular and have been
widely applied strategies on medical data. Transfer learning refers to pre-train a network architecture on a very
large dataset and use the trained model for new classification tasks for a dataset with limited size.

The first strategy includes using a pre-trained network as a feature extractor. A major benefit of this
method is not requiring a deep network to be trained and the extracted features smoothly applied to the
existing image analysis pipelines [49]. The second strategy is fine-tuning a pre-trained network [49]. Empirical
investigation about different strategies have revealed conflicting results. For example, Antony et al. [3] showed
that fine-tuning clearly outperformed feature extraction, achieving 57.6 percent accuracy in multi-class grade
assessment of knee osteoarthritis versus 53.4 percent. While, [41] showed that using pre-trained network as a
feature extractor slightly outperformed fine-tuning in cytopathology image classification (70.5 percent versus
69.1 percent). Besides, two recent published papers presented fine-tuned method by pre-trained version of
Google’s Inception-V3 architecture on medical data and achieved a high performance close to human experts
[19, 25]. In addition, CNNs developers also train their own network architectures from scratch instead of using
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pre-trained networks as the third strategy. For instance, Menegola et al. [56] compared few experiments using
training from scratch to fine-tuning of pre-trained networks, and indicated that fine-tuning worked better for a
small data set (i.e., 1000 images of skin lesions).

Given the prevalence of CNNs in medical image analysis, we focused on the most common architectures
and strategies with a preference for far deeper models that have lower memory footprint during inference. In
this study, we compare various strategies and architectures for application of CNN algorithm to assess their
performance on classification of histopathology images. These are included basic architecture of CNN, pre-
trained network (training the last layer) of Google’s Inceptions version 1 and 3, fine-tunning the parameters for
all layers of our network derived from the data using two pre-trained version of Google’s Inception architectures
(versions 1 and 3), and the ensemble of two the state of the art algorithms (i.e., Inception and ResNet).

2.5 Implementation Details
In order to deploy the central architecture, we used a Tensorflow [1] framework. This open source software
solution was originally created by the Google Brain team for machine learning applications on textual data sets.
The framework supports running the training operation of the network on graphics processing units (GPUs) or
traditional computer microprocessors (CPUs). This platform also supports several machine learning algorithms
with the same optimizer. The Python programming language version 2.7 was used for all aspects of this project.
Also, TF-Slim which is a library for defining, training, and evaluating models in TensorFlow was used in this
study. This library enables defining complex networks quickly and concisely while keeping a model’s architecture
transparent and its hyperparameters explicit.

A fixed image size of 20× 20 pixels was selected for CNN-basic architecture to ensure that all images have
the same size and large cells were entirely captured. CNN with the basic architecture consist of a two layer
CNN network with max-pooling blocks; at the end we have two fully connected layers. The image sizes for
Inception-V1, Inception-V3, and Inception-ResNet were automatically selected as 224 × 224, 229 × 229, and
229× 229 pixels by the algorithms, respectively.

All design and training of our method was performed on a desktop computer running the Mac operating
system. This computer was powered by an Intel i5 processor at 3.2 GHz, 16 GB 1867 MHz DDR3 of RAM,
and a solid state hard drive which allowed ruling out bottlenecks in these components. Although we were able
to run all experiments without a GPU (≈7 Gigabyte data), high levels of system memory and a fast storage
medium make this application faster since it depends on loading a significant number of medical images for
training and validation.

The experimental section is split into two parts: While the aim of the first part of experiment is to reach
reliable classification accuracy on the digital pathological images, the goal of the latter is to apply various
architectures of CNNs to better understand the choice for the parameters.

2.6 Metrics for performance evaluation of algorithms
To assess the performance of different algorithms and to select the most appropriate architectures for a given
task and classification aim, we carried out several experiments on the reference datasets. precision-recall curves
(PRCs) are typically generated to evaluate the performance of a machine learning algorithm on a given dataset.
Recall refers to the fraction of relevant instances that have been retrieved over the total amount of relevant
instances, whereas precision measures that fraction of instances classified as positive that are truly positive. In
a binary decision problem, a classifier labels either positive or negative can be represented in four categories:
true positives (TP) are instances correctly labeled as positives. False positives (FP) refer to negative instances
incorrectly labeled as positive. True negatives (TN) correspond to negatives correctly labeled as negative.
Finally, false negatives (FN) refer to positive instances incorrectly labeled as negative. Hence, the precision
and recall are defined as Precision = TP

TP+FP and Recall = TP
TP+FN . In this study, precisions and recalls are

presented by average for multi-class datasets.
To quantify and comparing the performance of various architectures of CNN algorithm on a sample dataset,

commonly used accuracy measures, receiver operating characteristic (ROC), were estimated. The ROC curve
depicts by plotting the true positive rate (TPR) versus the false positive rate (FPR) at various threshold settings.
In ROC plot, FPR locates on the x-axis and TPR on the y-axis. We defined a hard threshold (e.g., from 0 to 1
across a dataset with two classes) for confidence of our predictions. Then, we observe a trade-off between two
operating characteristics, TPR and FPR, by varying this threshold. The true positive rate is also known as
sensitivity or recall, means the proportion of actual positives in machine learning and false positive rate is also
known as (1 − specificity) which is the proportion of actual negatives [29, 89]. Therefore, accuracy is measured
by the area under the ROC curve (AUC); an area of 1 represents a perfect test and an area of 0.5 shows a
worthless test [29, 89].

To evaluate the algorithms performance on all datasets, we also used of two defined measures of accuracy
retrieval curve (ARC): true number (TNu) and false number (FNu) [40]. Therefore, to measure the algorithm
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performances for theses datasets, the accuracy, defined as TNu/(TNu + FNu) which is the fraction of correctly
identified images among all images identified by algorithms, while retrieval is the total number of images
identified by algorithms.

We also address other measures such as Cohen’s kappa [14] which is a popular way of measuring the accuracy
of presence and absence predictions because of its simplicity and its tolerance to zero values in the confusion
matrix [2]. The kappa statistic ranges from −1 to +1, where +1 indicates perfect agreement and values of zero
or less indicate a performance no better than random [14].

The other measure is the Jaccard coefficient measures similarity as the intersection divided by the union of
the objects. The Jaccard coefficient ranges between 0 and 1; it is 1 when two objects are identical and 0 when
the objects are completely different [13].

The Log-loss or cross entropy which is defined as −
∑

j t(j|x) log2
p(j|x)
t(j|x) where p(j|x) is the probability

estimated by the method for example x and class j, and t(j|x) is the true probability of class j for x [8, 18]. It
is used to obtain a solution for a wide variety of loss functions and mathematically convenient because it can
be computed for each example separately [65, 22, 88].

3 Results and Discussions
For the purpose of evaluating our pipeline, we obtained 9649 IHC stained whole-slide images as well as 2490 H&E
stained histopathology images of lung, breast, and bladder cancers from TMAD. We also obtained 1520 H&E
stained whole-slide histopathology images and 1629 H&E stained high resolution image patches of squamous cell
carcinoma and lung adenocarcinoma from TCGA project.In summery, we used eighth different datasets com-
prising 26 classes (See Table 1). As demonstrated in Table 2, we utilized six state-of-the-art CNN architectures.
The first three datasets cover the tasks that are primarily designed for setting up the pipeline (CNN_Smoothie)
across different conditions (i.e., discrimination of different cancers and markers). The other datasets refer to
challenging problems in clinical context and are designed to assess the application of the pipeline. In addition of
investigating different algorithms, we studied the effect of epoch number and training strategies on the accuracy
and compared the performance of various architectures of CNN algorithm for classification and detection of
tumor images.

3.1 Evaluation of various CNN architectures in pathological tumor images
In this section, we present details of our evaluations on various CNN architectures. There are two basic subjects
in analysis of digital histopathology images including classification and segmentation [85]. We restricted the
evaluations to image-based classification. Also, the basic architecture of CNN was utilized as well as Inception-
V1 and Inception-V3 architectures (with fine-tuning the parameters for the last layer as well as all the layers).
In addition, we evaluated the ensemble of Inception and ResNet (Inception-ResNet-V2) on all datasets.

Our results show that CNN_Smoothie is able to detect different cancer types, subtypes, and their related
markers with highly reliable accuracy which depends on the dataset content, dataset size, and the selected
algorithm (Table 2). For example, the pipeline can detect various cancer types by about 100% accuracy (Tumor
type discrimination dataset in Table 2). While, the results of cancer subtype detection are varied from 61%
to 100% based on the selected database, algorithm architecture, and the presence of heterogeneity in a tumor
image (Tumor subtype discrimination datasets in Table 2). In addition, separating various bladder immunohis-
tochemical markers results in 71.5% to 99% accuracy for CNN-basic and Inception-V1 fine-tune, respectively
(bladder biomarker discrimination dataset in Table 2). Application of the mentioned algorithms on breast
immunohistochemical markers lead to 79.2% and 90% accuracy, respectively (breast biomarker discrimination
dataset in Table 2).

Closer look at the Inception-V1 result of bladder cancer (99%) and the related images shows S0084 and
S100P were misclassified with GATA3 and S0084, respectively, in two cases out of 200 cases. Moreover, the
Inception-V1 result (90%) for discrimination of breast biomarkers revealed that all 10% contradictions have
happened between CK17 and CK5/6 due to high similarity between them. This result is in concordant to
previous studies such as [78] that compared different IHC markers in breast cancer and showed CK17 and
CK5/6 have similar expression patterns.
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We configured three datasets (BladderBreastLung, BladderBiomarkers, BreastBiomarkers) to set up the
pipeline for all of the proposed experiments. Pathologists typically know what type of cancer each patient
has or what marker was used for staining in advance. As expected, the algorithms were successfully able to
discriminate various types of cancer with 100% accuracy (Table 2). Furthermore, we designed the experiments to
investigate whether keeping the background color might have the potential to introduce certain inherent biases
in the datasets and affect the result for discrimination of various markers. The slides across BladderBiomarkers
and BreastBiomarkers datasets are stained with different IHC staining colors. However, the results show that
Inception architectures (V1 and V3) provide accuracies more than 90% in case of the colored version of the
dataset (Table 2). When designing the experiments, we were concerned that the convolutional neural networks
might only learn with biases associated to the colors, but the results showed the algorithm’s adaptability in the
presence of color information, and their ability to learn higher level of structural patterns typical to particular
markers and tumors. This result is in concordance with a previous study that compared three dataset types
based on different configurations (i.e. segmented, gray and colored) [57]. Mohanty et al. [57] showed that the
performance of the model using segmented images is consistently superior than gray-scaled images, but slightly
lower than colored version of the images.

The low concordance of the classification results (by algorithms) for BladderScores and BreastScores datasets
(Table 2) to the labels that were determined by pathologists, could be related to the high heterogeneity within
tumor cell populations of each slide. Moreover, because we did not have enough images to separate each classes
individually, we blended all markers with the same score together (e.g. class score 0 contains GATA3-score 0,
CK14-score 0, S100P-score 0, and S0084-score 0). Thus, discrimination of various images in these classes became
more challenging. The algorithms are then trained for each score disregard to the markers. Our findings are in
agreement with previous studies which showed significant variability between pathologists in score discretization
[82, 67, 63, 23, 10, 7, 38] and confirmed that 4% of negative and 18% of positive cases are misclassified even for
one type of marker. Consequently, S0084 marker had the minimum cases of misclassification in bladder cancer.
Furthermore, the minimum misclassification is related to the score 3 and EGFR marker which is a well known
basal marker for breast cancer therapy [45]. Despite the difficulty of the task, the result are comparable with
those ones which classified by expert pathologists [80].

Although medical images are mostly interpreted by clinicians, the accuracy of their interpretation is reduced
due to subjectivity, large variations across interpreters, and exhaustion [24, 84]. We reviewed BreastScores
and BladderScores datasets and the content images that are labeled as negative and positive scores. We found
out the low concordance of some our result also could be indeed due to significant human errors in labeling,
particularly among positive scores (i.e score 1 , 2, or 3) (Figure 2).

Figure 2: Low accuracy may be related to human errors in labeling the IHC scores. For example, figures
A, B, C, and D labeled to score 3 by pathologists, while the algorithm (Inception-V1) has classified them to
score 3, 3, 1, and 0, respectively. In particular, figures E and G are both labeled to score 0 by pathologists;
however, the algorithm correctly has classified them into score 0 and 1, respectively. Finally, figures F and H
are labeled to score 2 by pathologists while the algorithm has classified them into score 2 and 3, respectively.
Closer manual inspection of the images indicate the algorithm results are indeed more reliable. Highlighted
probability scores in green and orange indicate concordance and discordance between algorithm classification
and pathologist labeling, respectively.
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In this regard, we categorized the image datasets into two negative an positive classes for the breast cancer
and applied CNN-basic and Inception-V3 (last layer training) on them. The result showed significant increasing
of the algorithms performance. The CNN algorithm with basic architecture could discriminate the positive
(score 1, 2, and 3) and negative (score 0) images with 94% accuracy. Besides, applying the Inception-V3 which
its last layer was trained indicated 96% accuracy for the same dataset.

3.2 Discrimination of tumor subtypes across heterogeneous images
Tumor tissues are highly heterogeneous [54] that lead in great limitation for the correct diagnosis. Tumor
heterogeneity is the result of genetic disorders which potentially reflects on a variability of morphological features
[60].

We randomly selected 1629 H&E stained high resolution image patches (i.e. a few patches of each tumor
slide) from TCGA [62, 61] comprising lung adenocarcinoma and squamous cell carcinoma. Then, we trained
all CNN architectures for the selected images to discriminate the two subtypes. Consequently, we assessed
the performance of the trained algorithms for a separated test set. The test set includes 50 different high
resolution image patches of the tumor slides which we trained the algorithms for them (i.e. we considered
it as the Intra-tumor test set) (Figure 3). The result showed that while CNN-basic cannot dedicate various
cell populations to each subtype, the complex architectures such as Inception-V1 and -V3 can successfully
distinguish adenocarcinoma and squamous cell carcinoma across heterogeneous tissue of the tumor slides with
no error (TCGA-IntraHeterogeneous dataset in Table 2).

In addition, we assess the performance of the algorithms on inter-tumor heterogeneity of lung cancer. We
selected 1520 whole H&E stained histopathology images from TCGA as well as 860 H&E and IHC stained
images from TMA database for both lung cancer subtypes (adenocarcinoma and squamous cell carcinoma).
Then, we randomly selected and extracted 100 images of each TCGA and TMA datasets separately and trained
all algorithms’ architectures for the remaining images. Since the test set images were selected from different
patients (tumor slides) that the algorithm never trained for their whole slides or patches, we considered it as
Inter-tumor test set. In this way, the algorithms should cope with wide range of cell population variance (intra
each individual image and inter different images).

The result indicated 92% and 83% accuracy using the networks which their all layers are fine-tuned based
on Inception-V1 parameters for the TMAD and TCGA test sets, respectively (Table 2). The low accuracy of
Inter-tumor test set in compare to the Intra-tumor test set can be associated to the high heterogeneity that
present across lung cancer for various patients. The mentioned heterogeneity may associated to the various
growth patterns (lepidic, acinar, papilary, and solid) [54], grades, and stages in a mixed LUAD and LUSC (or
cancer and normal) of the obtained images from various lung cancer patients (Figure 3).

Figure 3: Intra- and Inter-tumor heterogeneity. The figures show the squamous cell lung cancer in the left (A)
and adenocarcinoma cell lung cancer in the right side (B). The top images (A and B) represent whole-slide
images and the down images represent the extracted high-resolution patches from TCGA datasets. The red
cubes shows the patches that the algorithms are trained for them and the blue cubes indicate the patches
comprising test set.

Based on the overall results, it could be useful to use suitable architectures of CNN algorithms based on
the goal of the projects. For example, we can use simpler and complex architectures of CNN for discrimination
of tumor subtypes through intra- and inter-heterogeneity, respectively. Inter-tumor heterogeneity seems to be
more difficult task to detect so needs more complex architecture, while application of the complex architecture
on Intra-tumor dataset result in over-fitting and loosing valuable heterogeneity information.
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3.3 Selecting optimal epoch number and training approach of CNN algorithm
In order to find the optimal epoch number for CNN architectures over different datasets, we stop the training
process when the validation accuracy converges to its maximum. We consider that stopping point as the optimal
epoch for the tested architecture and dataset (e.g. see Figures 4 and 5). The final classification for images in
the test set is performed by re-training the proposed architecture over both training and validation sets with
the optimal epoch number.
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Figure 4: The graph shows the optimal epoch
numbers for Inception-ResNet (last layer training),
Inception-V1 (fine tuning all layers), and Inception-
V3 (fine tuning all layers) to get highest accuracy in
BladderBiomarkers
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Figure 5: Inception-V1 via three different training
strategies (last layer training, fine tuning the param-
eters for all layers , and training from the scratch) in
BreastBiomarkers dataset.

As Table 2 demonstrates, the inceptions-based architecture networks (V1 and V3) that are fine-tuned for
all layers, are consistently superior. We also compare various architectures of CNN algorithm using PRC
(Figure 6) and ROC (Figure 7 and 8) in one and two sample datasets, respectively, using various thresholds. In
this experiment, we consider outputs of an algorithm if prediction’s confidence of a sample pass the determined
threshold. We observe a trade-off between precision and recall (for PRC) and TPR and FPR (for ROC) by
varying this threshold. These figures reveal that algorithms are able to classify more images which results in a
larger recall via smaller threshold.
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Figure 6: Precision versus recall for the TCGA-InterHeterogeneity dataset. The 4000 epoch version is used for
Inception-V3 (training the last layer).

We also compare accuracy of different strategies for training Inception-V1. In this regard, we train the
model on the marker dataset of breast cancer across training the last layer, fine-tuning of the parameters for all
layers, and the training of our own network from scratch (Figure 5). As the figure shows, the best performance
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is obtained using a pre-trained network and fine-tuning the parameters for all layers of the network, which is in
concordance with the results of previous studies [19, 25].

3.4 Robustness and limitations of CNN_Smoothie
To demonstrate the robustness of the CNN_Smoothie method, we apply it to eight different datasets of
histopathological images with different spectrum of apparent colors to show the uniformity of its perfor-
mance.The image set spans multiple tumor types, along with several different image colors. The results show
that although the colors space for different images have different distributions, our CNN_Smoothie method can
successfully identify and register tumor variations and discriminate them consistently and robustly (Figure 9).

Figure 9: CNN_Smoothie successfully identifies tumor subtypes (LUAD vs. LUSC) and discriminates them
consistently and robustly across different spectrum of colors. Highlighted probability scores in green indicate
the output of classification using Inception-V1.

In addition, we evaluate the performance of algorithms using various statistical measurements on TMAD-
InterHeterogeneity and TCGA-InterHeterogeneity datasets to assess the robustness of the results (Table 3).
These measures include AUC, average of Precision and Recall, Cohen’s kappa, Jaccard Coefficient, and Log-
loss. The Youden index [86] also referred to the ROC which is an indicator for the performance of a classifier
and measured as specificity + sensitivity − 1 (Table 3).
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4 Conclusion
The era of computational pathology is rapidly evolving and there are enormous opportunities for computational
approaches to provide additional prognostic and diagnostic information that cannot be provided by pathologists
alone [9, 52, 68, 70]. The CNN_Smoothie pipeline presented here provides a novel framework that can be easily
implemented for a wide rang of applications, including immunohistochemistry grading and detecting tumor
biomarkers. Recently several papers have been published that utilize various methods such as classical machine
learning approaches including support vector machine (SVM) and random forest (RF) [87], and deep learning
methods such as CNN-basic [80] or Inception methods [19]. However, this is the first report that utilize various
architectures of CNN algorithms and compare their performance on histopathological tumor images across
various configurations.

The aim of this project is to evaluate the utility of convolutional neural networks to automatically identify
cancer cell types, subtypes, related markers, and their staining scores. We indicate deep learning approaches can
provide accurate status assessments in clinical conditions. Our results show the accuracy of convolutional neural
networks primarily depends on the size, complexity, algorithm architecture, and noise of the dataset utilized. We
also show that our study raise several important issues regarding tumor heterogeneity since different response
of deep learning could be due to genetic heterogeneity. Further studies required in order to clarify the efficiency
of the deep learning application in detection of heterogeneity through digital images.

In terms of computation cost, note that we optimized our pipeline so that it can be run on CPUs. However,
GPUs are indeed preferable to scale up the method to Pan-Cancer Analysis and accelerate training speed for
future work.

The discordance of our findings and pathology results are due to the low number of tumor images. In
certain cases, we blended some images to increase the number of images in each class. In particular, the images
associated with biomarkers were blended for each score in BreastScores and BladderScores datasets. Then,
the algorithms were trained for different scores disregard of the biomarkers associated with bladder and breast
cancers. In addition, the number of images in some classes are not balanced which lead to compliance biases.
Finally, we did not train all the algorithms from scratch because GPU is necessary for some datasets and
architectures due to their higher complexity. We leave this for future work.

Our method yields cutting edge sensitivity on the challenging task of detecting various tumor classes in
histopathology slides, reducing the false rate. Note that, our CNN_Smoothie pipeline requires no prior knowl-
edge of an image color space or any parameterizations from the users. It provides pathologists or medical
technicians a straightforward platform to use without requiring sophisticated computational knowledge.
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