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Abstract

To explore theories of predictive coding, we presented
mice with repeated sequences of images with novel im-
ages sparsely substituted. Under these conditions, mice
could be rapidly trained to lick in response to a novel
image, demonstrating a high level of performance on the
first day of testing. Using 2-photon calcium imaging to
record from layer 2/3 neurons in the primary visual cor-
tex, we found that novel images evoked excess activity
in the majority of neurons. When a new stimulus se-
quence was repeatedly presented, a majority of neurons
had similarly elevated activity for the first few presenta-
tions, which then decayed to almost zero activity. The
decay time of these transient responses was not fixed, but
instead scaled with the length of the stimulus sequence.
However, at the same time, we also found a small fraction
of the neurons within the population (~2%) that contin-
ued to respond strongly and periodically to the repeated
stimulus. Decoding analysis demonstrated that both the
transient and sustained responses encoded information
about stimulus identity. We conclude that the layer 2/3
population uses a two-channel predictive code: a dense
transient code for novel stimuli and a sparse sustained
code for familiar stimuli. These results extend and unify
existing theories about the nature of predictive neural
codes.

Introduction

Adaptive and coordinated behavior requires that an ani-
mal be able to make predictions about the near and far fu-
ture. This intuition that some neural computations should be
‘predictive’ has a long history, starting with ideas about how
the receptive field structure of retinal ganglion cells relates
to the statistics of natural visual scenes (Atick and Redlich,
1990, 1992; Attneave, 1954; Srinivasan et al., 1982). More
recently, it has been discovered that other retinal circuits
carry out more active forms of prediction about the visual
world, including predictions about the future location of ob-
jects moving at constant velocity (Berry et al., 1999; Bul-
lock et al., 1990; Johnston and Lagnado, 2015; Schwartz
et al., 2007b; Trenholm et al., 2013) and about temporally
periodic sequences of light intensity (Schwartz and Berry,
2008; Schwartz et al., 2007a). Through these computa-
tions, the retina composes a population neural code that rep-
resents visual information that was predictable to the retina
separately from information that was surprising (Berry and
Schwartz, 2011) and can efficiently capture the predictive

components of the overall sensory information (Palmer et al.,
2015). Thus, some of the diversity of retinal circuitry is used
to make predictions about the upcoming visual stimulus, and
some of the redundancy of the population code is used to
represent visual stimuli that are predictable as well as those
that are surprising.

Given the importance of predictive computations for an
animal’s behavior, one might expect that other circuits in the
brain perform additional predictive computations, not per-
formed by the retina. In particular, related ideas about pre-
dictive computation have also been influential in theories
about the function of the neocortex (Barlow, 1994; Bastos
et al., 2012; Heeger, 2017; Mumford, 1992; Rao and Bal-
lard, 1999). Here, the relatively stereotyped local circuitry
of the neocortex has long led to speculation that each local
circuit might be carrying out a somewhat similar, fundamen-
tal computation on its specific inputs. In addition, the or-
ganization of sensory-motor pathways into hierarchies (e.g.,
V1 —» V2 — V4 — IT in the ventral visual stream) with
stereotyped feedforward and feedback connections (Felle-
man and Van Essen, 1991; Markov et al., 2014; Rockland
and Pandya, 1979) has motivated ideas about hierarchical
predictive codes, where higher levels of the hierarchy send
predictions down to lower levels of the hierarchy that then
compare their inputs against those predictions and only send
the surprises up the hierarchy (Bastos et al., 2012; Mum-
ford, 1992; Rao and Ballard, 1999). On the other hand, this
same anatomy has motivated another theory in which pre-
dictions are fed forward in the hierarchy and errors are fed
back (Heeger, 2017). The experiments reported here were
motivated by the broad hypothesis, based on this prior work,
that predictive computations might be distributed throughout
the sensory hierarchy, and that they might constitute an im-
portant piece of the core set of computations carried out in
each local neocortical circuit.

Among the simplest kinds of predictable sensory patterns
are periodic stimuli. When presented with a violation of an
ongoing periodic stimulus, many areas of the cortex generate
a specific response to that violation. Examples include the
mismatch negativity (MMN) (Naatanen et al., 2007; Naata-
nen et al., 1982) as well as analogs in other sensory cortices
(Bullock et al., 1994; Klinke et al., 1968; Sutton et al., 1967)
observed in human EEG and in Ca** imaging data (Hamm
and Yuste, 2016). On a cellular level, stimulus-specific adap-
tation (SSA) enhances the response of neuron in the primary
auditory cortex to a rare stimulus (Ulanovsky et al., 2003), an
effect that is further enhanced when the rare stimulus violates
a periodic pattern (Yaron et al., 2012). Similarly, neurons
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in the primary visual cortex exhibit suppression to common
stimuli and enhancement to rare stimuli (Hamm and Yuste,
2016; Vinken et al., 2017). When a natural movie clip is
repeated many times, responses become more reliable and
sequences of activity subtly reverberate when the stimulus
ends (Yao et al., 2007). Similarly, when the cortex is trained
with a spatial sequence of activation, stimulation at the ini-
tial spatial location triggers a subtle reactivation of the whole
sequence (Xu et al., 2012). On a longer time scale, repetition
of the same stimulus sequence over multiple days enhances
the neural response (Frenkel et al., 2006) and leads to pattern
completion of a missing image (Gavornik and Bear, 2014).
Finally, a mismatch between expected versus actual visual
stimuli during closed-loop running can generate a strong re-
sponse in V1 (Keller et al., 2012; Zmarz and Keller, 2016).

Here, we investigate predictive processing of repeated
stimuli in the primary visual cortex. This cortical area is ad-
vantageous because it is the first stage in the cortical visual
hierarchy, so its inputs embody relatively few prior compu-
tations. We formed temporal sequences from images hav-
ing a random assortment of line segments, and presented the
same temporal sequence repeatedly to an awake, head fixed
mouse. While this repeated temporal sequence was ongoing,
we occasionally substituted images with novel images drawn
from the same distribution. We first trained mice to lick
in response to the presentation of a novel image. Animals
readily learned this task, achieving significant performance
on the first day of testing and generalizing to sequences of
up to 7 images. Then, in a seperate set of experiments, we
used two-photon Ca** fluorescence imaging to measure neu-
ral activity in layer 2/3 (Dombeck et al., 2010). We found
that the majority of neurons exhibited excess activity in re-
sponse to a novel image. Similarly, when we began present-
ing a new temporal sequence, a majority of the neurons ex-
hibited elevated firing that relaxed to a steady-state after ~2
presentations of the same temporal sequence. Interestingly,
the dynamics of this adaptation process were not constant
in time, but instead scaled with the duration of the tempo-
ral sequence. In addition, a small fraction of cells (~2%)
exhibited a strong periodic response to a given temporal se-
quence. When we changed the temporal sequence, a different
sparse subset of neurons exhibited periodic responses. Fi-
nally, decoding analysis showed that both the transient and
periodic responses conveyed information about the identity
of the temporal sequence. Thus, the population code in layer
2/3 of primary visual cortex exhibits two channels of infor-
mation: a sparse channel of highly active cells represent-
ing familiar or predictable stimuli, and a dense channel of
weakly active cells for novel or surprising stimuli.

Results

In order to explore how the visual system processes novel
versus familiar images, we first tested whether mice could
discriminate a novel image from otherwise similar repeated
images. Because we wanted to focus on the role of early
visual processing, we designed our stimuli to drive neurons
in the primary visual cortex. We chose images that consisted

of a superposition of Gabor patches (see Methods), which
resemble a random assortment of line segments (Fig. 1A).
We randomly generated a set of images from this ensemble
and composed them into a temporal sequence, which was re-
peated many times (Fig. 1B; blue). In addition, we replaced
a small fraction of these images with a novel image (Fig.
1B; orange). Because all images were drawn from the same
ensemble, they were closely matched for low-level image
statistics, like overall light level, contrast, and spatial scale
(see Methods). Each image was displayed for 200 — 300
ms, a time long enough that we can rule out a retinal ori-
gin for any predictive processing (Schwartz et al., 2007a). In
order to vary the level of difficulty of the task, we formed
sequences containing from 2 up to 7 images.

Animal Behavior

Water restricted mice were head-fixed but free to run on
a stationary, vertical Styrofoam wheel while they viewed the
above described visual stimuli (Fig. 1A). A lick port made
water available to animals when a novel image was pre-
sented. Under these conditions, animals engaged in a strat-
egy of exploratory licking. After a 3-day shaping period, the
rate of lick onsets (which is the first lick within a burst of
licks) showed a sharp increase following the onset of a novel
image (Fig. 1D). This elevated lick onset rate following a
novel image is evidence that the animal learned to recognize
the novel image and used this recognition to drive its licking
behavior. Over six days of this training regimen, the peak
lick onset rate rose and the background lick onset rate de-
clined (Fig. 1F), resulting in a marked increase in statistical
significance of the peak (Fig. 1G). Notice that the licking be-
havior was significant on the first day of training (probability
of that the observed increase in lick onset rate at the time of
anovel image was due to chance was p = 8.1e-5). This rapid
acquisition of the task suggests that recognition of novelty,
even in the case of abstract images, may be a fairly natural
task for the animal.

In order to explore the generality of this behavior as well
as to make stronger contact to the V1 literature, we repeated
our paradigm using temporal sequences composed of full
field static gratings having different orientations (see Meth-
ods). Again, we found that animals began to lick with a short
latency after the onset of a novel image (Fig. 1E) and ac-
quired this ability on the first day of training.

We next trained our mice to perform this task for longer
temporal sequences. Our method was to add one new im-
age to the previously repeated temporal sequence and train
on the increased sequence length until the animal achieved
sufficiently high performance. As for the 2-image sequence,
the significance of the peak in lick onset rate at the time of
the novel image steadily increased as a function of days of
training (Fig. 1H). By this method, we were able to train an-
imals to achieve highly significant behavioral performance
for sequences of 5—7 Gabor images (Fig. 1) and 3-5 grating
images (Fig. 1J). As we only trained for ~1 week in a given
condition, it is possible that mice could recognize novel im-
ages in even longer temporal sequences with more training.
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Figure 1.

Mice can learn to lick in response to a novel image. A. Water restricted, head-fixed mice received water through a lickport while

viewing stimuli. B. Temporal sequences were formed from several different images, each consisting of 100 randomly chosen, superimposed
Gabor functions. C. Such a temporal sequence was repeated with novel images randomly inserted (orange). D, E. The rate of lick onsets as
a function of time relative to the occurrence of a novel image for sequences formed from (Gabor, grating) images. F. Background (red) and
peak (blue) lick onset rate as a function of number of training days with a 2-image Gabor sequence. G. Significance of the peak in the lick
onset rate as a function of number of training days (1 mouse; 2-image Gabor sequence). H. Significance of the peak in the lick onset rate as
a function of number of days of training with a 5-image Gabor sequence; averaged over 5 mice. I, J. Sequence length achieved at criterion
performance (see Methods) versus number of training days for (Gabor, grating) sequences; colors are for different mice.

Neurophysiology

We next explored the responses of neurons in the primary
visual cortex of naive mice under the same visual conditions.
Our approach has been to use two-photon Ca** fluorescence
imaging in mice that were awake and head-fixed but free to
move their legs on a styrofoam ball placed below them (Fig.
2A) (Dombeck et al., 2007; Harvey et al., 2012). Animals

were from a Thyl line (GP5.3, Janelia) that expressed the
protein GCaMP6f (Chen et al., 2013) in excitatory neurons.
In order to identify the primary visual cortex, we first carried
out large-scale brain mapping using drifting bars (Fig. 2B;
see Methods). Then, we selected a field of view in V1 and
imaged at cellular resolution in layer 2/3. We used custom
software to identify regions-of-interest corresponding to cell
bodies having a “halo” pattern of fluorescence indicating ex-
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Figure 2. Two-photon calcium imag-
ing. A. Head-fixed mice were awake and
free to run on a Styrofoam ball, while vi-
sual stimuli were presented on a toroidal
screen and neural activity was imaged
through a two-photon microscope. Ani-
mals viewed the visual stimuli passively
and performed no behavioral tasks. B. Re-
sults from brain area mapping, demarcat-
ing area V1 and showing the field-of-view
for cellular resolution imaging (box). C.
Field-of-view with identified regions of

interest (ROIs; red). D. Example trace of

pression mostly in the cytoplasm (Fig. 2C; see Methods).
The time course of the fractional change in fluorescence in a
single ROI (AF/F) exhibited sparse events on a background
(Fig. 2D). Because we were interested in the capacity of the
visual cortex to carry out unsupervised learning of tempo-
ral sequences, we did not present water rewards during our
neurophysiology experiments.

In the Novelty Experiment, we repeated a 4-image se-
quence with images of 250 ms duration. A single sequence
was repeated for ~10 min while novel images were randomly
substituted every ~5 sec (see Methods). Most neurons had
a weakly modulated response to the repeated temporal se-
quence (Fig. 3A blue). But when a novel image was sub-
stituted, there was a large, transient response (Fig. 3A red).
To quantify this effect, we subtracted the activity triggered
on the repeated temporal sequence from that triggered on
the presentation of a novel image to get the excess activity
(Fig. 3A black). Within a population of over 1100 neural
responses, the clear majority exhibited excess activity in re-
sponse to novel images (Fig 3B; p<0.05 for 878/1134 =77%,
see Methods).

The amplitude of this novelty response varied in the pop-
ulation (Fig. 3C), ranging up to AF/F ~ 0.2. When we con-
verted this amplitude into a rough estimate of the number of
spikes, we found that the number of excess spikes was ~0.5
spikes per neuron per novel image (Supplemental Fig. S1).
While this response may seem small, it is important to note
that this analysis averages over many different examples of
novel images. In other words, the number of excess spikes
elicited by a single novel image within layer 2/3 of the pri-
mary visual cortex is ~150,000 (see Methods) — a signal that
could very well be salient to downstream visual areas (see

e A AA A
X neural activity in one ROI.
- 1
A W
o y
U W RN A
1 A
2 AF/FL—
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Methods). We found that the latency and temporal dynamics
of the novelty response were independent of the amplitude
(Fig. 3D). These results were substantially unaffected by a
maximal choice of neuropil subtraction (Supplemental Fig.
S2). At the same time, the neuropil itself showed clear ex-
cess activity after the novel image (Supplemental Fig. S3),
which is consistent with the fact that a majority of measured
neurons also showed a novelty response.

It is known that Ca** signals in V1 can be modulated
by the animal’s locomotion (Keller et al., 2012; Niell and
Stryker, 2010; Saleem et al., 2013). Therefore, we averaged
the Ca*™™ response to a novel image over periods when the
animal was either running or still. We did not find significant
differences (Supplemental Fig. S4B,D). In addition, sudden
unexpected visual stimuli, like dark looming objects from
above (Yilmaz and Meister, 2013) or the onset of a bright
light (Godsil and Fanselow, 2004) can trigger a defensive re-
sponse, causing either flight or freezing. We therefore mon-
itored running speed during our experiments and correlated
speed with the onset of a novelty response. We did not ob-
serve a change in running speed at the onset of a novel image
(Supplemental Fig. S4C,E). From these control analyses, we
conclude that the novelty response is not the result of the
animal’s locomotion or of a defensive response to the visual
stimulus.

Exposure to stressful stimuli leads to an activation of the
sympathetic nervous system, which has been shown to di-
late the pupil through the neural pathway of amygdala —
locus coeruleus — Edinger-Westphal nucleus — pupil (see
(Samuels and Szabadi, 2008) for a comprehensive review).
Perhaps a novel image in our experiment evokes this form
of stress, analogous to a ‘startle response’ evoked by a loud
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auditory stimulus? To address this possibility, we tested
whether the presentation of a novel image caused a change in
the pupil diameter. It did not (Supplemental Fig. S5C). Simi-
lar to running, pupil dilation increased the background neural
activity but did not qualitatively change the novelty response
(Supplemental Fig. S5B,D,E). In fact, pupil diameter corre-
lated with running (Supplemental Fig. S5F) (McGinley et al.,
2015). We also tested whether the novel image triggered sac-
cadic eye movements. Again, it did not (Supplemental Figs.
S6, S7), nor did periods with many eye movements qualita-
tively change the novelty response. Together, these analyses
strongly suggest that the novelty response should not be in-
terpreted as a form of generalized startle response. While
this result might seem counter-intuitive, it is consistent with
the fact that the presentation of a novel image under these
conditions has very low salience for human observers. Read-
ers are encouraged to view video clips of the visual stimulus
(Supplemental Videos).

Conceptually, a neuron cannot exhibit a novelty response
until the underlying temporal sequence is repeated at least
once. Thus, we wanted to characterize the dynamics over
which this response emerges. To this end, we designed
a Variable Repetition Experiment in which we displayed a
set of 3-image sequences of 300 ms per image, denoted by
(ABC);, where i is the sequence index (Fig. 4A; see Meth-
ods). Each sequence repeated for L; times before a novel
image was displayed (and which was followed by one more

Time Relative to Novel Frame (sec)

repeat to help us distinguish responses to the novel image
from responses to the next sequence), together forming an
‘adaptation block’. Different values of L; taken from the set
[2, 4, 9, 19, 39] were randomly interleaved, allowing us to
vary the number of repeats of the same temporal sequence
(which we call ‘cycles’) before the presentation of a novel
image. Each sequence was unique.

We found that novelty responses emerged rapidly. Signif-
icant excess activity was found in the population after as few
as 1 repeated cycle (Fig. 4B). The effect increased with more
cycles and saturated after ~20 cycles (Fig. 4B inset). Fitting
an exponential curve to the effect amplitude versus number
of cycles revealed a time constant of 3.2 + 0.7 cycles, or
alternatively 2.9 + 0.7 sec, for the emergence of the novelty
response.

The Transient Response

We also noticed that neurons exhibited elevated activity
when we began presenting a new temporal sequence. In this
experiment, each adaptation block was always preceded by
a block that used a different sequence. Therefore, this initial
elevated activity is conceptually very similar to the novelty
response. We quantified the emergence of this transient re-
sponse by measuring its amplitude as a function of the num-
ber of cycles, Li-1, in the previous adaptation block (Fig.
4B). This amplitude agreed closely with the amplitude of the
novelty response and exhibited the same time scale of emer-
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Figure 4. Dynamics for the Emergence
of the Novelty Response. A. In the Vari-
able Repetition Experiment, each adapta-
tion block i had a new temporal sequence
along with a random choice of the num-
ber of cycles of that sequence before a
novel image, L;. Each block then had
one more cycle of the temporal sequence.
Then a new block began without blanks
or interruptions. B. Neural activity aver-
aged over the entire population for differ-
ent choices of L (curves offset for clar-
ity). Inset: Average activity for the nov-
elty response (filled circles) and the tran-
sient response (open circles) plotted as a
function the number of repeated cycles,
L, of the temporal sequence along with
an exponential curve fit constrained to run
through the origin (dashed line); error bars
are standard error over n=>5 mice.
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gence (Fig. 4B inset). This result is expected from causality,
because both a novel image and the first image of a new tem-
poral sequence violate the periodicity of an ongoing tempo-
ral sequence. Of course, a new temporal sequence presents
several novel images in a row, and as a result, the response is
more extended in time than is the response to a single novel
image.

In addition, the transient response adapted strongly as a
given temporal sequence was repeated, quickly reaching a
steady-state (Fig. 4B, elevated activity near t=0). This adap-
tation process had a time constant of 1.4 = 0.4 sec in the
Variable Repetition Experiment. This time scale was signif-
icantly shorter than that for the emergence of the transient
response (p < 3¢1077), suggesting that different circuit mech-
anisms may be involved.

We next wondered whether the time scale of adaptation
was fixed, as one might expect from a single biophysical
mechanism, or variable, depending on the properties of the
temporal sequence. To this end, we designed a Variable Se-

I
40

quence Length Experiment, in which we varied the sequence
length. Similar to the Variable Repetition Experiment, we
formed adaptation blocks. In each block i, we randomly
chose the number of images in the sequence, S;, from the
set [3, 6, 9, 12] and then randomly generated a new temporal
sequence of this length (Fig. 5A). All images had the same
duration, 300 ms, so that the total sequence duration ranged
from 0.9 sec up to 3.6 sec. In all adaptation blocks, the given
sequence was repeated for 20 cycles.

We observed that the transient response decayed with
slower dynamics when we repeated longer temporal se-
quences (Fig. 5B). Fitting an exponential curve to these dy-
namics, we found that the time constant of adaptation, Tgecay,
scaled linearly with the total temporal duration of the se-
quence (Fig. 5C). In other words, the dynamics of adapta-
tion was constant in units of the number of sequence repeats,
Tdecay = 2.1 £ 0.3 cycles.
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Figure 5. Flexible Dynamics of Adap-
tation to a Repeated Temporal Se-
quence. A. In the Variable Sequence
Length Experiment, each adaptation block
i had a new temporal sequence along with
a random choice of the sequence length,
Si. Each sequence was repeated for 20
cycles, and then a new block began with-
out blanks or interruptions. B. Population
average activity plotted versus time for se-
quences of different duration (blue), along
with exponential curve fits (red); curves
offset for clarity. C. Time constant of
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The Sustained Response

In order to gain more insight into these phenomena, we
next examined the response across the entire population of
neurons for a single choice of temporal sequence. In order
to better average over neural noise, we designed a Repeated
Sequence Experiment. This experiment also had adaptation
blocks, but the difference was that we chose 10 different tem-
poral sequences and repeated each of those blocks a total
of 18 times (blocks for each sequence were randomly in-
terleaved; see Methods). As before, we observed adapta-
tion to repeated temporal sequences and transient responses
to novel images. But in addition, a small fraction (roughly
2% under our visual conditions) showed a qualitatively dif-
ferent response type: a sustained response to the repeated
stimulus (Fig. 6A,B, see the pink stars). This response was
already present for the first presentation of the temporal se-
quence, consistent with feedforward models when part of the
image matches a cell’s receptive field. Importantly, when
we displayed different temporal sequences, different neurons

6

8 10 12 adaptation, decay, plotted against the se-

quence length, S.

showed a sustained response (Fig. 6A vs 6B). This observa-
tion implies that sustained responses do not constitute a sep-
arate cell class, but instead are response types that are present
in the same pool of neurons that can also show transient ac-
tivity, depending on the identity of the temporal sequence.

Most sustained responses of individual neurons were pe-
riodic — namely, they exhibited one peak of calcium fluores-
cence during the entire temporal sequence. Sampling across
different neurons, we found periodic responses with different
phases (Fig. 6C). When we compiled results across multiple
sequences and animals, we found a continuous distribution
of amplitudes of the periodic response. This distribution was
dominated by many small response amplitudes along with a
few large amplitudes (Fig. 6D). Therefore, we set a criterion
of an amplitude AF/F > 0.2 to define a “strong” sustained re-
sponse (corresponding to ~6 spikes fired per sequence). By
this definition, 200/5510 = 3.6% of all sustained responses
were strong.

In addition, we observed three other kinds of less common
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neural responses. First, many neurons had both a strong peri-
odic response and a transient elevation of firing when a new
sequence was presented. We called these “transient plus peri-
odic”; they comprised 77/5510 = 1.3% of all responses (Fig.
6E). Second, we found a second kind of sustained response
that was roughly constant throughout the duration of the pre-
sentation of a given sequence, rather than periodically mod-
ulated (Fig. 6F). We called these “maintained” responses,
and they could be readily distinguished from periodic sus-
tained responses (Supplemental Fig. S8); they constituted
99/5510 = 1.8% of all responses. Third, some of the main-
tained responses increased in amplitude as a given tempo-
ral sequence was repeated; these “ramping maintained” re-
sponses were very rare, constituting 11/5510 = 0.2% of our
measured responses (Fig. 6F top).

T
10 15 20

Time (sec)

The Two-Channel Population Code

Because each temporal sequence elicited sustained re-
sponses in different subsets of neurons, neural population
activity has the capacity to encode the identity of the tem-
poral sequence, rather than just the fact that a predictable
sequence is occurring. Similarly, we wanted to know if the
transient response was a generalized “alert” signal that would
be invariant across different choices of the visual stimulus,
or whether it depended on the stimulus in a fashion that al-
lowed it to encode additional information about the identity
of the temporal sequence. To follow up on these questions,
we constructed a simple, cross-validated decoding algorithm
that took single—trial neural responses and predicted which
temporal sequence was ongoing (see Methods). This de-
coder had a linear form, with a set of weights for recogniz-
ing each of the 10 possible sequences. These weights were
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determined directly from a “training” fraction of the neural
data (i.e. there was no learning or optimization over possible
weights). Then, we applied the weights to a single trial of
neural data to get a likelihood for each of the 10 sequences
being present. Finally, the decoder’s estimate was given by
the sequence having the maximum likelihood. This decoder
is a kind of multi-pattern linear classifier.

We wanted to separately study how transient versus sus-
tained responses encoded sequence identity. To this end, we
defined the transient response of each neuron, T, as its activ-
ity averaged over the first three cycles of a given temporal se-
quence, and the sustained response, S, as its activity averaged
over the last three cycles (Fig. 7A). Then, we rank ordered
all the sustained responses according to their amplitude, S.
Direct inspection revealed that the most active sustained re-
sponses were large and highly stimulus selective (Fig. 7B).
If we decoded using only the most active sustained cell for
each temporal sequence, then we still got performance far
above chance (Fig. 7D open circles). The second most active
cell also gave substantial decoding performance, but much
less than the most active cell. Performance then dropped off
sharply as a function of rank order. Consequently, the cumu-
lative decoding performance saturated quickly as a function
of increasing population size (Fig. 7D filled circles). These
results imply that the sustained responses employ a highly
sparse code for sequence identity.

To study the transient code, we rank ordered responses
according to the amplitude of the transient response, given
the condition that the cell was not sustained, T not S. (Here,
“not S” means that the sustained response amplitude was <
0.2 AF/E)) Again, we could directly see that the most tran-
sient responses were stimulus selective (Fig. 7C). But in

contrast to the sustained responses, transient responses were
present for multiple temporal sequences and were weaker in
absolute amplitude. When we decoded using subsets of cells
with transient responses, we found that larger groups con-
tinued to allow significant decoding performance (Fig. 7E).
At the same time, the cumulative decoding performance rose
steadily as a function of rank order, reaching substantial per-
formance with all of the purely transient responses. Further-
more, this performance was higher than for the the steady-
state (sustained) responses of the same cells (Fig. 7E trian-
gle; p < 0.001). This last observation demonstrates that the
transient response encodes additional information about se-
quence identity not represented by the sustained responses.
As a result, we can rule out the hypothesis that the tran-
sient response is merely a generic “alert” signal. Related
to this, there was no elevated activity when the novel im-
age was a blank, consistent with our finding that the transient
response actively represents stimulus identity (Fig. S9). To-
gether, these data imply that the transient response consti-
tutes a dense code of relatively low amplitude and weakly
tuned responses to represent sequence identity — very differ-
ent from the sustained response.

We can visualize these results by constructing a schematic
view of the transient and sustained population codes (Fig.
8). The transient code has a majority of cells active but
decays after several repetitions of the same sequence (Fig.
8A i). The sustained code has a sparse set of strong re-
sponses along with many weak responses; periodic responses
have their own well-defined phase, and maintained responses
are roughly constant in time (Fig. 8A ii). We can think of
the transient and sustained responses as two channels of in-
formation within the neural population. However, these re-
sponses are not perfectly segregated in individual neurons —
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Figure 8. The Two-Channel Predictive Code. A. For a given sequence, the transient code (i) has many cells exhibiting moderate activity
for the first few repetitions, the sustained code (i) has a sparse set of cells with strong periodic modulation, another sparse set with maintained
activity, and many cells with weak activity. These two codes are multiplexed together into the combination population activity (iii). B. For
a different temporal sequence, the structure of the code remains the same, but the specific cells exhibiting each kind of activity are different.

recall that some neurons are “transient plus periodic”. Thus,
these two population codes are multiplexed to produce the
activity of individual neurons (Fig. 8A iii). Then, when a
different temporal sequence is ongoing, the population again
contains these two channels of visual information with the
same structure, but with different identities of which neurons
exhibit transient and sustained responses (Fig. 8B).

Discussion

Our results show that layer 2/3 of the primary visual cor-
tex employs a population code with two channels of infor-
mation: a dense transient population response that encodes
novel stimuli and a sparse sustained population response that
encodes repeated stimuli. This phenomenology seems quite
general, in that we observed a transient response when we
switched from one repeated stimulus to another, regardless
of our choice of images or other stimulus parameters, such
as the sequence length. Conceptually, a novelty response re-
quires that the system embodies at least a statistical form of
prediction about the regularity of the stimulus. In this sense,
it is consistent with many theories of predictive coding that
postulate that a neural system should only send surprising
information up the sensory hierarchy (Barlow, 1961; Bas-
tos et al., 2012; Rao and Ballard, 1999; Srinivasan et al.,
1982). However, our results differ from these theories of pre-
dictive coding, because we also found a sustained population
response that continues even for highly predictable stimuli.

Interestingly, a more recent theory of cortical computation

has proposed that predictable stimuli need a positive repre-
sentation and that this is the representation that should be
fed forward up the cortical hierarchy (Heeger, 2017). The
sustained response that we observed in layer 2/3 neurons has
this basic property. Another property that has been proposed
for sustained responses in a predictive code is that neural ac-
tivity should encode a temporal sequence with a pointer-like
representation (Hawkins and Blakeslee, 2004). This means
that a neuron should fire once per temporal sequence rather
than once per image of the sequence. This representation
is advantageous for building a hierarchical predictive code,
as the signals that are sent up the cortical hierarchy repre-
sent the entire temporal sequence as a single, composite sen-
sory event. This then allows the next stage in the hierarchy
to learn temporal sequences formed out of these composite
events. Our data embody this property, in that strong peri-
odic responses typically exhibited a single peak of activity
during the temporal sequence. While this property could be
interpreted as merely resulting from the sparseness of neural
activity, the underlying mechanism does not change the sig-
nificance of this representation for the neural code. Taken to-
gether, the two-channel predictive code combines properties
posited by different theories of predictive coding, but which
are not all present in any existing theory.

One notable property of the sustained population response
was its sparseness — namely, that we observed only ~2% of
cells with a strong periodic response under our stimulus con-
ditions. Sparseness is also a property that has long been as-


https://doi.org/10.1101/197608
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/197608; this version posted October 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

PREDICTIVE CODING OF NOVEL VERSUS FAMILIAR STIMULI IN THE PRIMARY VISUAL CORTEX 1 1

sociated with efficient or predictive neural codes (Atick and
Redlich, 1990; Attwell and Laughlin, 2001; Baddeley et al.,
1997; Bastos et al., 2012; Bharioke and Chklovskii, 2015;
Hawkins et al., 2009; Lennie, 2003; Olshausen and Field,
1996). Sparse responses have been reported in several stud-
ies (Froudarakis et al., 2014; Weliky et al., 2003; Willmore et
al., 2011; Yen et al., 2007), and sparseness is enhanced by the
extraclassical surround of V1 cells (Alink et al., 2010; Vinje
and Gallant, 2000). For comparison, the lifetime sparseness
of neurons during the Repeated Sequence Experiment was
0.77 £ 0.10 (n = 551 neurons; see Methods). While a direct
comparison of these numbers to those derived from extracel-
lular spike trains would need to compensate for the temporal
averaging of the calcium indicator, these numbers indicate a
high but not unprecedented level of sparseness.

In the context of predictive coding, we should point out,
however, that most of our observed sustained responses be-
gan during the first presentation of a new temporal sequence.
Thus, they cannot result from the system learning the regu-
larity of the new repeated stimulus, on the fly. Instead, their
tuning properties may embody learning that occurred before
we carried out our experiment. Thus, we prefer to say that
these responses represent “familiar” rather than predicable
stimuli. In this vein, neurons higher up in the visual pathway
have also been observed to shift their tuning properties after
extensive exposure to the same stimuli, such that most neu-
rons decrease their firing to a familiar stimulus while a small
fraction increase their firing (Li et al., 1993; Woloszyn and
Sheinberg, 2012). Because sustained responses began during
the first presentation of a new temporal sequence, it is natural
to think of sustained responses as being driven significantly
from the feedforward pathway, including connections from
layer 4. Thus, the sustained response can embody features
found in feedforward models of cortical function (Heeger et
al., 1996; Hubel and Wiesel, 1962; Rust et al., 2005).

The transient response is closely related to the phe-
nomenon of stimulus-specific adaptation (SSA), which pro-
poses that the response of a cortical neuron to an infrequent
stimulus is larger than the response to the same stimulus
when it is more common (Hamm and Yuste, 2016; Natan
et al., 2015; Ulanovsky et al., 2003; Yaron et al., 2012). For
instance, the novel image that we showed in the Novelty Ex-
periment was always a unique image, which is maximally
infrequent, and hence should generate a very large response
according to the logic of SSA. Similarly, the presentation
of new stimulus sequences in the Variable Repetition or Se-
quence Length Experiments should generate a large initial
response due to SSA. The comparison also applies to Re-
peated Sequence Experiment, where a handful of temporal
sequences were repeated several times: If the time scale over
which stimulus frequency is effectively measured is short
compared to the duration of a stimulus block (20 sec), then
the stimulus sequence that begins in a new block should also
be an infrequent stimulus.

However, the overall picture encompassed by the idea of
a two-channel predictive code differs from that entailed by
SSA. In SSA, every neuron has an adaptation index that char-
acterizes its degree of adaptation, and it is not clear if a neu-

ron will respond to a rare stimulus that is outside of its clas-
sical tuning curve. In our experiments, we found that a given
neuron could have a transient response or not depending on
the identity of the stimulus. In the language of SSA, this
would correspond to a different adaptation index for all pairs
of stimuli tested. Furthermore, we observed many neurons
to have a purely transient response, meaning that they ini-
tially responded to a stimulus that was outside of their clas-
sical tuning curve. These differences could very well follow
from different approaches to experimental design. In partic-
ular, experiments probing SSA having largely taken a single
cell point-of-view, while the experiments here have taken a
population coding point-of-view. SSA exhibits a variety of
timescales (Ulanovsky et al., 2004), perhaps matching the
flexible dynamics of the transient response (Fig. 5).

One possibility is that the transient response results from
a form of contrast adaptation (Dhruv and Carandini, 2014;
Kohn, 2007; Muller et al., 1999). This is because the ef-
fective local contrast on a given neuron’s receptive field can
vary between images, even though the global contrast is held
fixed. However, the phenomenology of contrast adaptation is
somewhat different. When local contrast increases, neurons
will desensitize and reduce their activity, but when contrast
decreases, neurons will correspondingly resensitize and in-
crease their activity during adaption. The latter process is
almost entirely absent in our data. Furthermore, contrast
adaptation typically leads to a substantial steady-state level
of activity, while we observe the transient response to decay
to essentially zero steady-state activity for most cells. There-
fore, we do not believe that the transient response should be
interpreted as a simple form of contrast adaptation.

Perhaps the transient response can be instead viewed as a
form of adaptation to a very general class of contingencies?
This idea has been proposed for the visual cortex (Carandini
et al.,, 1997; Movshon and Lennie, 1979), and many weaker
forms of such adaptation have been observed in the retina
(Hosoya et al., 2005; Smirnakis et al., 1997). But again, these
more general forms of adaptation result in substantial steady-
state activity. Furthermore, the transient response exhibits
dynamics that are both faster than these higher order forms of
adaptation and more flexible, in that the dynamics scale with
sequence length. Thus, while the transient response can cer-
tainly be interpreted as a form of adaptation, it is at the very
least a “stronger”” form than has been previously reported.

The transient response also resembles the mismatch neg-
ativity (MMN). Originally described as a negative deflection
in EEG voltage in response to an unexpected or oddball au-
ditory stimulus (Naatanen et al., 1982), the term has come
to encompass analogous phenomena in other sensory path-
ways and measured with other brain imaging techniques, like
MEG or field potentials (Naatanen et al., 2007). Common to
all experimental paradigms is that the MMN is manifested
in the average activity of populations of neurons. When we
construct the population average of neural activity, we see el-
evated activity after a novel visual stimulus. We believe that
this elevated population activity is analogous to the MMN.
But our cellular resolution imaging reveals that this is not
the entire story: namely, that there is also a sparse subset of
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sustained responses to repeated stimuli.

How is the transient response generated? Because of its
similarity with stimulus-specific adaptation, we should com-
pare it with the mechanisms underlying SSA. Geffen et al.
showed that two classes of inhibitory interneurons in L2/3
shape and enhance SSA (Natan et al., 2015). But at the same
time, the phenomenon was already present in the current
source density in L4, suggesting that synaptic depression in
the MGN — L4 synapse may play an important role . While
this mechanism must make some contribution, it is unlikely
to be sufficient to explain the transient response for two rea-
sons. First, the time scale is too short. Varela et al. showed
that the dominant form of synaptic depression in L4 — L2/3
synapses in V1 recovered with a time constant of ~400 ms
(Varela et al., 1997). Similar depression has been observed
in LGN — L4 synapses (Boudreau and Ferster, 2005; Chance
et al., 1998; Gil et al., 1997). This form of synaptic depres-
sion would largely recover after each image presented in our
experiments, preventing a build-up of depression that could
account for the transient response. Second, the flexibility of
dynamics as a function of sequence length (Fig. 5) cannot be
described by a biophysical process with a fixed time constant,
like synaptic depression.

Flexible dynamics and long timescales might both
emerge, in part, from cell intrinsic mechanisms. Lundstrom
et al. injected white noise currents into cortical pyramidal
cells and showed that the spiking response exhibited a broad
range of timescales described as a process of fractional differ-
entiation (Lundstrom et al., 2008). Mechanistically, this pro-
cess can emerge from the action of slow conductances having
a range of time constants. Flexible dynamics has also been
observed in retinal adaptation, where the time constant of
adaptation scaled with the time over which stimulus statistics
were changed (Wark et al., 2009). This phenomenon closely
resembles how the dynamics of the transient response scale
proportionally to the sequence length, suggesting that retinal
adaptation might be making a contribution. Yet neither of
these mechanisms is likely to provide a complete description
of the transient response, as they both cause adaptation to a
lower steady-state response, while the transient response de-
cays to zero baseline. One final possibility is that the retina
recognizes periodic sequence violations via the omitted stim-
ulus response (Schwartz et al., 2007a). However, we specifi-
cally designed each image to last for 250 ms or more, which
is beyond the memory of retinal periodic pattern detection.

Central to many theories of predictive coding is the idea
that inhibitory neurons encode predictable stimuli and feed
that inhibition onto excitatory principle neurons to cancel
their response (Bastos et al., 2012; Bharioke and Chklovskii,
2015; Srinivasan et al., 1982). One salient example of
this mechanism is the cancellation of predictable stimuli in
cerebellum-like structure of weakly electric fish (Bell et al.,
2008). One requirement for this mechanism of active can-
cellation is that some neurons would need to have their ac-
tivity ramp up in a fashion complementary to the decay of
the transient response. In this vein, we did see some neurons
with ramping maintained responses, but these cells were very
rare. However, it is important to point out that our trans-

genic mouse line only expressed calcium indicator in exci-
tatory cells (Dana et al., 2014), so it is still possible that
one or more classes of inhibitory interneuron have ramp-
ing responses. Thus, it will be interesting to record specif-
ically from inhibitory cells in subsequent studies. Of course,
any inhibitory cancellation mechanism must simultaneously
leave the sustained responses unaffected — a property that
serves as an important constraint on the underlying circuit
mechanisms.

A recently proposed model of temporal sequence learning
in layer 2/3 agrees with many qualitative features of our data
(Hawkins and Ahmad, 2016). Once a temporal sequence
has been learned, the occurrence of the initial elements of
the sequence put pyramidal cells into a “predictive” state.
When the prediction comes true, such a neuron fires early
and helps to generate inhibition that silences neighboring
neurons. This firing continues for repeated stimuli, as we
observe for the sustained response. If instead the prediction
is violated, then a larger group of neurons fire together before
being silenced by inhibition. Thus, there is a larger network
response to a stimulus event that violates an ongoing predic-
tion, as we observe for the transient response. However, a
detailed comparison of the properties of this model and our
data has not been carried out.

In its broad form, the two-channel predictive code that we
have observed in the primary visual cortex shares many simi-
larities with the code found in the retina (Berry and Schwartz,
2011). The population code of retinal ganglion cells sepa-
rately encodes information about temporal sequences of sen-
sory events that are repeated versus novel into two different
information channels (Schwartz et al., 2007a; Schwartz et al.,
2007b). Asin V1, this separation is not observed at the single
cell level — namely, there are no “cell types” specialized for
repeated versus novel stimuli. Instead, individual neurons
participate in both information channels, and the two chan-
nels themselves are only defined at the population level. This
broad similarity suggests that this might be a coding strategy
employed by neural populations in many brain areas.

However, there are also many detailed differences be-
tween these predictive codes in the retina versus V1. In par-
ticular, the retina has only a limited capacity to recognize
repeated temporal sequences. For the case of periodic se-
quences of flashes, the retina only recognizes violations for
periods of up to ~200 ms; for flashes separated by longer time
intervals, the retina effectively treats the next flash as novel
(Schwartz and Berry, 2008; Schwartz et al., 2007a). In con-
trast, V1 exhibits predictive coding for temporal sequences of
up to 3.6 sec in duration (Fig. 5), as one might expect due to
the extensive recurrent excitatory circuitry in the neocortex.
Thus, the neocortex may possess the ability to recognize a
far more general class of longer and more complex temporal
sequences.

Methods
Animal Surgery and Husbandry

All experiments were performed according to the Guide
for the Care and Use of Laboratory, and procedures were
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approved by Princeton University’s Animal Care and Use
Committee. We used animals from transgenic mouse line
GP5.3 supplied by Janelia Research Institute, which ex-
presses GCaMP6f under the Thyl promoter (Chen et al.,
2013; Dana et al., 2014). Calcium activity was imaged
through a chronic cranial window. The implantation of the
cranial window followed steps similar to (Dombeck et al.,
2010). In short, anesthesia was induced in mice with 2.5%
isoflurane, and then maintained at 1.5% during the surgery.
A 5 mm round craniotomy was drilled with a dental drill
centered around 2 mm posterior and 1.75 mm lateral from
bregma. The dura was left intact. The hole was then covered
with a canula consisting of a 5 mm round microscopy cover
glass glued to a metal ring. The metal ring was glued to the
bone around the craniotomy with vetbond. Then the skull
around the craniotomy was covered with metabond. A tita-
nium head plate was then attached to the skull and secured
with metabond. After the surgery, mice were provided with
pain management and allowed to recover for several days
before any recordings. Animals were placed on a reversed
night-day cycle.

Quantifying Animal Behavior

Mice were placed on a water restriction schedule with 1.5
ml per day. Mice were then head fixed and allowed to run
on a Styrofoam wheel. A lick port was positioned in front
of the animal’s mouth, which could make water available via
a solenoid valve. Temporal sequences were presented on a
computer monitor with the design of the Novelty Experiment.
Each image (Gabor or grating) was presented for 200 ms.
Initially sequences were formed from S = 2 or 3 images,
and the final image of a sequence was stochastically replaced
with a novel image at a rate of once per 6 sequences. During
the initial, 3-day shaping period, water was made available
at the lick port after 50% of all novel images. In doing so,
a solenoid valve made a clicking noise that the animal could
hear. Animals readily learned to obtain water in these “au-
tomatic” trials. On the other 50% of violation trials, which
we denote as “test” trials, water was only available after the
animal started licking (and within a time window 0.5 - 1.5 s
after the violation).

After the shaping period, water was made automatically
available after only 20% of all novel images. We quantified
performance on the other 80% of novel images by measur-
ing the rate of lick onsets relative to the time at which the
novel image was presented. A lick onset was defined as a
lick that occurred more than 800 ms after the previous lick.
Once animals reached a performance criterion (significance
of peak lick onset rate p < le-10), the sequence length was
increased by adding 1 new image to the old sequence and
training continued.

One-Photon Ca++ Fluorescence Imaging and
Mapping of Visual Areas

Mouse visual cortex consists of several discrete areas. In
order to ensure that all our recordings were performed in the

primary visual cortex (V1), we generated a map of the vi-
sual cortex that showed the boundaries of the visual areas
with respect to the vasculature. We then used the vascula-
ture as landmarks in order to select a recording area for our
2-photon imaging that lay safely within the boundaries of
V1. Visual area boundaries were mapped with drifting bars
presented on an LCD screen as described in (Marshel et al.,
2011). In short, the mouse was placed on an air suspended
styrofoam ball and fixed to a post using its head plate. An
LCD screen was placed to the right of the awake mouse at
a distance of 15 cm and an angle of 10 degrees in order to
be parallel with right eye, covering a visual field reaching
form 150 degrees vertical to 145 degrees horizontal. A bar,
consisting of blinking checkers was then slowly moved many
times across the field of view in all four cardinal directions.
During the presentation of this stimulus, the cranial window
was imaged at 30 Hz with a fluorescent microscope with a
field of view covering the whole 5 mm diameter round cover
glass. The resulting video of bulk fluorescent activity was
then analyzed to find boundaries at which the spatial map
reversed. These boundaries were used to segment visual ar-
eas. Finally, anatomical landmarks were used to identify the
primary visual cortex (V1) using an algorithm described in
(Garrett et al., 2014).

Two-Photon Ca++ Fluorescence Imaging

Mice were fixed to a post using their head plates and were
free to run on a large, air-suspended styrofoam ball. The
rotational speed of the ball in both axes was acquired with
an optical mouse and synced with the neural data. A cus-
tom made 2-photon microscope (NA 0.8, 40x water immer-
sion objective) was used to image a 400 x 400 micrometer
area within the cranial window. The setup is described in
detail in (Dombeck et al., 2010). GCaMP6f was excited
at 920 nm with a Titanium sapphire laser (140 fs pulses at
80 MHz). Fluorescence was detected with a photomulti-
plier tube. Laser path and image acquisition was performed
with the help of Scanlmage 5.0. We used the areal map es-
tablished with the one-photon fluorescence rig and used the
vasculature as landmarks for finding V1. Two-photon laser
light (60 mW) was then focused at the highest cell density at
around 200 — 300 pm cortical depth, corresponding to layer
2/3. Images were acquired with 512 scan lines at 30 Hz,
resulting in a movie of calcium fluorescence with 512 x 512
pixel frames (covering a 410 x 410 um field of view).

Visual stimuli were presented to the mouse via a projec-
tion system. A digital projector image was spread via an an-
gular amplification mirror to fill a toroidal projection screen.
The field of view from the point of the mouse reached from
roughly -20 to +70 degrees vertically and -130 to +130 de-
grees horizontally. Neural data and stimuli were synchro-
nized through analog signals recorded in Clampex. In a sub-
set of experiments, the contralateral eye was filmed during
the stimulus presentations at 60 Hz with an infrared video
camera. From this this data, pupil diameter, pupil position,
and eye movements and blinks were extracted with a custom
code written in Matlab (see Supplementary Figures S5, S6).
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Design of Visual Stimuli

We formed spatial images with either a random mixture
of Gabor functions (Gabor) or a static, square-wave grating
(grating). To form Gabor images, 100 Gabor functions were
randomly chosen with: 100% contrast, either ON- or OFF-
polarity, random location, random orientation, and random
phase. We picked a spatial extend for each Gabor randomly
from 10°-20° matching receptive field sizes in V1 neurons in
mice. Gabor functions were linearly superimposed with sat-
uration at 100% contrast. The overall light level of images
therefore varied by standard deviation of 1.2% of the mean.
Grating images had a spatial period of 20°, random phase,
and random orientation.

Temporal sequences were composed of multiple, ran-
domly selected spatial images. Images and sequences were
presented without blank frames in between. The specific
composition of temporal sequences varied in each of 4 ex-
periments:

Novelty Experiment: 200 ms per image, 5 images per
sequence, repeated for ~10 min. The final image of the se-
quence was replaced with a novel image at a rate of once per
6 sec. Two 10 min blocks with different temporal sequences
were used.

Variable Repetition Experiment: 300 ms per frame, 3
images per sequence. Sequences were formed into adapta-
tion blocks with L = [3, 4, 6, 11, 21, 41] total cycles. The
final image of the second-to-last sequence was replaced with
a novel image. Each adaptation block had a new choice of
temporal sequence and a new choice of L. Adaptation blocks
were presented without blank frames in between for ~60
min.

Variable Sequence Length Experiment: 300 ms per
frame, S = [3, 6, 9, 12] images per sequence, and 21 cycles
per block. The final image of the second-to-last sequence
was replaced with a novel image. Each adaptation block had
a new choice of temporal sequence and a new choice of S.
Adaptation blocks were presented without blank frames in
between for ~60 min.

Repeated Sequence Experiment: 300 ms per image, 3
images per sequence, 21 cycles per adaptation block. The
final image of the second-to-last sequence was replaced with
anovel image. Each adaptation block had a random choice of
one out 10 possible temporal sequences. Adaptation blocks
were presented without blank frames in between for ~57 min,
such that each temporal sequence was presented for a total of
18 times.

Data Preprocessing

Mouse movements could cause a slight frame-to-frame
shifts in the recorded field of view. We therefore aligned
all frames to a common template, constructed. by averaging
1000 individual frames. Then, individual frames were shifted
to maximize cross correlation with regards to the template
(Dombeck et al., 2010).

Regions of interest (ROIs) corresponding to neurons were
identified based on time-averaged images (Apthorpe et al.,

2016). Both obviously active and seemingly inactive ROIs
were selected for processing. A typical field of view con-
tained about 100 ROIs. Pixel values belonging to a given
ROI were averaged on a frame-by-frame basis and converted
to relative fluorescence, AF/F. The baseline, F, of the fluo-
rescence signal was estimated by binning the data within 5
minute windows and taking the mode of the corresponding
distributions.

Quantifying the Novelty Response

For each ROI, we subtracted the peri-stimulus time his-
togram (PSTH) triggered on the start of each repeated tempo-
ral sequence from the PSTH triggered on the time of a novel
image. This gave us the excess response to a novel image,
AR. To estimate statistical significance, we calculated the av-
erage neural activity (AF/F) in a time window 300-500 ms
following each novel image and subtracted the baseline neu-
ral activity in a time window 1000 ms before the novel im-
age, giving AR; for each instance of a novel image i. We
calculated the standard error of the mean over all instances
of a novel image, JR, and used this to calculate the z-score,
z = AR/SR. From the z-score, we calculated the probability
that a positive excess response could occur by change (p-
value).

Excess Spikes Evoked by a Novel Image

The density of neurons in layers II and III of the mouse
primary visual cortex is roughly 150,000 neurons/mm3
(Schuz and Palm, 1989). This, together with a rough estimate
of the thickness of layer 2/3 V1 in mouse of 250 um taken
from (Smith et al., 2009) and an estimated area of roughly
4 mm?2 (Marshel et al., 2011), gives 150,000 neurons in V1
layer 2/3 per hemisphere. Given our estimate of 0.5 extra
spikes per neuron (Supplemental Fig. S1), this amounts to
roughly 150,000 extra spikes within a short time window
across the two hemispheres of V1.

Decoding Analysis

In order to use population neural activity to estimate
which temporal sequence was ongoing, we constructed lin-
ear, multi-pattern decoders. We denote the neural activity of
cell i at time ¢ during trial k of sequence j as: ;x(#). This neu-
ral activity was evaluated over different temporal windows
for the transient versus sustained responses (see main text).
The linear decoder convolves the neural activity measured on
a single trial k£ with a weight vector, w;;, to get a likelihood
for sequence:

cells

Ok = ZWU' Tijk
i

where j denotes the real, ongoing sequence and j’ denotes all
possible sequences. The estimated sequence is given by the
maximum likelihood:

Je = argmax; (@]
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Then, the decoding performance is given by the fraction of
trials k that get the right answer, j = j*. Given a test trial
k, the weights were determined in a cross-validated fashion

from the training data (all k” # k) with no optimization:

WO = (rw) —
ij = ijk Kk i 5

where 7; = (r,- jk>ik is the average activity of neuron i over
all trials and sequences. Notice that the weights differ for
each test trial, because of the cross-validation procedure.
In all cases, when we rank ordered the activity of neurons,
this ranking was carried out separately for each temporal se-
quence. In implementing our decoder, we pooled cells from
across different mice and ignored noise correlation.

Lifetime Sparseness

Following previous studies, we defined the lifetime
sparseness of a neuron i as:

oy
o),

where the average is over all time bins. For this calculation,
we averaged over all trials of the same stimulus to get a PSTH
for each cell, r;(f). We performed this calculation for the
Repeated Sequence Experiment, in which each neuron was
presented with 10 different temporal sequences. We concate-
nated the PSTHs across all 10 temporal sequences and then
computed the lifetime sparseness of each neuron.
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