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Abstract35

Recent studies have suggested that the human posteromedial cortex (PMC), which includes core regions of the36

default mode network (DMN), plays an important role in episodic memory. Whereas various roles relating to self-37

relevant processing and memory retrieval have been attributed to different subsystems within this broad network,38

the nature of representations and the functional roles they support in these brain regions remain unspecified. Here,39

we describe the whole-brain networks that represent subjective, self-relevant aspects of real-world events during40

autobiographical recollection. Nine participants wore a device to record images from their lives for a period of two41

to four weeks (lifelogging phase) and indicated the personally-salient attributes (i.e., personal semantics) of each42

episode by choosing multiple content tags. Two to four weeks after the lifelogging phase, participants relived their43

experiences in an fMRI scanner cued by images chosen from their own lives. Representational Similarity Analysis44

revealed a broad network, including parts of the DMN, that represented personal semantics during autobiographical45

reminiscence. Furthermore, within this network, the right precuneus represented personally relevant content during46

vivid recollection but not during non-vivid recollection. The precuneus is a hub within the DMN and has been47

implicated in metacognitive ability for memory retrieval. Our results suggest a more specific mechanism underlying48

the phenomenology of vivid reminiscence, supported by personal semantic representations in the precuneus.49
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Introduction50

Tulving(1993;2002) suggested that episodic memory is a unique human capability that enables us to engage in mental-51

time travel along a subjective timeline to reinstate past experiences. In a previous study, we identified the neural52

correlates of the objective spatiotemporal axes along which mental travel occurs during autobiographical memory53

retrieval (Nielson et al., 2015). However, the concept of episodic memory is incomplete without a notion of the54

self, the accompanying subjective dimensions of experience, and a special inwardly turned state of consciousness —55

termed autonoetic awareness — that guides retrieval and monitoring of autobiographical memories. In this paper,56

we describe the networks involved in the retrieval of the subjective, self-relevant content of real-world memories57

experienced over several weeks.58

Autobiographical memory (AM) concerns our personal histories and encompasses both episodic and personal59

semantic memory (Conway, 2001; Levine et al., 2002). For example, knowledge about “I play ultimate frisbee every60

Wednesday” is part of AM, but it need not necessarily be accompanied by a specific episodic memory or vivid61

recollection of the details surrounding a particular instance of having played ultimate frisbee. This type of personal62

semantics, operationalized as autobiographical knowledge or information extracted from repeated autobiographical63

events, has recently garnered a lot of attention and is thought to be an intermediate entity between semantic and64

episodic memory (see Renoult et al., 2012, for a review). The recollective experience results only when details of65

a specific event are reinstated (Conway, 2001; also see Box 5 in Renoult et al., 2012). Therefore, everyday acts66

of memory involve guidance by retrieval of personal semantic knowledge culminating in the retrieval of a specific67

episode (Barsalou, 1988; Binder et al., 2009; Conway and Pleydell-Pearce, 2000). Additionally, vivid reminiscence68

is a hallmark of episodic recollection (Eldridge et al., 2000; Moscovitch et al., 2005) and therefore, in this study,69

we investigate the brain networks that subserve personal semantics and identify the specific parts of these personal70

semantic networks that support the phenomenological experience of vivid AM.71

Given the special status of the self in AM, it is likely to engage brain networks that have previously been found72

to be involved in processing information in relation to the self (for a recent review, see Qin and Northoff, 2011).73

Specifically, the default mode network (DMN) (Buckner et al., 2008; Raichle et al., 2001) has been associated with74

internally oriented processing across domains like memory (Cabeza and Nyberg, 2000; Hassabis et al., 2007; Kim,75

2010; Sestieri et al., 2011; Svoboda et al., 2006), prospection (Addis et al., 2007; Spreng and Grady, 2010; Spreng et al.,76

2009), mental imagery (Cabeza and Nyberg, 2000), and mind-wandering (Christoff et al., 2009). Consistent with77

this general conception of the DMN, an emerging body of neuroimaging work suggests that the human posteromedial78

cortex (PMC), which includes core regions of the DMN such as the retrosplenial cortex (RSc), posterior cingulate79

cortex (PCC) and the precuneus (pC), is involved in episodic memory (Cabeza et al., 2008; Miller et al., 2008; Rugg80

et al., 2002; Shannon and Buckner, 2004; Uncapher and Wagner, 2009; Vannini et al., 2011; Wagner and Davachi,81

2001). Recently, attempts have been made to characterize the various subsystems of the DMN. For example, Kim82

(2012) proposed a dual subsystems view of the DMN where midline cortical regions including the medial prefrontal83

cortex (mPFC) and PCC/pC were hypothesized to be associated with self-referential processing (Hebscher et al.,84

2017), whereas the more lateral regions such as the MTL were thought to be involved in episodic retrieval. However,85
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it is not clear what is represented or processed in the PMC during “self-referential processing”. It is also not known if86

retrieving memories of real-world experiences spanning several weeks using highly personalised visual memory cues87

utilizes the same networks previously identified using generic memory cues (e.g. see Vilberg and Rugg, 2008 for an88

argument that the observation of a left-lateralized parietal retrieval network could be a result of the limited range89

of verbal memory cues used in previous studies). Recently, Rissman et al. (2016) employed wearable cameras to90

investigate distributed brain activity patterns during memory retrieval but they focused on classifying mnemonic91

output (remember vs familiar vs new) rather than representational content. Therefore, critical questions remain92

about the specific functional roles and information content of the various regions of the parietal recollection network93

(Rugg and Vilberg, 2013), particularly in a relatively more ecologically valid autobiographical reminiscence task.94

Critically, we had access to participant-generated content labels for each recorded episode from their lives which95

allowed us to track specific representations of personal semantics across each individual’s brain as they relived their96

experiences cued by images chosen from their own lives.97

In a previous study focused on the medial temporal lobe (MTL), we found that the anterior hippocampus98

represents objective space and time content, i.e., the “where” and “when” during retrieval of AM extending over99

spatiotemporal scales of up to 30 Km and 1 month (Nielson et al., 2015). In the current paper, we perform multi-100

variate pattern analysis on activity across the whole brain to investigate the brain networks that subserve personal101

semantics (i.e., the “what” of AM) and identify the specific parts of these personal semantic networks that support102

the phenomenological experience of vivid AM recollection.103
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Results104

Participants wore a lifelogging device (Figure 1A) that captured images and other sensor data as they went about105

their everyday activities for a period of two to four weeks. At the end of each day, participants tagged each episode106

with personally salient attributes chosen from a drop-down menu using a web interface (see Figure 1B, and Materials107

and Methods, Table 2).108
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Figure 1 (A) The phone is worn around the neck with its camera exposed as shown. (B) A word cloud of the tags associated
with the stimuli used in the fMRI experiment across all participants.

Two to four weeks after data collection, participants performed an autobiographical reminiscence task in an fMRI109

scanner where they were asked to relive experiences cued by images chosen from their own lives. We performed a110

Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008) to identify the brain regions that represent111

personal semantics both generally and during vivid autobiographical reminiscence (see Materials and Methods and112

Figure 2).113
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Figure 2 Depiction of the fMRI experiment and Representational Similarity Analysis (RSA). Participants are shown images
from their own lives and are instructed to relive the associated experiences. The neural activity during this reminiscence period
is analyzed using RSA to investigate whether distances between neural patterns (NeuralDij) corresponding to pairs of image
cues (an example of such a pair is shown) relate to distances between the corresponding sets of semantic tags (HammDij).
After the reminiscence period, participants indicate whether they remember the event and then report the vividness of their
recollective experience.

Behavioral Results114

The Hamming distances between the tag sets for pairs of images across participants ranged from 0 to 15. 63.4±4.7%115

SEM of the stimuli were reported as having produced successful reminiscence. The proportion of analyzed stimuli116

that were indicated as evoking vivid reminiscence by the nine participants ranged from 0.21 to 0.81 (mean 0.47±0.07117

SEM). The three different tag types were used to a similar extent across stimuli (Mean 94.9±1.5% SEM of the stimuli118

contained activity tags, Mean 91.2± 4.0% SEM contained people tags, and Mean 95.2± 1.3% SEM contained place119

tags). No differences were apparent in the percentage of stimuli that evoked vivid reminiscence depending on the120

type of tag present (Mean 44.5± 5.4% SEM of the stimuli with activity tags, Mean 42.4± 5.1% SEM of the stimuli121

with people tags, and Mean 44.3 ± 5.7% SEM of the stimuli with place tags evoked vivid reminiscence) suggesting122

that vividness was not linked to the presence of any particular tag type.123

In order to understand the overall structure of events as organized by these tag sets across participants, we124

computed normalized pointwise mutual information (NPMI) between pairs of tags (see Materials and Methods for125

details). NPMI ranges from −1 to 1, with −1 indicating that the pair of tags never occurred together, 0 indicating126

that the tag occurrences were independent of each other, and 1 indicating that the tags co-occurred perfectly with127
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each other. The NPMI matrix is presented in Figure 3A. We also plotted a network of tags with NPMI > 0.2 in128

Figure 3B to visualize the co-occurrence structures that emerge across participants. Together, the panels in Figure129

3 demonstrate clusters surrounding university campus life and social/family life, reflecting general characteristics of130

the student pool from which we recruited participants.131
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A

B

Figure 3 (A) Normalized pointwise mutual information (NPMI) between all pairs of tags, computed across participants.
(B) A network of tags with NPMI > 0.2.
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Neural Results132

RSA with the model in Equation 4 (a GLM relating neural distances with Hamming distances between tag sets)133

revealed a broad network of regions that represented personal semantics during the reminiscence task cued by134

participants’ own images. This general personal semantic network, shown in Figure 4A, included core parts of135

the default mode network (DMN) such as the precuneus, anterior cingulate, posterior cingulate, middle temporal136

gyrus bilaterally, and a right lateralized network including the medial and prefrontal cortices, parts of the inferior137

parietal lobule (supramarginal and angular gyri), and the parahippocampal cortex (see Supplementary Table S1 in138

Supplementary Section S1 for a complete list of regions with at least 10 voxels in the network). A personal image cue139

can trigger memory for general facts about similar events, which need not lead to detailed and vivid reminiscence of140

a specific event. Because Equation 4 did not include a term for vividness, βHamm tracks the regions that represent141

personal semantics generally and does not identify the regions that do so specifically during vivid reminiscence142

(implying greater episodic retrieval).143

Therefore, we also performed an RSA with Equation 5 (a GLM relating neural distances with Hamming distances144

between pairs of tag sets, the overall level of vividness reported for the corresponding pairs of stimuli, as well as145

the interaction between vividness and Hamming distance) in order to identify both the network that represented146

personal semantics for vividly re-experienced events (i.e., the main effect of Hamm) and the regions that represented147

the subjective contents of experience for vivid but critically not for non-vivid memories (i.e., the conjunction of148

Hamm and −Hamm ∗ V ivid). Figure 4B shows the regions that represent personal semantic content during vivid149

reminiscence. This is mostly a sub-network of the general personal semantics network, but relatively more right150

lateralized and therefore this “vivid” personal semantic network also includes parts of the DMN, such as the precuneus151

bilaterally, and in the right hemisphere, posterior cingulate, parahippocampal cortex, medial and pre-frontal cortices152

(see Supplementary Table S2 in Supplementary Section S2 for a complete list of regions with at least 10 voxels in153

the vivid personal semantics network).154
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Figure 4 (A) The network of regions involved in the representation of general personal semantics as identified by the RSA
analysis in Equation 4. Four different views of a glass brain are shown. From left to right, the blue face of the orientation
cube corresponds to the front of the brain, the green face stands for the right hemisphere, the black face for the back, and the
red face for the left hemisphere. (B) The network of regions involved in the representation of personal semantics during vivid
reminiscence as identified by the RSA analysis in Equation 5. The same views presented in (A) are shown and comparing the
two networks reveals that the vivid reminiscence network is a subset of the more general personal semantics network identified
in (A).

While the Hamm term in Equation 5 tracks the regions involved in representing personal semantic content during155

vivid reminiscence, it does not address whether those regions distinguish between vivid and non-vivid recollection.156

This distinction between vivid and non-vivid reminiscence is captured by the conjunction between Hamm and157

−Hamm ∗ V ivid which identifies regions where Hamm predicts neural distances for vivid pairs of images but158

does so to a significantly less extent for non-vivid pairs (see Materials and Methods). A dominant cluster in the159

right precuneus (Figure 5) is identified as the region representing self-relevant contents of an experience when vivid160

autobiographical memory is generated but critically, the right precuneus content representations are significantly161

attenuated when the memory is non-vivid (see Table 1 for the MNI coordinates of the peak voxels in regions with at162

least 10 voxels in the vivid-only personal semantics network).163
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Table 1 Peak voxel coordinates of regions with at least 10 voxels in the vivid-only personal semantic network(Figure 5). The
FSL-Harvard-Oxford cortical-subcortical atlas was used to get coordinates in MNI space. When multiple sets of coordinates
are shown for a region, they correspond to multiple peak voxels.

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

R. Precuneus 135 17412.7 19694.3 17.5 -65.5 23

R. Cuneal Cortex 31 17887.6 19738.4 17.5 -68 23

1 95th percentile TFCE threshold = 16232.6, Max network TFCE = 19738.4

Max TFCE = 19738

95%ile TFCE = 16233

Right Precuneus

Figure 5 The right precuneus represents personal semantics during vivid reminiscence but to a lesser extent during non-vivid
reminiscence (conjunction analysis based on Equation 5, Materials and Methods)

Finally, we present partial residual plots to visualize the relationship between Hamm and neural distances in164

the right precuneus after taking into account the contribution from the other independent variables in Equation 5165

(Materials and Methods), and we do this separately for vivid and non-vivid pairs. Since overlaying the residuals166
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obscures the differences in the slopes of the regression lines between vivid and non-vivid conditions, we opted to167

display only the regression lines in Figure 6 and the individual participants’ plots with partial residuals overlaid168

in Supplementary Section S5, Figure S2. Figure 6A shows that neural distances in a sphere surrounding the peak169

right precuneus voxel are related to Hamming distances between the tag sets of vivid pairs of stimuli (V ivid = 0170

in Equation 5) and Figure 6B demonstrates that this relationship is considerably attenuated for non-vivid pairs171

of stimuli (V ivid 6= 0 in Equation 5). These differences in how neural distances relate to dissimilarities between172

personal semantic tags between vivid and non-vivid pairs suggest that vivid reminiscence is accompanied by activity173

in the right precuneus reflecting higher fidelity self-relevant personal semantic representations relative to non-vivid174

reminiscence.175

A B

Figure 6 The slopes of the regression lines in Equation 5 describing the relationship between neural distances and Hamming
distances between the tag sets in a sphere of radius 7.5 mm around the peak voxel in the right precuneus. (A) The colored
lines show individual participants’ regression lines for the relationship between Hamming distance and neural distance for
vividly remembered pairs of images after accounting for the contribution from other independent variables in Equation 5 (i.e.,
the partial residual). The slope of the solid black line is the mean over the individual regression lines. (B) The relationship
between Hamming distance and neural distance for the less vividly remembered pairs of images after accounting for the
contribution from other independent variables in Equation 5.
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Discussion176

In a recent review, Renoult et al. (2012) identified the neural correlates of personal semantics, thought to consist177

of facts about one’s own life extracted over many repeated experiences. Renoult et al. (2012) described a personal178

semantics network that included the mPFC, retrosplenial cortex, temporal pole, posterior temporal cortex, precuneus,179

middle and inferior temporal gyri, inferior parietal lobe, hippocampus, parahippocampal gyrus, temporo-parietal180

junction, ventrolateral prefrontal cortex, and fusiform gyrus. The specific neural correlates depended on where the181

specific operationalization of personal semantics was located in the spectrum from semantic to episodic memory.182

The personal semantics network we identified in an autobiographical reminiscence task (Figure 4A, Supplementary183

Table S1) overlaps highly with the broad network described in Renoult et al. (2012) and includes core parts of the184

default mode network (DMN), which is thought to be involved in the processing of self-relevant information and185

in unconstrained mind-wandering. The DMN overlaps highly with contextual association networks and Bar et al.186

(2007) suggested that unconstrained thought processes, much like explicit associative memory processing, involve187

activation of such associations. Therefore, it is perhaps unsurprising that the network involved in instantiating188

associated personal semantic representations upon viewing an autobiographical image-cue is congruent with the189

associative-default network (see Figure 1 in Bar, 2007).190

We also identified a network that represented personal semantic content for vivid memories. This set of regions191

(Figure 4B, Supplementary Table S2) was mostly a sub-network of the more general semantic network but relatively192

more right lateralized. The posterior parietal cortex (PPC; including the posterior cingulate and precuneus) is a193

dominant part of the retrieved personal semantics networks we identified. Though studies of the human PPC have194

traditionally focused on visuospatial and sensorimotor functions, the PPC has received increased attention recently195

as a region that plays an important role in episodic memory (for reviews, see Cabeza et al., 2008; Ranganath and196

Ritchey, 2012; Sestieri et al., 2017; Vilberg and Rugg, 2008; Wagner et al., 2005). Though previous studies showed a197

predominantly left lateralized parietal retrieval network, Vilberg and Rugg (2008) suggested that it could have been a198

result of the limited range of materials (mostly verbal) used in those studies (e.g. see Simons et al., 2008 for evidence199

that source recollection of faces vs words evokes more activity in the right hemisphere, but see Duarte et al., 2011200

for an argument that retrieval MTL and PPC networks are material-general). Therefore, our observation of a right201

lateralized personal semantic network associated with vivid reminiscence could be explained by our use of highly202

personally relevant image cues drawn from participants’ own lives. However, since all the participants in our study203

were female, we are unable to rule out an alternative gender-based explanation for the right lateralization (but Viard204

et al. (2007), with all twelve participants being female, reported a left-lateralized network in an autobiographical205

memory retrieval task that used verbal cues collected from family members prior to fMRI scanning).206

Finally, given that vividness is a defining feature of successful autobiographical recollection, we focused on the207

regions within the broader network that represented retrieved personal semantic content specifically in service of208

vivid reminiscence, but not during non-vivid recall. The conjunction analysis identified the right precuneus (pC)209

as the locus of representation of content specifically accompanied by vivid reminiscence, but, critically, personal210

semantic representations were significantly attenuated in the right pC during non-vivid relative to vivid recall. Both211
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univariate and multivariate activity in the pC is consistently related to vividness ratings across AM experiments212

(Bird et al., 2015; Cavanna and Trimble, 2006; Gilboa et al., 2004; Richter et al., 2016; St-Laurent et al., 2015).213

Furthermore, Gilboa et al. (2004) presented family photographs, which are closer to the type of stimuli we used and214

they found that univariate activity in the right pC and bilateral lingual gyri was associated with vividness ratings.215

They suggested that vivid and detailed AM was required to engage the posteromedial cortex, which is thought to216

represent contextual details (cf. Ranganath and Ritchey, 2012). Our results offer direct evidence for this idea by217

demonstrating that neural activity patterns during vivid but not during non-vivid recall in the right pC represent218

the specific self-relevant contents of the original experience as indicated by participants.219

The precuneus has been called the “mind’s eye” (Fletcher et al., 1995) and pC activity is consistently associated220

with mental imagery and episodic memory (Cabeza and Nyberg, 2000; Cabeza and St. Jacques, 2007). A special221

status for the pC has been proposed within the default mode network (Buckner et al., 2008; Cavanna and Trimble,222

2006; Leech et al., 2012; Utevsky et al., 2014). Fransson and Marrelec (2008) performed a partial correlation-based223

connectivity analysis which measured the extent of interaction between nine nodes within the DMN after subtracting224

out the common influences from other nodes. This was done for resting state as well as a working memory task225

and they showed that pC was the only node that exhibited strong connectivity with virtually every other node.226

Functional connectivity analysis (Baird et al., 2013) and anatomical coupling and voxel-based morphometry analyses227

(McCurdy et al., 2013) have suggested an important role for the pC in metacognitive ability for memory retrieval.228

These connectivity patterns taken together with our results suggest that the pC may play an important role in the229

integration of personal semantic information from other parts of the network leading to a detailed representation230

of the self-relevant contents of a specific experience, supporting the subjective experience of vivid autobiographical231

reminiscence.232

The idea that the pC may have a privileged status within the DMN is further supported by the discovery that233

along with regions in the MTL, the pC is one of the first regions to be affected in early Alzheimer’s disease (AD) (Jack234

et al., 2009). There is catastrophic breakdown of information flow when a hub in a network is affected (Albert et al.,235

2000). This could explain why in the early stages of AD, people lose track of time, people, and places (also see Peer236

et al., 2015 for evidence that the same regions are important for mental orientation along the different dimensions237

of space, time, and persons and that the pC activated across these domains). On a related note, a new memory238

syndrome, severely deficient autobiographical memory (SDAM), was identified recently (Palombo et al., 2015) in239

three healthy adults with otherwise normal cognitive functioning who were severely impaired on autobiographical240

memory function. This impairment was specific to vivid visual episodic re-experiencing of personal events but did241

not extend to remembering personal semantics. Furthermore, even though they were impaired relative to the controls242

in reporting spatiotemporally specific episodic details of remote events, they were able to produce episodic details243

for recent events, albeit accompanied by significantly reduced vividness ratings across all time periods. fMRI scans244

during a cued-autobiographical recall task revealed that there was reduced activity compared to the controls in areas245

including the left mPFC and right precuneus. Our results are consistent with Palombo et al. (2015)’s report and246

suggest that the subjective experience of vivid reminiscence is facilitated by activity in the right precuneus reflecting247
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personal semantics of retrieved episodic details whereas personal semantics more generally are represented by a248

broader network of regions, which can explain the selective vividness deficits but intact personal semantics in people249

with SDAM.250

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197665doi: bioRxiv preprint 

https://doi.org/10.1101/197665
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion251

It has been suggested that AM retrieval is guided by semantic retrieval (cf. Conway and Pleydell-Pearce, 2000). We252

identified the general network, including core parts of the default mode network, that represents retrieved personal253

semantics during AM search over several weeks of real-world experience. The precuneus is a hub within this network254

(Cavanna and Trimble, 2006; Damasio, 1989; Fransson and Marrelec, 2008; also see Binder and Desai, 2011; Moran255

et al., 2013) and our results suggest that activity in the precuneus supports the subjective experience of vivid256

reminiscence by representing personal semantic attributes with higher fidelity during vivid compared to non-vivid257

recall. This account provides a plausible mechanism by which people make metacognitive judgments about their258

recollective experiences, and may provide key support to theories that suggest a critical role of the precuneus in the259

autobiograpical memory deficits seen in Alzheimer’s disease and other forms of dementia.260
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Materials and Methods261

Device and Software262

Each participant carried an Android-based smartphone in a pouch attached to a neck strap as shown in Figure 1A263

from morning until evening. The smartphone was equipped with a custom lifelogging application that acquired image,264

time, audio (obfuscated), GPS, accelerometer, and orientation information throughout the day and uploaded those265

data to a secure remote server when the smartphone was connected to a charger and detected WiFi. This transmission266

usually happened once per day at the end of the day because users charged the phone overnight. The data were sent267

in batch mode via SFTP (Secure File Transfer Protocol) for added security and remained inaccessible to other users268

in the system. The participants had control over what data they wanted to share with the experimenters. They were269

instructed on how to delete data from the phone and from the server. They were also allowed to turn the application270

off or to place a flap over the camera lens at any time during the data collection period when they felt the need for271

privacy. The lifelogging application was written by our programmers using Java (Oracle Corporation) to run in the272

background as a service. Data acquisition times could be fixed or variable, and they were determined by a movement273

based trigger to preserve battery resources when the user was not very active.274

Participants275

Participants were recruited using advertisements placed on notice boards in multiple buildings on the main campus of276

The Ohio State University. To join the study, potential participants had to be willing to participate in the lifelogging277

data collection and to be willing and able to undergo an MRI scan. They were compensated at the rate of $10 per278

day for wearing the smartphone to collect data and at the rate of $15 per hour for the fMRI session. We recruited 10279

participants (aged 19–26 y, mean age = 21.4 y; nine female), nine of whom wore the smartphone for ∼ 1 month. The280

tenth participant wore the smartphone for 2 weeks. One participant (male) did not complete the fMRI session due281

to discomfort in the scanner; therefore, we did not include the data for that participant in any of our analyses. Our282

study has a similar number of participants as other fMRI studies using lifelogging devices (13 participants and 10283

days of lifelogging in Cabeza and St. Jacques, 2007; 10 participants and 2 days of lifelogging and a 5 month follow-up284

in Milton et al., 2011).285

Ethics Statement286

The research protocol was reviewed and approved by the Institutional Review Board at The Ohio State University.287

Written informed consent was obtained from all participants, once before the lifelogging data collection phase and288

once before the fMRI session.289
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Behavioral Tasks290

There were two main behavioral tasks that were performed before the MRI session. The first behavioral task was291

performed each evening during the lifelogging period. After the smartphone was connected to a power outlet to be292

charged overnight and had uploaded the data to our server, participants reviewed the images from that day through293

a web interface, a link to which was uniquely generated for each participant and provided to the participant before294

data collection, segmenting their stream of images into distinct episodes and tagging each episode with a set of tags295

chosen from a drop-down menu (Table 2). Participants were instructed to choose tags that best captured the contents296

of that episode and those that were likely to be good memory cues. The tags belonged to one of three categories:297

places, activities, and people. If no tag fit the episode, participants could choose “other”. For each episode, they298

also provided a brief title and description. Insofar as only the participant knew the right tag to pick for a given299

episode, the set of tags captures the subjective contents of that episode. For instance, looking at someone else’s300

data with images of a person in it, it may be difficult to pick the appropriate tag from amongst “Spouse/Partner”,301

“Boyfriend/Girlfriend”, “Family”, “Work colleagues”, “Stranger”, and “Friends/Classmates”. While other tags are more302

objective, such as “Salesperson/Clerk/Cashier” or “Gas station”, the chosen tags are nevertheless the aspects chosen303

by the participant as the most salient of that episode from potentially many other descriptors. Therefore, the current304

analyses which are based on participant-generated content tags capture more self-relevant and subjective aspects of305

experience than did our previous work (Nielson et al., 2015) which based on objective GPS locations and timestamps.306

A word cloud of the tags belonging to the episodes used in the fMRI experiment across all nine participants is shown307

in Figure 1B. The second behavioral task was conducted midway through the lifelogging period and at the end of the308

lifelogging period. After they collected data for two (and/or four) weeks, participants came into the laboratory on309

the Thursday of the third (and/or fifth) week and were tested over their ability to identify when events depicted in310

images drawn from his/her own lifelogs occurred. Specifically, they were shown a series of images from the weekdays311

of the preceding 2 weeks on the computer screen one at a time and asked to determine whether the image was from312

the first week or the second week. The results of this week discrimination task will be reported in a separate paper.313

Analysis of tag co-occurrence structure314

In order to characterize the co-occurrence structure of semantic tags that emerges across participants, we computed315

pointwise mutual information (PMI), a measure of association between two features. PMI for a pair of tags x and y316

is given by:317

PMI(x, y) = log2
P (x, y)

P (x)P (y)
. (1)

The probabilities in Equation 1 are calculated by accumulating frequencies of tags as well as frequencies of co-318

occurrences of tag pairs in all events across participants and then dividing by the total number of events (120× 9 =319

1080). PMI is sensitive to tag frequency and is bounded between −∞ and min[−log2p(x),−log2p(y)]. Therefore, we320

used the normalized pointwise mutual information (NPMI) which is more easily interpretable and is less sensitive to321
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Table 2 The 51 tags available to participants across three categories: places, activities, and people. The number of available
tags in each category are in brackets. Additionally, they could also choose “other” if none of these fit the event.

Category Tags

Places (16) Outdoor, Airport/Bus-station, Gas station, Park/Museum/Zoo,
Gym, Library, Parents’/siblings’/relatives’ home or apart-
ment, Mall, Friend’s home/apartment, Class/meeting
room/hall, Restaurant/Cafe/Bar, My office/lab/workplace,
Home/apartment, Other office, Store, Other person’s of-
fice/workplace

Activities
(22)

Chores, Thinking, Party, Talk on phone, Use a computer, Ex-
ercise, Shopping, Personal hygiene, Relax, Eat/drink, Talk/chat
with other(s), Phone not worn, Study, Work, Drive, Care for/play
with child/baby, Ride bike, Giving a lecture/presentation, Listen-
ing to a lecture/presentation, Walk, Sit in a vehicle, Hobbies

People (13) Kids, Family, Friends/Classmates, Pet, Salesper-
son/Clerk/Cashier, Boyfriend/Girlfriend, Stranger, Alone,
Professor (of my classes), Student, Spouse/Partner, Crowd (in a
public place), Work colleagues

tag frequency:322

NPMI(x, y) =
PMI(x, y)

h(x, y)
, (2)

where

h(x, y) = −log2p(x, y). (3)

NPMI(x, y) = −1 when the pair of tags never co-occurs, NPMI(x, y) = 0 indicates that the tag occurrences323

are independent of each other, and NPMI(x, y) = 1 indicates that the tags always co-occur.324

MRI Acquisition325

MRI data were acquired on a 3-T Siemens Magnetom Trio TIM system with a 16-channel head coil. Anatomical326

images were acquired with a sagittal, T1-weighted, magnetization prepared rapid acquisition gradient echo sequence327

[1.0-mm isotropic voxels, repetition time (TR) = 1900 ms, echo time (TE) = 4.68 ms, 160 slices with field of view328

(FoV) = 256 mm]. Functional images were acquired with an echoplanar imaging sequence (2.5-mm isotropic voxels,329

TR = 3000 ms, TE = 28 ms, flip angle = 80°, 47 slices with FoV = 250 mm).330

Stimuli Selection331

We selected 120 images from each subject’s lifelogging data to present to the subject in the scanner. First, we332

excluded pictures of floors/ceilings/walls, blurry images, and images with inadequate exposure. Then, we selected333

images that appeared to have enough detail that they could act as cues for distinct episodes. From this subset of334
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images, we selected images representing events that spanned the entire period each participant wore the lifelogging335

device, with as uniform sampling of events as possible.336

fMRI Experiment337

In the scanner, participants were instructed that they would be viewing images from the experience sampling experi-338

ment they recently completed and told that each image would be displayed for 8 s. Participants were asked to “... try339

to remember the event depicted in the picture, and try to relive your experience mentally.” After the remembrance340

period for each event, participants were asked if they remembered the event (“yes” or “no”) and how vividly they341

recalled the event (“lots of detail” or “very little detail”). Participants were given 2.5 s to respond to each of those342

questions using a button box held in their right hand. The images were presented in random order, and the task was343

split into eight runs with 15 images in each run. With each image presented for 8 s and each question for presented344

2.5 s with a 0.5 s interstimulus interval, each trial took a total of 14 s. The intertrial interval was jittered uniformly345

between 4 and 10 s, allowing for a true event-related design.346

fMRI Processing347

fMRI processing was carried out using Analysis of Functional NeuroImages (AFNI) (Cox, 1996) and Functional348

Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) (Smith et al., 2004). The T1-weighted349

anatomical image was intensity-normalized, skull-stripped, and warped to a 2.5-mmMNI-152 template using 3dQwarp.350

We selected a 2.5 mm template to match the resolution of the functional scans. For the functional scans, we dropped351

the first two TRs of each run, then removed spikes with 3ddespike and temporally shifted all of the slices in each352

volume to the start of the TR using 3dTshift with Fourier interpolation. We then warped the functional scans to353

template space, blurred them to 4 mm FWHM using 3dBlurtoFWHM, and scaled the voxel values to a mean of 100354

(maximum of 200) for each run. At this point, we performed independent component analysis of each functional355

run with FSL’s MELODIC. Components were visually inspected to identify noise components following published356

guidelines (Kelly et al., 2010). Noise components were regressed out of the functional runs using FSL’s fsl_regfilt357

command. We then ran a regression with restricted maximum likelihood estimation of temporal autocorrelation358

structure on the filtered functional runs using 3dDeconvolve and 3dREMLfit to generate single-trial betas for each359

reminiscence trial and to regress out the effects of the mean and derivative of motion terms, as well as cerebrospinal360

fluid signal. The regressor for each image presentation was an 8-s block convolved with a hemodynamic response361

function. The neural activity of the question prompts were accounted for with a 2.5 s block convolved with a hemo-362

dynamic response function. We modeled response processing and motor activity related to the button push with363

a set of nine tent functions over the 16 s after the question response. Including these tent functions in our model364

allowed us to estimate the motor response robustly for each subject so that the signal from the motor responses did365

not contaminate the single-trial beta fit for each reminiscence period. Lastly, we regressed out local white matter366

signal with 3dAnaticor. Researchers were not blinded during preprocessing or subsequent analyses.367
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Representational Similarity Analysis368

Representational Similarity Analysis (RSA, Kriegeskorte et al., 2008) is a data-analytic framework that allows us to369

quantify the relationship between the multivoxel patterns of neural activity and the behavior of interest. We used370

RSA to predict dissimilarities between the neural representations of events based on the dissimilarities between the371

events in terms of their subjective contents as captured by the tags provided by participants during the lifelogging372

phase as well as the vividness ratings provided during the reminiscence task in the scanner. See Figure 2 for a373

depiction of the task and analysis.374

For each pair of images presented to the participants, we calculated the Hamming distance between the associated375

tag sets. Since a total of 52 unique tags were used (including the “other” tag), each tag set can be represented as376

a 52-dimensional binary vector where each entry denotes the presence/absence of a tag. The Hamming distance377

between two binary vectors A and B is simply the number of positions where they differ, or in other words, Hamming378

distance = sum(XOR(A,B)). For example, if A = [1 1 0 0 1 0 1 ...] and B = [0 0 1 1 0 0 1 ...] with only the first379

5 positions being different, the Hamming distance is 5. As a more concrete example, if image A had been tagged380

with Walk, Outdoor, Talk on phone and image B had the tags Walk, Store, Talk on phone, the Hamming distance381

between them is 2 since there are 2 tags that are different between the two sets reflecting the difference in location382

between the two otherwise similar events.383

In our previous analysis (Nielson et al., 2015), for each pair of images presented to the participants, we calculated384

the geodesic distance in meters between the two GPS coordinates and the difference in time in seconds. Geodesic385

distance was calculated using the GeoPy Python package. Image pairs with spatial distances less than 100 m were386

excluded because these distances are below the reliability of the GPS radios in these smartphones. Image pairs with387

temporal distances below 15.6 h were excluded based on prior work because of a discontinuity in the spatiotemporal388

distribution of image pairs (Sreekumar et al., 2014). The discontinuity between 14 and 16-h results from participants389

taking off their cameras to sleep. This gap is propagated through the rest of the results as a relative lack of image390

pairs that are multiples of ∼ 15 h apart. An analysis of the structure of similar lifelogged images demonstrated that391

image pairs taken from identical spatiotemporal locations occupied a lower dimensional manifold than those image392

pairs taken from separate spatiotemporal locations (Sreekumar et al., 2014;2017). By removing image pairs separated393

by less than 100 m and 15.6 h, we reduced the possibility that the images themselves would give rise to the present394

results as a consequence of within- and between- episode image properties. Some participants spent time out of town395

during the period of data collection, resulting in a small portion of image pairs with spatial distances greater than396

30 km; these image pairs were also excluded in Nielson et al. (2015) and we impose the same spatial limit. Images397

that were blurry or contained reflections of the participants were also excluded. Hamming distances between the tag398

sets of the remaining pairs of image stimuli were calculated as described earlier. In order to further control for visual399

similarity, we compared five different popular image representations based on how well they identified temporally400

close images as visually similar and chose the color correlogram representation (Huang et al., 1997; Supplementary401

Section S3 and Figure S1 for details). Euclidean distances between the correlogram image representations were402

computed and entered into the General Linear Models (GLMs) described below as a visual control (V isSim in403
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Equation 4 and Equation 5).404

In order to investigate both cortical and sub-cortical contributions to content retrieval, we performed a whole-brain405

searchlight analysis (Kriegeskorte et al., 2006) using the PyMVPA package (Hanke et al., 2009). Representational406

similarity analysis (RSA) was performed on voxels within spherical neighborhoods of 7.5 mm radius surrounding407

a central voxel. An initial 2.5 mm resolution gray matter mask in the Montreal Neurological Institute (MNI-152)408

standard space was used to input the fMRI data to the searchlight function but for each individual, we used a409

subject-level gray matter mask warped to MNI-152 space to select the spheres on which to run the analysis. Within410

each sphere, the neural distance for each image pair was calculated as 1 minus the Pearson correlation between the411

voxel-level single-trial betas for the trials corresponding to those image pairs. Neural distances were z-scored within412

participants. In each searchlight sphere in each subject, we ran the following GLM:413

neuraldistance = α+ βHammHamm+ βV isSimV isSim+ βscannerlog10(scannertime) + ε (4)

Scanner time was calculated as the number of seconds between presentation of the images during the fMRI414

experiment. We used the log of time based on previous literature that has shown a power-law relationship for415

neural representations (Gallistel and Gibbon, 2000). In each sphere, we performed a t-test on the betas from416

the subject-level GLMs to determine if they were significantly different from zero across participants. We used417

nonparametric permutation to test for significance (Ernst, 2004) because the pairwise nature of the distances in our418

analysis violated the assumption of independent samples. Neural data were permuted with respect to behavioral data419

within participants. This process was repeated for 1000 permutations of the neural data. We performed threshold-420

free cluster enhancement (TFCE; Smith and Nichols, 2009) on the Hamm t-value maps for both the unpermuted421

data as well as for the 1000 permutations. The maximum and minimum TFCE values across all spheres for each422

permutation were recorded. The 97.5th percentile of the max TFCE values was chosen as the threshold above which423

a positive TFCE value in the unpermuted data is deemed to be significant. Similarly, we tested the negative end by424

using the 2.5th percentile of the min TFCE values as the threshold (this procedure is essentially a two-tailed test at p425

= 0.05). This analysis reveals the clusters of brain regions whose activity patterns reflect the relationships (captured426

by Hamming distances) between events in terms of their contents. Additionally, we wanted to identify regions that427

may support metacognitive judgments (such as vividness of the recollective experience) based on the contents of428

memory retrieval. One possibility is that the quality of personal semantic representations in such brain regions429

would differ between different levels of reported vividness. Therefore, we ran the following model to investigate the430

brain regions that represent subjective content during vivid but not during non-vivid reminiscence:431

neuraldistance = α+ βHammHamm+ βV ividV ivid+ βHamm∗V ividHamm ∗ V ivid

+βV isSimV isSim+ βscannerlog10(scannertime) + ε
(5)

For a given pair of stimuli, V ivid was coded as 0 if both were reported to be vividly recalled, 0.5 if one of them432

was vivid, and 1 if neither was vivid. After subtracting out the effects of temporal proximity and visual similarity of433
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the stimuli in the scanner, this coding scheme allows us to interpret βHamm as describing the relationship between434

Hamming distances and neural distances for vividly remembered events since the other terms vanish for V ivid = 0.435

We expected the interaction between Hamming distance and vividness to be negative as that would indicate that436

the effect of Hamming distance is greater for vividly remembered events relative to less vividly remembered events437

in its ability to predict the neural distances between them. To identify the regions that show a significant effect438

of both Hamming distance by itself as well as the negative interaction with vividness, we performed a conjunction439

analysis by taking Min(tHamm,−tHamm∗V ivid). TFCE was performed on this minimum t-statistic map and the440

permutation procedure was performed as earlier to assess significance of the clusters. 95th percentile of max TFCE441

across permutations was used to test significance since this was a one-tailed directional test. The conjunction442

analysis reveals the regions that reinstate subjective contextual details to a greater extent for vividly remembered443

events relative to the less vivid or non-vivid events.444

Finally, to visualize the relationship between Hamming distances and neural distances in a sphere (radius = 7.5445

mm) surrounding the peak voxel in the right precuneus, we used partial residual plots. Partial residual plots describe446

the relationship between a dependent variable and an independent variable after accounting for the contribution447

from other independent variables in a multivariate regression model. Specifically, to visualize the relationship be-448

tween Hamming and neural distances for vividly remembered pairs of images (V ivid = 0 in Equation 5), we first449

computed residuals by regressing neural distances versus all the independent variables in Equation 5) for vivid pairs.450

βHammHamm is then added to these residuals to get partial residuals = residuals + βHamm. The partial residuals451

are plotted against Hamm to visualize the relationship between Hamm and neural distances for vivid pairs after452

taking into account the effect of all the other independent variables. This procedure can be understood intuitively if453

one considers the hypothetical case when all the other independent variables explain the response variable perfectly.454

In that case, residuals = −βHammHamm and therefore the partial residuals after adding βHammHamm back in455

would be 0. The regression lines overlaid on the partial residuals vs Hamming distance plot have the same slope as456

in the full model (i.e., βHamm) but have an intercept of 0. Similarly, we plot the partial residual plot for the less457

vivid and non-vivid (V ivid 6= 0) pairs, but now for components βHammHamm+ βHamm∗V ividHamm ∗ V ivid since458

the relationship between Hamming distances and neural distances now also depends on V ivid via the interaction459

term (which was 0 for vivid pairs).460
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Supplementary Information638

639

S1 List of regions in the general personal semantic network640

Table S1 Peak voxel coordinates of regions with at least 10 voxels in the general personal semantic network (Equation 4,
Figure 4A). The FSL-Harvard-Oxford cortical-subcortical atlas was used to get coordinates in MNI space. When multiple sets
of coordinates are shown for a region, they correspond to multiple peak voxels.

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

R. Frontal Pole 544 30897.1 37065.1 35 39.5 40.5

L. Precuneus 469 33131.6 43831.9 -5 -53 43

R. Precuneus 375 34201.7 40640.8 12.5 -55.5 25.5

R. Middle Frontal

Gyrus

334 31062.5 37003.5 27.5 29.5 40.5

R. Temporal Pole 327 32565.1 38100.2 45 7 -27

R. Precentral Gyrus 225 29847.2 33840.5 62.5 12 23

57.5 9.5 18

R. Pos. Middle Tem-

poral Gyrus

206 32870.3 39060.5 60 -10.5 -9.5

R. Pos. Cingulate

Gyrus

200 32106.7 39004.5 15 -50.5 5.5

R. Superior Frontal

Gyrus

161 30163.9 36520.4 25 29.5 45.5

R. Lingual Gyrus 154 31568.5 38727.5 12.5 -50.5 0.5

R. Postcentral Gyrus 149 29863.7 32535.1 60 -15.5 43

R. Inferior Frontal

Gyrus, pars opercu-

laris

132 31868.5 35433.1 52.5 17 20.5

R. Inferior Frontal

Gyrus, pars triangu-

laris

127 32038.2 35164.8 47.5 29.5 18

R. Pos. Superior Tem-

poral Gyrus

123 32284.4 39818.7 47.5 -8 -17
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General personal semantic network peak voxel coordinates (continued)

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

L. Pos. Cingulate

Gyrus

112 32028.4 37295.2 -2.5 -40.5 35.5

R. Supplementary Mo-

tor Cortex

111 29923.5 31504.1 10 7 55.5

L. Postcentral Gyrus 106 29940.4 36645.8 -2.5 -40.5 55.5

L. Ant. Middle Tem-

poral Gyrus

102 33844.0 44029.8 -57.5 -10.5 -27

L. Lingual Gyrus 93 31611.5 35322.6 -10 -63 5.5

R. Frontal Orbital Cor-

tex

91 31321.8 34199.9 40 19.5 -9.5

R. Insular Cortex 78 30916.3 34115.3 42.5 17 -7

40 17 -7

40 19.5 -7

R. Temporal Occipital

Fusiform Cortex

76 31119.1 32987.4 37.5 -53 -12

37.5 -50.5 -12

R. Ant. Parahip-

pocampal Gyrus

75 30976.0 35190.0 27.5 2 -37

R. Middle Temporal

Gyrus, temporooccipi-

tal part

73 28955.5 32818.4 50 -40.5 0.5

R. Ant. Middle Tem-

poral Gyrus

68 33720.1 45923.2 52.5 -3 -27

L. Precentral Gyrus 67 29240.2 36004.3 -2.5 -35.5 55.5

R. Ant. Superior Tem-

poral Gyrus

62 33084.1 39607.5 50 -0.5 -17

L. Inferior Temporal

Gyrus, temporooccipi-

tal part

60 28585.0 29626.6 -52.5 -53 -14.5

R. Planum Temporale 55 31013.6 32529.0 57.5 -30.5 13

R. Angular Gyrus 52 30522.7 32509.5 60 -58 23
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General personal semantic network peak voxel coordinates (continued)

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

R. Ant. Supra-

marginal Gyrus

51 29566.7 31001.5 65 -28 40.5

R. Ant. Cingulate

Gyrus

51 29465.8 32538.4 2.5 -3 33

L. Intracalcarine Cor-

tex

50 32307.8 35476.6 -12.5 -63 5.5

R. Pos. Supramarginal

Gyrus

50 29057.8 31393.8 50 -38 8

L. Pos. Middle Tempo-

ral Gyrus

46 30053.9 37805.2 -52.5 -10.5 -17

R. Cuneal Cortex 45 31713.7 38448.5 5 -68 20.5

R. Central Opercular

Cortex

41 30675.2 32363.8 50 2 8

R. Intracalcarine Cor-

tex

38 33532.0 38478.0 15 -60.5 5.5

L. Superior Frontal

Gyrus

38 29254.3 30809.9 -7.5 -3 70.5

-7.5 -3 73

-7.5 -0.5 70.5

R. Planum Polare 36 30760.8 36536.2 45 -5.5 -17

L. Supplementary Mo-

tor Cortex

35 29523.5 30895.3 -2.5 -0.5 68

L. Ant. Cingulate

Gyrus

31 28931.6 31007.8 -2.5 -3 33

R. Pos. Temporal

Fusiform Cortex

31 31544.4 34842.5 40 -15.5 -29.5

L. Temporal Occipital

Fusiform Cortex

25 29667.4 31681.3 -42.5 -55.5 -24.5

L. Ant. Superior Tem-

poral Gyrus

24 34125.3 39511.7 -50 -8 -14.5

L. Planum Polare 23 29722.4 36573.1 -42.5 -0.5 -19.5
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General personal semantic network peak voxel coordinates (continued)

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

R. Pos. Inferior Tem-

poral Gyrus

22 31040.6 32278.8 65 -25.5 -22

R. Pos. Parahip-

pocampal Gyrus

19 30848.5 33924.4 15 -35.5 -12

15 -33 -12

R. Supracalcarine Cor-

tex

18 31093.0 35722.3 15. -63. 13

2.5 -68 15.5

R. Paracingulate

Gyrus

16 28646.2 28939.7 5 22 48

L. Cuneal Cortex 15 30396.3 31544.9 -7.5 -88 23

L. Inf. Lateral Occipi-

tal Cortex

15 28542.3 28927.9 -45 -65.5 -9.5

L. Supracalcarine Cor-

tex

13 31272.3 33972.7 -12.5 -65.5 13

L. Temporal Pole 13 29828.0 33602.5 -52.5 4.5 -22

L. Pos. Superior Tem-

poral Gyrus

12 30542.7 39294.6 -55 -13 -7

R. Inferior Temporal

Gyrus, temporooccipi-

tal part

11 31104.2 32365.4 47.5 -45.5 -27

R. Frontal Operculum

Cortex

11 29880.5 31275.1 45 24.5 0.5

45 24.5 3

42.5 22 3

1 97.5th percentile TFCE threshold = 28499.3, Max network TFCE = 45923.2
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S2 List of regions in the vivid personal semantic network641

Table S2 Peak voxel coordinates of regions with at least 10 voxels in the vivid personal semantic network (Equation 5,
Figure 4B). The FSL-Harvard-Oxford cortical-subcortical atlas was used to get coordinates in MNI space. When multiple sets
of coordinates are shown for a region, they correspond to multiple peak voxels.

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

R. Precuneus 382 34385.0 48123.3 12.5 -65.5 23

R. Middle Frontal

Gyrus

193 30099.8 34687.5 45 32 33

L. Precuneus 160 31471.5 35883.0 -2.5 -63 28

R. Temporal Pole 91 30264.4 32481.3 50 12 -24.5

R. Lingual Gyrus 68 30309.1 32227.1 12.5 -58 5.5

R. Pos. Middle Tem-

poral Gyrus

56 30272.1 31821.7 52.5 -18 -17

R. Cuneal Cortex 54 33206.4 45559.9 12.5 -68 23

R. Inferior Frontal

Gyrus, pars triangu-

laris

51 30391.2 31757.0 55 29.5 18

R. Temporal Occipital

Fusiform

49 30347.1 32620.1 37.5 -50.5 -12

R. Pos. Cingulate

Gyrus

46 30133.3 34881.8 12.5 -50.5 33

L. Sup. Lateral Occip-

ital Cortex

45 27763.0 28185.4 -32.5 -83 20.5

R. Pos. Temporal

Fusiform

37 30597.8 32950.2 42.5 -15.5 -24.5

R. Ant. Middle Tem-

poral Gyrus

35 31463.4 37098.3 52.5 -3 -22

R. Pos. Inferior Tem-

poral Gyrus

33 30424.2 33262.3 47.5 -33 -19.5

R. Ant. Superior Tem-

poral Gyrus

33 32080.6 37582.9 47.5 -0.5 -19.5

R. Frontal Pole 26 29501.4 30099.0 22.5 42 45.5

20 42 45.5
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Vivid personal semantic network peak voxel coordinates (continued)

Region Voxel

count

Mean

TFCE

Max TFCE1 MNI coordinates

x y z

R. Inferior Temporal

Gyrus, temporooccipi-

tal part.

26 30619.0 32395.0 50 -48 -22

L. Postcentral Gyrus 22 32988.9 34580.7 -7.5 -43 55.5

R. Frontal Operculum

Cortex

21 30185.1 31266.4 45 17 5.5

R. Intracalcarine Cor-

tex

18 30436.1 32872.7 20 -60.5 5.5

R. Inferior Frontal

Gyrus, pars opercu-

laris

16 29745.9 31055.5 47.5 17 8

R. Pos. Parahip-

pocampal Gyrus

14 29469.3 30880.5 12.5 -35.5 -7

R. Supracalcarine Cor-

tex

14 30170.0 32475.1 22.5 -65.5 20.5

17.5 -65.5 18

R. Insular Cortex 11 30009.5 30867.3 42.5 17. -4.5

40 19.5 -7

R. Pos. Superior Tem-

poral Gyrus

10 30519.0 35460.0 47.5 -8 -17

1 97.5th percentile TFCE threshold = 27579.2, Max network TFCE = 49329.6

S3 Image Representations642

All images were resized to 640×480. The color histogram and color correlogram (Huang et al., 1997) representations643

were computed as in Sreekumar et al. (2014) and descriptions of the methods are reproduced below. Additionally,644

we explored Histogram of Oriented Gradients (HOG; Dalal et al., 2006; Felzenszwalb et al., 2010, GIST Oliva and645

Torralba, 2001, and Speeded-up Robust Features (SURF; Bay et al., 2008). SURF is a faster version of the Scale646

Invariant Feature Transform (SIFT; Lowe, 2004). We provide brief high-level descriptions of each representation647

below and ask that readers refer to the original papers for more details.648

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/197665doi: bioRxiv preprint 

https://doi.org/10.1101/197665
http://creativecommons.org/licenses/by-nc-nd/4.0/


Color Histogram649

The color histogram is a simple global image representation and is invariant under image rotation and translation.650

A color histogram for an image is generated by concatenating N higher order bits for features in the chosen color651

space. We used the Hue, Saturation and Value (HSV) space (Smith, 1978) since it separates color from intensity652

information and makes an image representation based on HSV relatively robust to changes in appearance due to653

differences in lighting conditions. The histogram is generated by counting the number of pixels with the same color654

and accumulating it in 23N bins. Quantizing the hue component more precisely than the value and saturation655

components makes the HSV histogram more sensitive to color differences and less sensitive to brightness and depth656

differences and could help identify similar images under different lighting conditions. We used a 30×10×3 hue value657

saturation quantization of the HSV space to generate 900-dimensional color histogram image vectors.658

Color Correlogram659

The color histogram has the drawback of being a purely global description of the color content in an image. It does660

not include any spatial information. Purely local properties when used can be extremely sensitive to appearance661

changes due to slight changes in angle, zoom, etc. Purely global properties like those used in the color histograms can662

give false positives in an image retrieval task as it tends to classify images from widely separated scenes as belonging663

to the same scene if they have similar color content. A color correlogram describes global distributions of local664

spatial color correlations. We followed the procedure in Sreekumar et al. (2014) to compute the color correlogram665

as follows. The color correlogram γci,cj
(k) of an image I, is a three dimensional table whose entry (ci, cj , k) is the666

probability of finding a pixel of color cj at a distance k ∈ {1, 2, 3, ..., d} from a pixel of color ci in the image. For667

pixels p1 = (x1, y1) and p2 = (x2, y2), we use the L∞ norm to measure the distance between them, such that668

|p1− p2| = max(|x1− x2|, |y1− y2|). Relative to the histogram, the correlogram is robust to changes in appearance669

caused by occlusions, zoom, and viewing angles. The size of the correlogram is O(m2d) where m is the total number670

of colors and i, j ∈ {1, 2, 3, ...,m}. This imposes substantial storage requirements for large values of d. So we chose671

to work with a compressed version of the color correlogram where we sum the conditional probabilities of color pairs672

over a restricted set of distances. For constructing the color correlograms, the HSV color space is quantized into673

12× 3× 3 bins. We let k ∈ {1, 3, 5, 7} and use a restricted version of the color correlogram as in Equation 6.674

γ̄ci,cj (I) =
∑

k∈{1,3,5,7}

γkci,cj (I) (6)

This procedure resulted in 11664-dimensional feature vectors. A singular value decomposition (SVD) is carried675

on the 120× 11664 image by feature matrix to generate 120-dimensional image vectors.676

Histogram of Oriented Gradients (HOG)677

The histogram of oriented gradients (HOG) is used widely in object detection applications (Dalal et al., 2006). We678

used the UOCTTI variant (Felzenszwalb et al., 2010) as implemented in VLFeat version 0.9.20 (www.vlfeat.org;679
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Vedaldi and Fulkerson, 2010). HOG computes a histogram of oriented gradients over square cells, typically 8 pixels per680

side. We also used the typical value of orientation bin size of 9. Since images were 640×480 pixels, there were 80×60681

HOG cells. Dalal et al. (2006) originally proposed normalization and truncation of HOG features via 4 normalization682

factors to obtain 36 HOG features. Felzenszwalb et al. (2010) proposed alternative steps (using fewer features to683

speed up learning and detection) involving a principle components analysis of a collection of HOG features to derive684

13 contrast-insensitive HOG features. However, their analyses also indicated that detection performance for some685

object classes improved when using some additional contrast-sensitive features. The end result is a 31-dimensional686

feature vector (see Felzenszwalb et al., 2010 for further details). Thus, we obtain 80× 60× 31 = 148800-dimensional687

HOG vectors. A singular value decomposition (SVD) is carried on the 120 × 148800 image by feature matrix to688

generate 120-dimensional image vectors.689

GIST690

Oliva and Torralba (2001) proposed a model of real-world scene recognition, based on a low dimensional scene691

representation that they called “Spatial Envelope”. Unlike HOG, this model was not designed to detect individual692

objects, rather it was aimed at representing dominant spatial characteristics of a scene using a set of perceptual693

dimensions that were estimated using spectral and coarsely localized information. This model successfully models694

a holistic representation of the scene and generates a multidimensional space in which semantic categories of scenes695

(e.g. highways) cluster together. MATLAB code provided by the original authors was used to construct GIST696

representations for our analyses (http://people.csail.mit.edu/torralba/code/spatialenvelope/).697

Speeded-up Robust Features (SURF)698

Speeded-up Robust Features (SURF), as the name suggests, is a fast algorithm partly inspired by the Scale Invariant699

Feature Transform (SIFT), that detects interest points in a view-invariant manner. We first used the bagofFeature()700

function in the MATLAB computer vision system toolbox to extract SURF features for all 120 images for a given701

participant. As an example, 1843200 features were extracted from the image set for one participant. K-means702

clustering is performed to create a 500-word visual vocabulary. Each image is then represented as a histogram over703

these 500 clusters using the MATLAB computer vision system toolbox encode() function.704

S4 Comparing image representations: Common neighbor ratio705

As in Sreekumar et al. (2014), to pick the “best” image representation for subsequent analyses, we required that our706

representation of choice and the associated distance measure accurately identify images from the same context as707

being similar to each other. Though people can and do go back to the same context at a later time, in general images708

that are close in time will be from the same spatial context and hence should be identified as being similar. With709

this in mind, we defined the common neighbor ratio (CNR). Given a positive integer k, for each image I, we find710
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its k nearest neighbors both in the spatial domain and in the time domain. Suppose DI = {Id1, Id2, Id3, ..., Idk} are711

image I’s k nearest neighbors in space and TI = {It1, It2, It3, ..., Itk} are image I’s k nearest neighbors in time, then712

CNR =

∑n
I=1 |DI ∩ TI |

nk
(7)

where n is the total number of images. If k equals n − 1 (i.e., all the other images in the set), then the ratio is713

1. The method that has a higher common neighbor ratio is the better one for our purpose, which is to successfully714

identify images that came from the same context as similar. Figure S1 shows common neighbor ratios averaged over715

participants for each image representation. For all reasonable values of k nearest neighbors (given that care was716

exercised while selecting stimuli to avoid images that came from the same episode too often, it is unlikely that there717

are many neighbors from the same temporal context in any given stimulus set of 120 images and so we explored718

values of k up to 15), we found that the color correlogram achieves better congruence between spatial (in image719

space) and temporal proximity and hence chose the color correlogram as our preferred image representation (Figure720

S1).721
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Figure S1 Common neighbor ratio comparison of image representations. The color correlogram representation achieves the
best congruence between spatial (in image space) and temporal proximity of nearest neighbors (k).
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S5 Individual Partial Residual Plots722
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Figure S2 Individual participant partial residual plots of the Neural distance ∼ Hamming distance relationship for vivid (left
panel) and non-vivid (right panel) pairs
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