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Gene expression studies have typically focused on finding differentially expressed 12 

genes or pathways between two or more conditions. More recently, single-cell 13 

RNA-seq has been established as a reliable and accessible technique enabling new 14 

types of analyses, such as the study of gene expression variation within cell types 15 

from cell lines or from relatively similar cells in tissues, organs or tumors. 16 

However, although single-cell RNA-seq provides quantitative and comprehensive 17 

expression data in a developing embryo, it is not yet clear whether this can 18 

replace conventional in situ screens for finding developmentally important genes; 19 

moreover, current single-cell data analysis approaches typically cluster cells into 20 

types based on a common set of genes or identify more variable or differentially 21 

expressed genes using predefined groups of cells, limiting their use for finding 22 

genes with novel expression patterns. Here we present a method that 23 

comprehensively finds cell-specific patterns of developmentally important 24 

regulators directly from single-cell gene expression data of the Ciona embryo, a 25 

marine chordate. We recover many of the known expression patterns directly 26 

from our single-cell RNA-seq data and despite extensive previous screens, we 27 

succeed in finding new cell-specific patterns and genes, which we validate by 28 

in situ and single-cell qPCR. 29 

One early application of single-cell sequencing has been the study of gene 30 

expression variation within cell types such as from cell lines or from relatively similar 31 

cells in tissues, organs or tumors1–7, an analysis not possible with bulk RNA-seq where 32 

expression is averaged over thousands of cells. Single-cell data has enabled finer 33 

resolution approaches: apparently homogenous groups of cells can be clustered to 34 

identify novel and rare subtypes8–11. Cells undergoing differentiation at different rates 35 
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can be ordered and grouped and cell-to-cell variation underlying differentiation 36 

decisions can be studied12-15. 37 

A further distinct application for single-cell sequencing is to probe the very 38 

different and changing (nonterminal) cell types of developing embryos3,16–22. An 39 

important goal in developmental biology is to identify the relatively few genes 40 

controlling the course of development. They are expressed in various, overlapping 41 

subsets of cell types and it is the combination of these that gives rise to the multiplicity 42 

of cell types. Ideally, we would like to find these key genes and the subsets of cells (the 43 

patterns) they are expressed in. However, since these subsets are not known a priori, 44 

finding cell-specific patterns from differential expression analysis requires many 45 

pairwise comparisons between different groupings of cell types, leading to many false 46 

positives from multiple testing. In the eight cells we are considering (the right half of the 47 

16-cell embryo), there are 127 pairwise comparisons required: specifically, there are 48 

eight possible comparisons for one cell type against seven; 28 comparisons for two cell 49 

types against six and so on. At the 32-cell stage, more than 2 billion comparisons would 50 

be required. Moreover, the increased number of false positives does not result in many 51 

true positives since most of the pairwise comparisons do not correspond to future 52 

lineage or cell fate decisions, and when they do, only a few key genes will be specifically 53 

expressed. Hence, the methods to date have focused on comparisons between a few 54 

embryo stages or lineages, or have looked for genes that express more heterogeneously 55 

within the early (2- or 4-cell) stages of the embryo16,17. 56 

Cell clustering approaches don’t address this problem either. If cells are clustered 57 

based on the expression of either all genes or the most variable genes, cells from the 58 

same embryo, development stage or batch tend to cluster together3,11,17,21,23 (Figure 1a-b 59 
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for our data).  Clustering can be more informative regarding cell types if a subset of 60 

genes is used, but again the relevant gene subsets vary depending on the cell types being 61 

compared. In other words, the choice of genes will predetermine what cell type 62 

differences can be resolved.  63 

Given these limitations, the standard approach to finding developmentally 64 

important genes still requires extensive use of in situ hybridization assays, applied to a 65 

subset of genes selected by genomic techniques, for example, genes with sequence 66 

similarity to known developmental regulators in other animals or candidate genes from 67 

a whole-embryo differential expression analysis. 68 

 69 

A pattern discovery method 70 

To find developmentally important patterns directly from our single-cell 71 

sequencing data of Ciona embryos, we developed a method that can scale to many cells. 72 

Ciona develops according to a stereotyped or invariant lineage24–26, with zygotic 73 

expression beginning around the 8-cell stage27. This allowed us to collect precisely 74 

defined replicates of all eight cell types of the right half of the embryo at the 16-cell 75 

stage of Ciona, which has comprehensive in situ data and many known gene expression 76 

patterns28 as well as microarray data at cellular resolution from the pooling of large 77 

numbers of single cells23.  78 

First, we checked the quality of our data and produced counts for each gene with 79 

four replicates per cell type (Online methods, Figure 1c-e and Supplementary Table 3). 80 

Although other transformations are possible, our method begins with a simple 81 

transform to the counts, which has the advantage of being easy to interpret. Since our 82 

primary interest was to study how genes change between different cell types, we did not 83 
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normalize across genes (such as by GC content or transcript length), but only for 84 

sequencing depth by dividing by the total number of reads per sample. This gives a 85 

natural measure of expression for each gene, namely the proportion it contributes to the 86 

total, which we assume is independent of the total number of reads. The arcsine of the 87 

square root is a suitable transformation of proportions, so we use  88 

𝜑𝑖 = 2 𝑎𝑟𝑐𝑠𝑖𝑛 (√
𝑘𝑖

𝑁
) 94 

where ki is the count for the ith gene and N the total number of counts (∑ 𝑘𝑖). The 89 

difference between these transformed values measured in two different conditions can 90 

be interpreted as an effect size for proportions29, namely Cohen’s h, but it is worth 91 

noting that a square root transformation of the proportion (or normalized count) 92 

performs equivalently. 93 

Unlike general cell clustering approaches, which seek to find a classification of cell 95 

types, the first step of our method is to cluster the cells separately for every gene, which 96 

leads to putative gene expression patterns. We take the simplest approach, which is to 97 

assume that expression can be classified into two classes i.e. high and low expression. In 98 

our implementation, we use single-linkage hierarchical clustering of Euclidean distance 99 

between vectors of replicates. The resulting top-level clusters of ON and OFF then 100 

determine the relevant pairwise comparison on a per gene basis.  101 

The next step in differential expression analysis is to rank genes, with the p-value 102 

being a common choice for parametric tests. Parametric tests typically require an 103 

estimate of variance for each gene that incorporates information (shrinkage) from many 104 

genes30,31. However, as discussed below, there are problems with this approach when the 105 

appropriate groups for comparison vary by gene and are not known a priori. Therefore, 106 
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we take a more direct approach, which does not require parameter estimation, but 107 

nevertheless ranks genes by how well the two classes (ON and OFF) separate. One 108 

approach to calculating cluster separation is to rank genes by the difference between the 109 

lowest expressing cell in the ON cluster and the highest expressing cell in the OFF 110 

cluster, but this approach is sensitive to outliers. Since we have transformed values, the 111 

𝜑s, we could rank according to the difference in the mean 𝜑 between each cluster, but an 112 

important objective in differential expression analysis is not only to downrank 113 

ubiquitous or low expression, but also differences associated with higher variability. For 114 

these reasons, we calculate our cluster reliability score as the difference between the 115 

first quartile of the ON cluster and the third quartile of the OFF cluster, which we call the 116 

Transquartile Range (TQR). The TQR is larger when the difference in cluster means is 117 

larger, but it penalizes higher variation for a given difference in means. Further, the p-118 

value in general is strongly affected by sample size (in this case, the number of cells 119 

being compared), whereas the TQR is relatively robust to outliers and different sample 120 

sizes, making it a suitable choice for comparisons across different patterns without 121 

requiring parameter estimation.  122 

 123 

Discovery of cell-specific gene expression patterns 124 

The dataset we generated consists of single-cell RNA-seq measurements from all 125 

eight cells of the right half of four embryos from different individuals fertilized on 126 

different days (Supplementary Table 2). We applied our method to this dataset to search 127 

comprehensively for cell-specific gene expression patterns. We selected the 40 most 128 

reliable cell-specific genes, and found these generated 12 distinct patterns (Figure 2 and 129 

Figure 4a), which include nine of the ten currently known patterns23,32–37, and 25 genes 130 
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with known in situ patterns. The missing pattern is for a single exemplar gene, 131 

AP-2-like2, which does not show consistent expression across embryos in one of the 132 

cells, A5.223,35. Our result is in agreement with the average over many embryos as 133 

measured by microarray23.  Thus, our approach demonstrates the power of single-cell 134 

RNA-seq surveys for finding developmentally relevant genes without extensive in situ 135 

screens, an approach which offers great potential for studying organisms that do not 136 

have the same experimental heritage as Ciona.  137 

Out of the 12 patterns we found, the pattern with the most genes was for specific 138 

expression in the B5.2 cell type, which is also the most frequent pattern in known in situ 139 

patterns (i.e. postplasmic/PEM RNAs38). The majority of our results for B5.2 are 140 

confirmed by previous in situ datasets. Despite extensive previous screens, we identified 141 

new B5.2-specific genes, such as KH.C13.98 and KH.C12.212, confirming their 142 

expression by in situ and single-cell qPCR (Figure 3a). We also looked at further B5.2-143 

specific genes outside of the top 40 and found and validated additional genes, such as 144 

KH.C8.450 and KH.L60.2, thus demonstrating the value of single-cell RNA-seq for finding 145 

developmentally important genes.  146 

Knowing the full range of patterns is important for understanding the progressive 147 

specification of cell fate in the early embryo. From our study, we found three potentially 148 

new patterns, highlighted in red in Figure 4a, one of which was validated by in situ and 149 

single-cell qPCR, namely KH.L152.12 (Figure 3e). We also validated further 150 

uncharacterized genes, namely KH.S1497.1, which expresses specifically in the animal 151 

hemisphere, and KH.C11.529 on the anterior side (Figure 3c-d). 152 

In addition, we looked more widely in the top 60 results (Supplementary Figure 1), 153 

validating new genes, KH.C9.289 and KH.C4.260, by single-cell qPCR and in situ 154 
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hybridization (Figure 3b). These are expressed in all cells—except B5.2, a pattern 155 

known previously from Hes-a39. These results open up avenues for further research into 156 

developmental patterning in Ciona. 157 

 158 

Comparison with known in situ expression patterns 159 

Looking at it in the other direction and comparing our results to 76 genes with 160 

known in situ patterns23,35,38,40 (Supplementary Table 1), we find that clustering agrees 161 

with the known in situ pattern for 38 of the 76 genes (Supplementary Figure 3a). 162 

Further, when the results are ranked according to how well the ON or OFF expression 163 

clusters separate (see Methods), all the top 34 results match known in situ patterns, 164 

with the exception of KH.L152.12. However, as described above, we tested this gene by 165 

in situ hybridization and single-cell qPCR, validating our RNA-seq measurement (Figure 166 

3e), which is in agreement with results from gene expression microarrays23.   167 

In the lower ranked results (Supplementary Figure 3b) it could be argued that the 168 

algorithm fails in a few cases because it does not cluster correctly, such as for KH.C3.411 169 

(lefty/antivin) where the assumption of only two levels of expression does not seem to 170 

apply. For a few other genes, e.g. KH.C12.589 (DPOZ) and KH.C7.243 (Dll-B), the 171 

clustering is correct, but the effect size is small. For a few other genes, no reads were 172 

mapped, e.g. KH.C7.407 (SoxF), KH.C9.576 (Fringe 2) and KH.C13.22. However, in most 173 

cases where our single-cell RNA-seq does not agree with published in situ patterns, our 174 

expression measurements are low or relatively uniform across the eight cells—hence 175 

the algorithm functions correctly in attributing lower score to these results.  176 

Thus, the method, in combination with single-cell RNA-seq, is effective in 177 

recovering many known patterns. In most cases, the discrepancy between the method 178 
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results and known in situ patterns occurs because the differences between cells as 179 

measured by single-cell RNA-seq is not as dramatic as the equivalent measurements 180 

from in situ hybridization. This suggests that in situ hybridization could be more 181 

sensitive at detecting differences in expression between cell types because the protocol 182 

can be optimized for each gene separately—although in some cases these might be false 183 

positives. 184 

 185 

Comparison with a standard differential expression method 186 

Dispersion or variance estimation is an important aspect of parametric methods of 187 

differential expression analysis30,31. Many studies include only a few replicates, and 188 

hence it is not clear if the observed variance for any specific gene is from an underlying 189 

difference in gene regulation, a result of limitations in measurement precision, an 190 

aberrant outlier, or biological variation (e.g. across embryos). Information from all genes 191 

is therefore used to estimate the within-group variance, where this is often assumed to 192 

be related to mean expression level. Using this estimate, it is possible to identify genes 193 

that vary more than expected or where the level of expression is significantly different 194 

than expected under the null hypothesis of no change in mean expression between 195 

groups.  196 

However, in the case of a developing embryo, there are many different groupings of 197 

cells (the samples) that are relevant depending on the specific genes being considered—198 

and for pattern discovery these are not known in advance. This means that dispersion 199 

can’t be estimated assuming the same groups for all genes and nor are the dispersion 200 

estimation algorithms designed to operate with small numbers of genes, as is the case, 201 

for example, if a subset of genes is chosen in advance based on the clustering pattern. 202 
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Suitable extensions or strategies could deal with this, but at present it is reasonable to 203 

assume that parametric methods based on dispersion estimation might not work across 204 

different pattern subsets from the same dataset; that is, p-values will not be 205 

meaningfully comparable across patterns, thus limiting their applicability to pattern 206 

discovery. By contrast, our method takes a more direct approach that does not require 207 

parametric estimation nor assumptions regarding the source of variation. A further 208 

advantage is that the results are not affected by the proportions of the different patterns, 209 

including when only a few genes belong to a pattern of interest. This latter point is 210 

particularly important for early development where a few genes can have a critical 211 

impact on cell fate determination. However, our method does not produce p-values nor 212 

adjust its score based on the proportion of ON and OFF cells being compared. Thus, it is 213 

instructive to see how it performs in practice by comparing our top results with the top 214 

results of an approach using a standard differential expression method like DESeq2. 215 

Therefore, we performed an exhaustive differential expression analysis applying 216 

DESeq2 to all 127 possible comparisons for eight cells (Figure 4) by estimating 217 

dispersion and fitting the DESeq2 negative binomial model for each comparison, with 218 

embryo and the cell pattern (ON or OFF) as factors. Unlike our method, which can scale 219 

to many more cell types, an exhaustive approach will not be possible in general because 220 

of combinatorial explosion—32 cells would require more than two billion DESeq2 221 

comparisons. Nevertheless, it provides a useful baseline for how DESeq2 performs by 222 

default— without having a smaller set of patterns as a guide. After applying DESeq2 to 223 

all comparisons, we combined the results by selecting, for each gene, the pattern with 224 

the lowest adjusted p-value (not adjusting further for the comparison across all 225 

patterns) and summarized the resulting patterns of the top 40 genes in Figure 4b, row i. 226 
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By comparing this with the result from our method (Figure 2 and Figure 4a), it is clear 227 

this approach finds more spurious patterns and fewer known patterns (i.e. seven known 228 

patterns compared to nine from our method). 229 

As described above, the first step of our method is to find clusters for each gene. 230 

However, using these clusters as predefined comparisons does not significantly reduce 231 

the number to be tested by a standard differential expression method. In our data, there 232 

are 242 clusters out of a maximum possible 254 when considering both directions 233 

(increase and decrease in expression). However, the reduced list from our method (e.g. 234 

the 12 patterns in Figure 2 and Figure 4a) can be used to guide further analysis using 235 

established methods of differential expression analysis: by limiting the initial DESeq2 236 

comparisons to only these patterns, the number of spurious patterns are reduced. In 237 

Figure 4b, row ii, each gene is assigned the pattern with the lowest p-value from all 238 

comparisons. If the adjusted p-value is instead chosen from the pattern (or comparison) 239 

given by our method, the number of unknown patterns is further reduced and an extra 240 

known pattern is found (Figure 4b, row iii), thus demonstrating the value of using the 241 

patterns from our method as a guide.  242 

In summary, there are more known patterns in the top results of our method than 243 

from an exhaustive application of DESeq2 (nine patterns compared to seven), showing 244 

that our method performs well in terms of sensitivity. Also, considering the well-known 245 

class of B5.2-specific genes, we find more in our top 40 results than DESeq2: 17 246 

compared to 7 in DESeq2’s top 40 results. In both cases, these results largely comprise 247 

known B5.2-specific genes, with others validated as above (Figure 2 and Figure 3a). 248 

Nevertheless, there could be value in using additional methods, particularly when 249 

guided by given patterns, for example DESeq2 identifies further known B5.2 genes using 250 
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an adjusted p-value cutoff of 0.01, specifically pem2, Dll-B and midnolin. However, other 251 

patterns apparently produce more false positives when using the same threshold 252 

(Figure 4c), indicating that further work is required to adapt parametric methods to this 253 

type of data. In the meantime, our method offers a scalable and comprehensive 254 

approach for finding developmentally important expression patterns in single-cell RNA-255 

seq data. 256 

 257 

Conclusion 258 

In conclusion, we have demonstrated that single-cell RNA-seq is a suitable 259 

replacement for extensive in situ screens during early embryo development. We 260 

recovered many known patterns, as well as new patterns and genes that had not been 261 

detected previously despite extensive efforts. This significantly broadens the 262 

possibilities for finding the key developmental regulators of less well studied organisms. 263 
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Code and data access  273 

RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI 274 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-6117. Software is 275 

available at https://github.com/ilsley/Ciona16. 276 
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Online methods: 420 

Study design 421 

We isolated cells from five 16-cell stage Ciona embryos, each on a different day 422 

(Supplementary Table 2). Early ascidian embryos are thought to be bilaterally 423 

symmetrical so we collected eight cells from the right side of each embryo. The cells 424 

were collected individually in batches of eight cells from the same embryo on the same 425 

day, with sequencing libraries prepared in parallel, barcoded and then sequenced 426 

together. This means that biological variation between embryos and technical variation 427 

between batches cannot be distinguished. The advantage of this design is that it 428 

minimizes technical variation between cell types of the same embryo and controls for 429 

confounding technical and biological variation between embryos. Averaging across the 430 

cell types of different batches reduces this unwanted variation, maintaining cell-specific 431 

variation. Our results show that cells from the same embryo are more similar to each 432 

other than the same cell types are across individuals, with a similar number of genes 433 

detected per cell type (Figure 1a-d). 434 

 435 

Preparation of Ciona embryos 436 

Ciona intestinalis type A, recently designated Ciona robusta 41,42, adults were 437 

obtained from Maizuru Fisheries Research Station (Kyoto University) and Misaki Marine 438 

Biological station (The University of Tokyo) under the National Bio-Resource Project for 439 

Ciona. They were maintained in aquarium in our laboratory at Okinawa Institute of 440 

Science and Technology Graduate University under constant light (Calcitrans, Nisshin 441 

Marinetech Co., Ltd.) for three days apart from a few hours of darkness a day with 442 

feeding to induce spawning of the old eggs. After this, the Ciona were maintained under 443 
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constant light to induce oocyte maturation. Eggs and sperm were obtained surgically 444 

from the gonoducts. Embryos were dechorionated after insemination using a solution of 445 

0.07% actinase and 1.3% sodium thioglycolate. Eggs were reared to reach the 16-cell 446 

stage in Millipore-filtered seawater (MFSW) at about 18 °C. Embryos from each 447 

insemination batch were kept to check the ratio that developed into morphologically 448 

normal tailbud. We only used embryos from batches where more than 70% developed 449 

normally to tailbud (10 hours post fertilization at 18 degrees) (see Supplementary Table 450 

2 for embryo batch information). 451 

 452 

Naming of cells 453 

In Ciona, cells are named using the nomenclature of Conklin24: the animal side is 454 

prefixed with a lowercase letter (a or b) and the vegetal with an uppercase letter; the 455 

anterior with A or a and the posterior with B or b. The initial letter is followed by a 456 

number that indicates the embryo stage since fertilization, with individual cells 457 

numbered according to their lineage. At the 16-cell stage, the animal domain 458 

corresponds to a5.3, a5.4, b5.3 and b5.4, the vegetal domain to A5.1, A5.2, B5.1 and B5.2, 459 

and postplasmic RNAs are localized to B5.2.  460 

 461 

Isolation of single cells at the 16-cell stage 462 

At a defined point in development of the 16-cell embryo i.e., at the stage 463 

immediately after compaction of the embryo (2.5 ~ 2.6 hours post fertilization), the 464 

embryo was transferred to 4°C to slow its development. Each blastomere was isolated 465 

with a fine glass needle in a mannitol solution (0.77 M mannitol : MFSW, 9:1) under a 466 

stereo microscope at 4 °C regulated by a thermo plate (Tokai Hit Co., Ltd.) and its 467 
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identity noted. Isolated blastomeres were picked up and transferred immediately with a 468 

mouth pipet into a lysis buffer43 for reverse transcription.  469 

 470 

Library preparation 471 

We followed the single-cell library preparation method of Tang et al43,44 with some 472 

modification. We added ERCC spike-in RNA (Thermo Fisher scientific, 4456740, 473 

1:80000) to each lysis buffer and applied 14 and then 9 cycles of PCR amplification after 474 

second strand synthesis. Amplified cDNA was purified with MinElute PCR Purification 475 

kit (28006, QIAGEN) and QIAquick PCR Purification Kit (28106, QIAGEN) after each PCR 476 

reaction respectively and its concentration measured with Qubit® 2.0 Fluorometer 477 

(Q32866, Life Technologies) to have more than 150 ng total yield of cDNA. The quality of 478 

the amplified cDNA and distribution of DNA fragment size were confirmed by Agilent 479 

2100 Bioanalyzer (Agilent Technologies) with High Sensitivity DNA Kit (5067-4626, 480 

Agilent) to consist mainly of 1.0-1.5 kb fragments.  481 

Amplified cDNAs were sheared using sonication Covaris S2 System to produce 482 

DNA of 300 bp on average. The settings were as follows: Duty cycle: 20%, Intensity: 5, 483 

Cycles per burst: 200, Power mode -  Frequency sweeping, Treatment time: 90 seconds, 484 

Temperature: 12°C. 485 

NEB Next® ChIP-Seq Library Prep Master Mix Set for Illumina® (E6240, NEB) was 486 

applied to sheared cDNA for preparation of the library for the Illumina platform. 487 

NEBNext® Multiplex Oligos for Illumina (E7335, E7500, NEB Next Multiplex Oligos for 488 

Illumina, NEB) were combined to introduce an index and adaptor to the double-489 

stranded DNA. After extraction of the 300 bp fraction of adaptor-ligated DNA by E-Gel 490 
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Size Select 2% Agarose (G661002, Invitrogen), DNA was amplified with individual index 491 

primers using PCR with 19 cycles.  492 

The amplified DNA fragment composition was purified with Agencourt AMPure XP 493 

twice (A63881, Beckman) and again checked by Qubit (> 60 ng of cDNA in total yield) 494 

and by Bioanalyzer to ensure that the fragment size was sharply distributed around 300 495 

bp (on average, about 320 bp with a standard deviation of 40). The concentration of 496 

fragments with appropriate index adapters was quantified by KAPA Library 497 

Quantification Kits (KAPA Library Quantification Kits, Illumina GA/Universal, KK4825, 498 

Genetics) to ensure that the final libraries had adapters for both ends and their 499 

concentration was at least 20 pM. 500 

 501 

Data generation and quality checking 502 

Libraries were sequenced on Illumina's (San Diego, CA) MiSeq benchtop sequencer 503 

and Illumina HiSeq 2500. Libraries were prepared with different index primers and 504 

sequenced on MiSeq using paired 150 nt reads (No. MS-102-2002, MiSeq Reagent Kit 505 

v2) with eight multiplexed samples per run with the standard Illumina protocols. The 506 

same libraries were sequenced on an Illumina HiSeq 2500 with 150 bp paired end reads 507 

(No. PE-402-4001 and FC-402-4001, TruSeq Rapid Cluster - Paired-End and SBS Kits) 508 

with 16 multiplexed samples per lane following standard Illumina protocols. Our results 509 

from using HiSeq and MiSeq were similar (Figure 1c-d, cf. Supplementary Figures 1 and 510 

2). 511 

The resulting reads were aligned using Bowtie45 version 2.2.6 to the Ciona KH 512 

genome assembly46,47, downloaded from Ghost 513 

(http://ghost.zool.kyoto-u.ac.jp/download_kh.html). Reads were mapped using local 514 
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alignment (--local), with other settings at their default. We did not trim or filter reads, 515 

but instead made use of local alignment to find the optimal match. This had the 516 

additional benefit that we did not need to split up reads to handle transcripts spanning 517 

more than one intron, as is done, for example, in TopHat48. Gene counts were calculated 518 

from the resulting alignment files using htseq-count49 with the non-stranded option and 519 

mode “intersection-nonempty” against the KH gene models (version 2013) downloaded 520 

from Ghost.  521 

We assessed our samples for mapping quality. We excluded one embryo from 522 

subsequent analysis since it had oligo-dT primer sequence in more than 50% of its read 523 

pairs; the remaining four embryos had less than 1% of read pairs affected. All remaining 524 

samples mapped well to the genome (Supplementary Table 3) and a uniform number of 525 

genes were detected (about 60%), although embryo 1 had noticeably fewer detected 526 

genes for some of its cells. 527 

 528 

Assessment of expression data variability and reproducibility 529 

Our results show limited technical variation within each batch: the expression 530 

levels in different cell types from the same embryo are well correlated (mostly above 0.8 531 

for embryos 2, 3 and 4). They are, in fact, more similar to each other than the same cell 532 

types are across different individuals (Figure 1a-b). Although we cannot separate out 533 

the sources of cross-embryo variation, this result is consistent with a previous report 534 

showing that maternal mRNA levels vary significantly between unfertilized eggs from 535 

different individuals23. It is also worth noting that very little of the variation between 536 

embryos is from the sequencing run. This can be seen by comparing our sequence 537 

results from MiSeq with HiSeq—the correlation between unnormalized counts from the 538 
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two platforms is over 99% for every cell type, whether zero counts are included or 539 

excluded. This is consistent with previous results showing high correlation between 540 

expression measurements from tens of millions of reads per cell and those from lower 541 

coverage of a million or fewer reads5,7. 542 

This embryo batch effect is further demonstrated by a Principal Components 543 

Analysis (Figure 1b), which shows a similar result with the cell types of embryos 2, 3 544 

and 4 being close to each on the first two components (which explain 56% of the 545 

variance) and the cell types of embryo 1 being more spread out  546 

The close clustering of cells from the same embryo, as well as their high 547 

correlation, suggests that our experimental measurements are reliable and reproducible 548 

within each batch (or embryo). A confirmation of the reproducibility of our results is the 549 

tight distribution of genes detected across samples within embryos (Figure 1c-d). Genes 550 

were considered detected when the measured count was greater than zero. These 551 

results show that slightly more genes were detected on HiSeq than MiSeq, but that the 552 

median difference for each embryo is less than 10%. This is comparable with a previous 553 

result showing a reduction of genes detected of around 39% when lowering sequence 554 

coverage to less than a million reads per cell5. As before, embryo 1 showed more 555 

variability across samples than the other embryos.  556 

We also made use of ERCC spike-in controls50,51 to assess the quality of our library 557 

preparation, including the steps of reverse transcription and PCR amplification by 558 

comparing the measured counts with known spiked-in mRNA concentrations. We added 559 

the spike-in at a low concentration (1:80,000 dilution), and yet found good agreement 560 

between the known spike-in concentrations and expression measurements. To assess 561 

this, we regressed, with no intercept, the square root of the unnormalized counts against 562 
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the square root of the known spike-in concentrations. The resulting R2 value was greater 563 

than 85% for every cell in embryos 2, 3 and 4 (Figure 1e). The poorer fit for the spike-564 

ins of embryo 1 also reveals that the somewhat anomalous expression measurements of 565 

embryo 1 likely result from the library preparation step, particularly since PCR 566 

amplification produced less RNA from most cells of this embryo compared to other 567 

embryos.  568 

A further validation of our data is a comparison of our results with previously 569 

published data for the 16-cell stage that was generated using gene expression 570 

microarrays23. We found good agreement with the key genes analyzed in the associated 571 

paper (Supplementary Figure 4).  572 

 573 

Pattern discovery 574 

Hierarchical clustering to determine candidate patterns was performed with 575 

ClusteringComponents in Mathematica 10.4 with the Agglomerate method and 576 

Euclidean distance function. This is equivalent to hclust in R with the single linkage 577 

method. The quantile method used linear interpolation equivalent to type 5 in the R 578 

quantile function (the hydrologist method). 579 

 580 

Single-cell qPCR analysis 581 

cDNA was reverse transcribed from all cells of one embryo per gene replicate 582 

using the same protocol we used for single-cell RNA-seq43,44. Quantitative PCR was 583 

performed using a StepOnePlus PCR machine (Applied Biosystems) with the SYBR green 584 

method (No. RR820B, Takara). Each gene was measured with three replicates, except for 585 

KH.L152.12, which had four. The qPCR measures for the cell types of each embryo were 586 
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scaled between 0 and 1 and then averaged for each cell type across replicates. If there 587 

was insufficient target mRNA, it was first amplified using primers covering a wider 588 

region of the target gene than those used for single-cell qPCR. Amplification of a specific 589 

product in each reaction was confirmed by determining a dissociation curve. The 590 

primers for single-cell qPCR analysis are listed in Supplementary Table 4. 591 

 592 

In situ hybridization 593 

Whole-mount in situ hybridization was carried out as previously described with 594 

minor modification52. Dig-labeled antisense RNA probes were synthesized in vitro from 595 

cDNAs from the Ciona cDNA project53. The IDs for the cDNA clones are shown in 596 

Supplementary Table 5. 597 

 598 

Microarray processing 599 

Previously published microarray data23 was processed with the limma R package54. 600 

Background was corrected using normexp and arrays were normalized with the quantile 601 

method.  602 

 603 

Gene models and names 604 

Gene names for the KH gene models were downloaded from Ghost 605 

(http://ghost.zool.kyoto-u.ac.jp/TF_KH.html and http://ghost.zool.kyoto-606 

u.ac.jp/ST_KH.html) and supplemented with names from Prodon et al38.  607 

 608 
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Differential expression analysis 609 

The DESeq2 package from R was used for differential expression analysis. A 610 

DESeqDataSet was created from the matrix of counts. The DESeq function was used with 611 

default values. The design formula included the embryo and the cells’ grouping (ON or 612 

OFF) for the relevant pattern.   613 
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Figure Legends: 614 

 615 

Figure 1. (a and b) Gene expression is more similar between cells of the same embryo 616 

or batch than between cell types across batches. (a) Clustered heatmap of the 617 

correlation matrix of transformed expression data (φ) from HiSeq samples (excluding 618 

ERCC counts and genes with zero counts), with the histogram in the top left providing 619 

the color key. (b) PCA plot showing the first two components, which explain 56% of the 620 

total variance. (c and d) The number of genes detected is consistent across the four 621 

embryo replicates whether the libraries were sequenced on MiSeq or HiSeq. (c) Scatter 622 

plot showing the consistent relationship between MiSeq and HiSeq, with more zeros or 623 

undetected genes for some cells of embryo 1 compared to the others. (d) Boxplots 624 

showing the narrower distribution of genes detected for embryos 2 to 4 compared to 625 

embryo 1 and the consistent increase from MiSeq to HiSeq. (e) R-squared values 626 

resulting from linear regression of the square root of unnormalized counts from the 627 

HiSeq data against the square root of known concentrations as the independent 628 

variable, with no intercept term. 629 

 630 

Figure 2. All previously known patterns occur in the top 40 genes when ranked 631 

according to their Transquartile Range (TQR).  (a) Schematic of the eight cell types 632 

showing their arrangement in the expression summary plots in (b). (b) Expression 633 

summary plots of the top 40 genes, grouped by pattern, with a red border indicating an 634 

unknown pattern. A summary of the patterns is shown in Figure 4a. Genes with 635 

previously uncharacterized, but now validated patterns are highlighted in red. For each 636 

gene, the columns indicate the gene name, any previously known in situ pattern in blue 637 
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(gray if not known), the average of the transformed expression values (clipped above 638 

0.05), the pattern resulting from clustering, and finally, the TQR as the reliability score, 639 

scaled for visualization.  640 

 641 

Figure 3. Pattern discovery results are validated by in situ hybridization and single-cell 642 

qPCR. (a-e) For each pattern being tested, a schematic (left) indicates the expected 643 

pattern of expression using the layout of Figure 2a. The photomicrographs show the 644 

results of situ hybridizations (middle) viewed from the animal and vegetal side. The 645 

arrowheads pointing to the expressing cells are shown on only one side of the embryo. 646 

The scale bar indicates 100 μm. Gene expression levels for each cell type was measured 647 

by single-cell qPCR. The qPCR measures for the cell types of each embryo were scaled 648 

between 0 and 1 and then averaged for each cell type across replicates. The means for 649 

each cell type are shown in the bar charts (right).  650 

 651 

Figure 4. Standard differential expression analysis finds many false positives with fewer 652 

true positives in the top results than when ranking by Transquartile Range. (a) The 653 

patterns of the top 40 genes are shown with the number of associated genes below. 654 

Black indicates a known pattern, and red a novel or spurious pattern. The layout for 655 

each pattern is shown in the key on the right. (b) The top 40 genes and their 656 

corresponding patterns from different approaches. (i) Exhaustively running DESeq2 657 

against all 127 possible comparisons and selecting, for each gene, the pattern with the 658 

lowest adjusted p-value. The maximum adjusted p-value for this set is 2.6×10-8. (ii) 659 

Running DESeq2 separately for each of the patterns from (a) and selecting, for each 660 

gene, the pattern with the lowest adjusted p-value. DESeq2 finds genes up- and down-661 
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regulated and hence the pattern for B5.2 and its complement are part of the same run, 662 

leading to 11 runs in total. Similarly, for some genes, DESeq2 selects a pattern 663 

complementary to the given 12 patterns. (iii) DESeq2 against the 12 patterns shown in 664 

(a), but using the adjusted p-value for the given pattern. (c) DESeq2 results for a 665 

selection of patterns. Each DESeq2 analysis is run for all genes and the top results 666 

ranked by adjusted p-value with a cut-off of p<0.01. For illustration, a line is drawn 667 

showing a stricter threshold, which is equivalent to the highest p-value of the top 40 668 

results found using the approach of row i in (b). The results for each pattern show 669 

previously known in situ results as well as averaged expression. For comparison, the 670 

genes are only counted once in row i of (b), i.e. for the pattern that gives the lowest 671 

p-value.  672 
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Supplementary Material 673 

 674 

Supplementary Table 1 List of known in situ patterns SuppTable1.xlsx 

Supplementary Table 2 Sample, library preparation and sequencing 

dates 

SuppTable2.xlsx 

Supplementary Table 3 Sequencing statistics SuppTable3.xlsx 

Supplementary Table 4 Primers used for qPCR SuppTable4.xlsx 

Supplementary Table 5 Single-cell qPCR measurements SuppTable5.xlsx 

Supplementary Table 6 IDs for the cDNA clones SuppTable6.xlsx 

 675 

Supplementary Figure 1.  The top 60 results from sequencing our libraries on Illumina 676 

HiSeq 2500, with the genes grouped by pattern. For each gene, the columns indicate the 677 

gene name, any previously known in situ pattern in blue (gray if not known), the 678 

average of the transformed expression values (clipped above 0.05), the pattern resulting 679 

from clustering, and finally, the TQR as the reliability score.  680 

 681 

Supplementary Figure 2. The top 60 results from sequencing our libraries on Illumina 682 

MiSeq, with the genes grouped by pattern. For each gene, the columns are the same as in 683 

Supplementary Figure 1.  684 

 685 

Supplementary Figure 3. Comparison with known in situ patterns. For each gene, the 686 

columns are the same as in Supplementary Figure 1. The results are divided into (a) the 687 

top 34 results and (b) the next 42 results from pattern discovery for genes with known 688 

in situ patterns. 689 

 690 
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Supplementary Figure 4 691 

Comparison of heatmaps from cellular resolution microarray data 23 with φ-692 

transformed single-cell RNA-seq.  693 
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