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Summary Paragraph 
 
Pathogens compete for hosts through patterns of cross-protection conferred by immune 
responses to antigens1. To evade the immune system, several pathogens possess 
hypervariable multi-copy gene families encoding large pools of antigenic variants2. In the 
malaria parasite Plasmodium falciparum, var genes encoding the major blood-stage antigen, 
PfEMP1, are one such family, with repertoires of 50-60 genes in an individual parasite3, and 
tens of thousands of gene variants in local populations of high transmission regions4 
generated through ectopic recombination5,6 and mutation. Deep sampling of asymptomatic 
children in a West African population has recently revealed non-random structure in this 
enormous diversity, with extremely low genetic overlap among var gene repertoires even in 
multi-genome P. falciparum isolates7. This is consistent with previous strain theory, 
postulating co-existence of discrete non-overlapping pathogen strains8–10 as a result of 
selection against recombinants due to cross-immunity. However, the combinatorial 
complexity of the var system in high transmission regions remains beyond the reach of 
existing strain theory, and neutral models do not yet exist to differentiate signatures of 
immune selection from those of pure transmission dynamics. Here, we present theory to 
identify signatures of immune selection that reveal non-neutral structures both in simulated 
systems and in an extensively sampled population in Bongo District (BD), Ghana. We 
develop two neutral models that encompass malaria epidemiology but exclude competitive 
interactions between parasites. We then present an analytical framework based on genetic 
similarity networks appropriate for the recombination mechanisms that generate diversity. 
Network patterns harbor distinctive signatures of selection structuring antigenic diversity in 
this highly recombinant gene family through frequency-dependent competition for hosts. This 
unique population structure created by non-neutral forces, likely immune selection, underlies 
the ability of the parasite to multiply infect individual hosts with long lasting chronic 
infections11, constituting a large reservoir of transmission in highly endemic regions of 
Africa. To be successful, elimination strategies must move beyond prevalence of infection 
and target this diversity which is at the heart of malaria transmission and pathology. 
 
 
A central question in ecology and evolution regards the extent to which non-neutral processes 
structure diversity12–15. It remains a challenge to identify signature patterns that reveal an 
important role of ecological interactions in facilitating and stabilizing species coexistence in 
ecosystems with high diversity, such as tropical rain forests16,17. Here we address whether 
competitive interactions act as a non-neutral stabilizing force that promotes coexistence in 
another highly diverse system: Plasmodium falciparum populations as an ensemble of diverse 
strains in regions of high malaria transmission.  
 
Recurrent malaria infections in endemic regions do not generate sterilizing immunity towards 
subsequent infection18; this suggests the existence of a large number of strains of the 
pathogen. A vast reservoir of Plasmodium falciparum exists in local human populations in 
Africa in the form of asymptomatic infections, hosts that carry the parasite without 
manifestation of the disease19. An understanding of the antigenic diversity of the parasite in 
such reservoirs, including whether and how this diversity is structured into strains, is 
fundamental to understanding immunity patterns and developing intervention strategies in the 
transmission dynamics of falciparum malaria.   
 
The high transmission rates of endemic regions suggest frequency-dependent competition 
among parasites for hosts, through the cross-protection conferred by the adaptive immune 
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system20,21. Since the success of an infection depends on the immunological memory of a 
host, new and rare antigenic types have a fitness advantage in the transmission system 
relative to common ones. “Immune selection”, a form of balancing selection, is recognized as 
an important force promoting the diversification and persistence of the var gene family, 
whose ancient origin predates the speciation of P. falciparum22,23. However, the role of 
immune selection is much less recognized and understood at a higher organizational level, in 
shaping both the repertoires of var genes that constitute a parasite and the population 
structure of such coexisting strains7.  
 
In high transmission regions, the extensive diversity of the var gene family24 exhibits low 
amino acid similarity encoded by different var genes and a very low percentage of genes 
shared between parasites, both locally and regionally (e.g., less than 0.3% in Africa4,7). 
Previous work, known as strain theory, has posited that the non-random association of gene 
variants results from selection against recombinants through cross-immunity9, akin to 
emergent niches of limiting similarity25 or selection towards divergent local adaptations26. 
 
Existing models for strain theory10,27 incorporate limited var gene diversity compared to 
observed numbers for P. falciparum. It is unclear whether structure can emerge at such vast 
diversity, especially under high recombination rates. We developed an individual-based 
stochastic model with realistic mutation and recombination processes that generates levels of 
diversity comparable to those of the var gene family (Extended Data Fig. 1; Methods). In the 
model, mitotic recombination and mutation generate new var genes, making the overall pool 
of alleles effectively open to innovation, whereas meiotic recombination shuffles the 
composition of var genes of two or more repertoires in co-infections during the vector stage 
of transmission (Extended Data Fig. 1b). The overall system is composed of a pool of gene 
variants and a local population open to immigration, in which we track transmission 
(Extended Data Fig. 1c).   
 
Existing strain theory also lacks a neutral counterpart, a null hypothesis to disentangle 
patterns generated by the acquisition of specific immunity from those resulting simply from 
the basic demography of the system, specifically transmission dynamics and generalized 
immunity. We explicitly developed two such null models and compared the repertoire 
structures they generate with those from the model with specific immunity. The first model 
assumes generalized immunity in which protection is acquired as a function of the number of 
previous exposures irrespective of their specific antigenic identity; the second one is a 
completely neutral model in which infections propagate and recover, but hosts are blind to 
any history of exposure so that repertoires do not compete for hosts. Thus, the two null 
models include all the epidemiological processes, except for specific immunity towards the 
var genes that a host has been exposed to, and the resulting cross-protection. The 
epidemiological phenotype under immune selection is the duration of infection, this directly 
influences the basic reproduction number (or fitness) of the parasite, R0, we therefore match 
the infection periods in the two null models to that of the corresponding immune selection 
model (Methods).   
 
The reticulate evolutionary pattern of var genes, generated by frequent mitotic and meiotic 
recombination within and between parasite genomes5,6, respectively, precludes the 
application of traditional population genetics tests for balancing selection (e.g., Tajima’s D).  
Hence, we develop an application of network theory to study the evolution of var repertoire 
structures, and show that the structure of genetic similarity networks contains clear signatures 
of neutral versus non-neutral processes. We analyzed the genetic structure of the parasite 
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population using networks in which nodes are var repertoires, weighted edges encode the 
degree of overlap between the alleles of these repertoires, and the direction of an edge 
indicates whether one node can out compete the other (Methods). Comparisons of structure 
across the similarity networks generated under the three models reveal distinctive features of 
immune selection, although the specific features that distinguish immune selection vary 
under different epidemiological settings (described below).  
	
Because var genes exhibit different diversity levels across different endemic regions (Chen et 
al. 2011), we investigated the influence of var gene pool size (i.e., the number of var genes in 
a given population) on the immune selection signatures (Extended Data Fig. 1d). Because the 
two most relevant epidemiological parameters, transmission intensity and duration of a naïve 
infection, determine the intensity of competition among var repertoires, we vary them 
systematically to address their influence on signatures of immune selection. Higher 
transmission and longer duration of a naïve infection intensify competition among 
repertoires, they also increase the rate of recombination in the mosquito vector between 
different repertoires (Extended Data Fig. 1d).  It follows that signature patterns of immune 
selection should be most evident with increasing values of duration, diversity and 
transmission, for conditions representative of high endemicity.  
 
To explore selection signatures in networks generated under regimes of strong competition 
between strains, we use a suite of network metrics (see complete list in Extended Data Table 
1c, and Extended Data Fig. 2 for the low competition scenarios). If a process akin to limiting 
similarity underlies population structure, networks are expected to be partitioned into 
disconnected clusters of highly similar repertoires that occupy separate niches in 
antigenic/genetic space. One way to quantify the partitioning of a network is by calculating  
maximum modularity (Q)28. When the local var gene pool is of a medium size characteristic 
of endemic regions of Asia/Pacific (~1200-2400 different var genes)29, the selection case 
differs notably from those of the two null models: repertoires are typically grouped into well-
defined clusters (exemplified by high Q and module FST values, Fig. 1a, b), whereas in 
networks resulting from the two null models, nodes are typically connected to form star-
shaped or tree-like structures. This qualitative difference in structure resembles the prediction 
of non-overlapping strains in classic strain theory, where the disconnected clusters are 
analogous to niches in immune space consisting of highly similar repertoires. 
 
In addition, because competition at the repertoire level in the selection case promotes equal 
competitiveness of two given connected repertoires, it results in reciprocally-connected 
directed edges of similar weights. In contrast, in the two null models, repertoires with lower 
number of unique genes are not removed by selection, and when one repertoire outcompetes 
another, there is only one directed edge between the pair. We use 3-node motifs to capture 
this variation in competitiveness. For example, a binary in-tree motif (A->B<-C) reflects that 
repertoire B is outcompeted by A and C, whereas a complete graph motif in which three 
repertoires are all reciprocally connected (A<->B<->C<->A) indicates a balanced, reciprocal 
competition. We find that networks of the selection model have a high proportion of such 
reciprocal motifs compared to those of the two null models. Binary in-tree or out-tree motifs 
are instead the most common in the null models, reflecting (parent-offspring) evolutionary 
relationship (Fig. 1c, f).  
 
Under a regime with a larger initial gene pool that matches the diversity levels of endemic 
regions in Africa (~12,000-24,000 different var genes)7, repertoires have a lower genetic 
overlap compared to medium diversity (see Extended Data Fig. 3). This pattern follows 
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naturally from increased diversity because repertoires can be formed from a larger number of 
gene combinations. Although such low overlap can indicate a non-random structure7, it 
cannot per se distinguish selection from the two null models. Accordingly, module FST is low 
in all three cases and is not a good indicator of selection (Fig. 1e), despite the selection model 
possessing more separate components than null models (Fig. 1d). Nonetheless, selection 
networks can still be differentiated from those generated under null models in terms of motif 
composition (Fig. 1f), as well as other features (see Fig. 2 and Extended Data Fig. 3). In 
particular, the weaker similarity between repertoires means a less clear network partitioning 
than that of lower diversity systems. We therefore use betweenness centrality as a property 
reflecting their limiting similarity: this metric measures the importance of a repertoire in a 
network by calculating the proportion of shortest paths connecting any pair of nodes that go 
through it30. For the networks generated with the null models, betweenness centrality varies 
little among repertoires, with no highly central ones (Fig. 1d). This is because the persistence 
of each repertoire is independent of the antigenic composition of other repertoires given the 
lack of specific competition. By contrast, in the selection case some repertoires are clearly 
more central than others (Fig. 1d), reflecting the non-random persistence of antigenic niches, 
connected through these networks’ hubs via a series of recombination events.  
 
To apply these findings to empirical data, we first asked whether networks produced by the 
models can be classified using a set of networks properties into the processes that generate 
them, immune selection vs. generalized immunity or complete neutrality  (Extended Data 
Table 1). With a medium diversity gene pool, there is a positive correlation between the 
strength of competition and our ability to classify networks correctly, reflecting an increasing 
divergence between the networks (Fig. 2a-d). With a high diversity gene pool, the 
classification always differentiates the selection scenario correctly (Fig. 2e), whereas it often 
fails to differentiate generalized immunity from complete neutrality (Fig. 2f-h). 	
	
In addition to the effects of immune selection at the repertoire level, frequency-dependent 
competition also works at the level of var genes in the population. Specifically, frequency-
dependent competition will limit the abundance of genes that are similar to many others  — 
and are thus readily recognized by the immune system — while favoring the abundance of 
genes with a unique composition of alleles. We can test this prediction using a network in 
which nodes are genes and edges encode similarity in allelic composition (Extended Data 
Fig. 4a). In the immune selection case, we find a characteristic negative correlation between 
node degree (number of genes similar to a focal gene) and the frequency of genes in the host 
population. This effect is absent for the null models (Extended Data Fig. 4b-d). 	
 
Deep genetic sampling of local populations in BD, Ghana allows application of these 
theoretical findings to examine the role of immune selection in nature. Gene similarity 
networks were built from var DBLα domain tags sequenced from 1,248 P. falciparum 
isolates in Ghana (Methods). We restrict our analyses to the upsB/upsC group of the DBLα 
domain because this subset is known to exhibit frequent ectopic recombination within itself 
relative to the more conserved upsA26. This group rather than the whole set of genes is 
therefore less prone to generate the above negative correlation spuriously out of differences 
in recombination rates, and provides a more appropriate counterpart to our theory, which 
does not consider functional differences between var gene variants. The resulting gene 
similarity networks exhibit a strong negative correlation between var DBLα type frequency 
and number of similar neighbors, providing evidence for frequency-dependent competition 
(Fig. 3a). We then examine the strain similarity network by calculating shared DBLα types 
between different repertoires in the subsample of isolates (=161) whose multiplicity of 
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infection is equal to one (i.e., whose var genes most likely consist of a single infection; 
Methods; Extended Data Fig. 5). We applied our network classification method to ask 
whether immune selection played an important role in shaping the empirical population 
structure. We generated a library of simulated networks under parameter ranges 
representative of Ghana (Methods), which resulted in corresponding values of the annual 
entomological inoculation rate (number of infective bites per person per year, EIR) [~25-170] 
that encompass empirical observations for the region19. Classification of the empirical 
network using discriminant functions indicates its resemblance to networks generated with 
the immune selection scenario (Fig. 3b).   
 
Interestingly, the network signatures we have identified present conceptual similarity to 
traditional tests of balancing selection developed in population genetics or community 
ecology (as summarized in Extended Data Table 2), thus filling the gap of available tests for 
highly recombinant gene families. It follows that these network properties can be adapted for 
application to other multicopy gene repertoires for antigenic variation, such as vsg genes in 
Trypanosoma brucei or msg genes in Pneumocystis carinii1. 
	
These findings provide unequivocal evidence for frequency-dependent competition 
structuring antigen composition in a natural population of P. falciparum: these patterns differ 
from those expected from the simple demography of transmission. We show that under 
extreme diversity and intense recombination, immune selection profoundly shapes repertoire 
diversity into a distinct population structure that can be detected using network metrics. Open 
areas include consideration of functional differences among var genes, phenotypic mapping 
of sequence diversity to immunity, how parasite population structure changes in time and 
how it influences responses to interventions.  
 
Early motivation for strain theory was the recognition that organization of PfEMP1 variants 
(and their underlying genes) into persistent largely non-overlapping sets can deeply alter our 
understanding of epidemiology and control, for example by viewing P. falciparum’s apparent 
large reproductive number (R0) as resulting from a large ensemble of strains with much lower 
reproductive numbers8. With the sheer number of existing and ever-changing variants, 
previous definitions of strains as long-lived entities do not apply at high endemicity. The 
resulting population structure nevertheless exhibits limited similarity, in the form of sparse 
small clusters and/or isolated individual repertoires interspersed into voids in 
antigenic/genetic space, instead of well-defined niches. This emergent structure provides an 
image of competition at the ‘limit’ of limiting similarity because of immense diversity. The 
resulting coexistence and diversity at the different hierarchical levels of genes and repertoires 
enables the large reservoir of asymptomatic infections that makes malaria so resilient to 
elimination in high transmission regions. Control strategies that target this diversity are 
needed, and may have positive feedback mechanisms that enhance intervention efforts by 
facilitating recognition by the immune system of strains and antigenic variants that would 
otherwise escape detection.  
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Figure and Figure Legends 
 

 
 
Figure 1. Repertoire similarity networks and representative network metrics across 
scenarios under different diversity regimes generated from model simulations with high 
competition (high duration of naive infection and high transmission rates). Upper panel, 
medium diversity (gene pool size of 1,200) and lower panel, high diversity (gene pool size of 
24,000). a, d, comparisons of strain similarity networks of 150 randomly sampled parasite 
var repertoires from one time point under three scenarios. Edge width is relative to the 
strength of genetic similarity between pairs of repertoires. Only the top 1% of edges are 
drawn and used in the analysis (see Extended Data Fig. 3 for distribution of edge weights). 
Within the largest component of each network, the size of each repertoire indicates its 
normalized betweenness centrality. The value of maximum modularity Q is calculated using 
edge-betweenness28 and shown at the lower right corner of each network. The modules 
obtained in these networks represent groups of highly similar repertoires (strain modules), 
which are conceptually similar to geographically isolated populations with limited gene flow. 
We therefore calculate the pairwise FST of strain modules identified by the Girvan–Newman 
algorithm28, to quantify how different strain modules are from each other, providing a 
measure of limiting similarity that compares within-module and between-module diversity31. 
b, e, pairwise module FST distributions. c, f, proportion of occurrence of 3-node graph motifs 
for the three models.  
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Figure 2. Divergence in network metrics between the three scenarios and the power of 
correct classification of the selection model for different levels of competition (as a function 
of infection duration and biting rate) and var gene pool size (medium diversity [1,200-2,400], 
a-d, and high diversity [12,000-24,000], e-h). a, e, The shade of colored squares indicates the 
proportion of correct assignments for the immune selection scenario. The relationship 
between selected network properties are shown for low (b, f), medium (c, g) and high 
competition (d, h) (with the corresponding point shapes indicated in a, e). In simulations with 
a gene pool of medium diversity (a), the proportion of correct assignments of the selection 
model increases with infection duration and biting rate. The divergence between the three 
models increases with increasing level of competition (b-d). When the genetic pool is of high 
diversity, the selection model is almost always perfectly assigned (e), while neutral and 
generalized immunity models are harder to differentiate, even under high competition levels, 
as shown by the relationship between assortativity and the proportion of reciprocal chain 
motifs (A<->B<->C) (f-h) (see Extended Data Table for definitions of these network 
metrics). Therefore, high diversity per se provides enough variation for selection to operate 
and leave a signature, even when transmission and duration of infection are low.	
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Figure 3. Empirical investigations of Ghana data. (a) Negative correlation between DBLα 
type frequencies and their number of similar genes for the upsB/upsC var genes in the 
parasite population (r = -0.040, p<2.2e-16) (This number is calculated as the degree [k] of the 
focal gene in the gene similarity network, for amino acid similarities above 0.6). Histograms 
on the top and right of the plot show the distributions of k and DBLa-type frequencies. (b) 
Discriminant Analyses of Principle Components32 show the classification of the training 
networks onto the 2-D space formed by two linear discriminant (LD) functions, and classify 
the empirical similarity network as more likely to be generated under an immune selection 
regime (posterior probability [PP] = 0.978), as opposed to neutrality (PP = 0.008) or 
generalized immunity (PP = 0.014). The classification relies on comparisons of 39 network 
properties (see Extended Data Table 1) calculated for the 1000 simulated networks (from 100 
combinations of different parameter settings and 10 random networks sampled at different 
times per simulation run).   
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Methods 
 
The extended var evolution model 

In the model, each parasite genome is a combination of 60 copies of the var genes, and each 
gene is in turn a linear combination of loci encoding epitopes (we used two in the current 
implementation). Immune selection in the model derives from specific immunity to epitope 
variants (alleles), which represent components of the PfEMP1 molecule that are recognized 
and remembered by the immune system of the host33; In effect, these epitopes serve as traits 
that mediate competition for hosts at the population level, since individuals gain protection 
against specific alleles expressed by the parasite during an infection. (Extended Data Fig. 1a).   

Model parameters and symbols are summarized in Extended Data Fig. 6a. Diversity of var 
genes is represented at three levels: alleles (epitopes), genes, and strains. Specifically, each 
parasite genome consists of g var genes. The specific combination of the var genes is referred 
to as a strain or var repertoire throughout the paper. Each var gene is composed of l epitopes 
that are connected linearly and each epitope can be viewed as a multi-allele locus with n 
possible alleles.  

Initiation of the simulation 

To initiate the var gene pool G, a random allele for each epitope is chosen from the allele 
pool to form each gene. In the simplest case, if there are two epitopes in a var, then a 
particular var gi = {Li1, Li2}, where Li1, Li2 are random numbers from U(1,n). With ni possible 
alleles at each epitope, the total number of possible genes is ∏ni. However, we choose G at 
least five times less than ∏ni so that not all combinations of alleles as a gene are available. 
This relates to the fact that not all combinations of alleles form viable proteins. In the 
beginning of the simulation run, twenty hosts are selected and infected with a distinctive 
parasite genome that consists of a set of g var genes randomly selected from the pool G. The 
size of the host population, H, is kept at a constant size (i.e., when a host dies, a new host is 
born). Each host has a death rate of d = 1/30 per year.  

Repertoire transmission 

Vectors (mosquitoes) are not explicitly modeled. Instead, we set a biting rate b so that the 
average waiting time to the next biting event is equal to 1/(b*H). When a biting event occurs, 
two hosts are randomly selected, one donor and one recipient. If the donor is infected with 
malaria strains that have passed the liver stage, then the receiver will be infected with a 
probability of p (i.e., transmission probability). If the donor is infected with multiple strains 
in blood stage, then the transmission probability of each strain is p divided by the number of 
active strains.  

Meiotic recombination 

Meiotic recombination occurs between strains in the sexual stage of the parasite’s life cycle.  
When multiple strains are transmitted to the donor, these strains have a (1- Pr) probability to 
remain as the original strain, and a Pr probability to become a recombinant strain, with Pr 
calculated as follows, 

                          (1) 

, where Ns is the number of strains transmitted to the donor. Although the association of 
physical locations and major groups of var genes is established, orthologous gene pairs 
between two strains are often unknown. Therefore, we implement recombination between 

Pr =1−1/ (Ns )
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strains as a process in which g genes are randomly selected out of all the original genes from 
the two strains pooled together. This is an oversimplification of the real process. However, 
because physical locations of var genes can be mobile, this assumption is a reasonable 
simplification of the meiotic recombination processes. 

Ectopic recombination within the strain in the asexual blood stage  

Var genes often change their physical locations through ectopic recombination and gene 
conversions. These processes occur at both sexual and asexual stages. However, ectopic 
recombination is observed more often in the asexual stage where the parasites spend most of 
their life cycle6. Therefore, we only model ectopic recombination among genes within the 
same genome during asexual stage. Two genes are selected from the repertoire. When the 
location of the breakpoint (i.e., between which loci recombination occurs) is decided, loci to 
the right of the breakpoint between the genes are either swapped (recombination) or copied 
(gene conversion). The ratio of these two outcomes is controlled by the parameter Pc. Newly 
recombined genes will have a probability Pf to be functional (i.e., viable) defined by the 
similarity of the parental genes.  

  𝑃! 𝑥 = 𝜏
!(!!!)
!!!   （2） 

(Eq.3 in Drummond et al.34), where x is the number of mutations between the recombined 
gene and one of the parental genes, δ is the difference between the two parental genes and is 
the recombinational tolerance. If the recombined gene is selected to be non-functional, then 
the parental gene will be kept. Otherwise, the recombined gene will substitute the parental 
gene so that a new strain is formed. 

Mutation 

Mutations occur at the level of epitopes. While infecting a host, each epitope has a rate of 
mutation, µ, to mutate to a new allele so that n increases by one. New mutations can die from 
lack of new transmissions, proliferate through new transmissions of the same strain, 
incorporate into other genes through ectopic recombination, or recombine into a different 
repertoire. 

Within-host dynamics 

Each strain is individually tracked through its entire life cycle, encompassing the liver stage, 
asexual blood stage, and the transmission and sexual stages. Because we do not explicitly 
model mosquitoes, we delay the expression of each strain in the receiver host by 14 days to 
account for the time required for the sexual and liver stage. Specifically, the infection of the 
host is delayed 7 days to account for the time required for gametocytes to develop into 
sporozoites in mosquitoes. When a host is infected, the parasite remains in the liver stage for 
additional 7 days35 before being released as merozoites into the bloodstream, invading red 
blood cells and starting expressing the var repertoire. The expression of genes in the 
repertoire is sequential and the infection ends when the whole repertoire is depleted. During 
the expression of the repertoire, the host is considered infectious with the active strain. The 
expression order of the repertoire is randomized for each infection, while the deactivation 
rates of the genes are controlled by the host immunity. When one gene is actively expressed, 
host immunity ‘checks’ whether it has seen any epitopes in the infection history. The 
deactivation rate changes so that the duration of active period of a gene is proportional to the 
number of unseen epitopes. After the gene is deactivated, the host gains immunity to all the 
new epitopes. A new gene from the repertoire is immediately active, and the strain is cleared 

τ
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from the host when the whole repertoire of var genes is depleted. The immunity towards a 
certain epitope wanes at a rate w = 1/100 per day36.  

Implementation of the simulation 

The simulation is an individual-based, discrete-event, continuous-time stochastic model in 
which all known possible future events are stored on a single event queue along with their 
putative times, which may be at fixed times or drawn from a probability distribution. When 
an event is triggered, it may trigger the addition or removal of future events on the queue, or 
the modification of their rates, thus causing a recalculation of their putative time. This 
approach is adapted from the next-reaction method37, which optimizes the Gillespie first-
reaction method38 by storing all events on an indexed binary heap. This data structure is 
simple to implement and sufficiently fast and compact to store all events in the system, down 
to individual state transitions for each infection course within each host. Specifically, 
modifying the putative time for an event on the queue is O(log N), and heap storage is O(N), 
where N is the number of events. 

Statistical analyses 

Selection versus neutral models 

In order to disentangle signatures of immune selection from those of transmission per se in 
parasite population structures, we ran null models in which hosts do not build specific 
immunity towards alleles or genes, in addition to the selection model described above.  In the 
complete neutrality model (Extended Data Fig. 6b), when hosts are infected, the duration of 
infection is determined by the deactivation rate of each gene, which is kept constant; thus, 
hosts do not build immunity after an infection. The rate of deactivation is calculated to match 
the average duration of infection of the corresponding selection model, while maintaining the 
rest of the parameters (e.g., G, b). In the generalized immunity model, the duration of 
infection decreases as the number of infections increases, similarly to the selection model. 
However, the identity of the alleles does not play a role and we therefore matched the average 
curve of duration of infection vs. number of infections to that of the corresponding selection 
scenario. 

Diversity metrics, as well as epidemiological parameters, are calculated after each run to 
compare between scenarios. Diversity is quantified using common measures from ecology, 
including Shannon diversity39, Simpson’s diversity and evenness40, beta diversity (i.e., 
turnover in composition of var genes or repertoires among parasite samples in time), as well 
as within-repertoire diversity at the allelic and genetic levels. Within-repertoire diversity is 
calculated by the number of unique alleles/genes divided by the potential maximum number 
of unique alleles/genes (e.g., 60 if the genome size is 60). Entomological inoculation rate 
(EIR), prevalence, and multiplicity of infection (MOI) are also compared among model runs 
under different parametric settings and scenarios.  

Building of similarity networks 

In addition to diversity, similarity networks based on allelic composition at the gene or 
repertoire levels are built to investigate parasite population structure. For this purpose, 150 
parasites are sampled at 120-day intervals in the hosts, to subsample the simulations in a way 
that is meaningful for later empirical application of network analyses. Directional similarity 
networks for var genes or parasite genomes (i.e., var repertoires) are built with edges 
represented by the proportion of shared unique alleles. Specifically, 
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 𝑆!" =
!
!!

 ; 𝑆!" =
!
!!

， 

where a is the shared number of unique alleles between i and j repertoires, and Ni and Nj are 
total number of unique alleles of repertoires i and j respectively. This directional index of 
genetic similarity is designed in the system to represent the relative competition between two 
repertoires, as explained in Extended Data Fig. 6c.  

Calculation of Network properties 

For repertoire similarity networks, 39 network properties are calculated to detect selection 
signatures, as well as to distinguish these from patterns generated by pure transmission 
dynamics or generalized immunity. These properties include diagnostics of transitivity, 
degree distributions, component sizes, diameters, reciprocity, and proportion of 3-node graph 
motifs (see Extended Data Table 1 for a complete list of parameters and definitions). One 
additional metric is introduced and named “module FST”. This metric quantifies to what 
extent the strain modules inferred from repertoire similarity networks are genetically different 
from each other, by comparing the genetic diversity within and between communities31,41. 

Simulations and machine learning algorithms for classification 

For each combination of parameters (i.e., initial gene pool size G, biting rate b, and duration 
of infection D), 100 simulations were run to calculate the distribution of the network 
properties under immune selection, neutral and generalized immunity scenarios. The 
properties are then transformed into non-correlated principle components. Discriminant 
analyses32 were performed on the principle components, to design functions that maximize 
the differences among networks generated under different scenarios while minimizing the 
within-scenario variance. The accuracy of the discriminant functions is assessed by the 
proportion of correct classifications (i.e., power) as well as false positive rates. A similar 
approach is conducted for building a classifier for empirical networks. Details are 
documented below. 

Comparisons with empirical data 

Data sampling 
The empirical data used was collected from a study performed across two catchment areas in 
Bongo District (BD), Ghana located in the Upper East Region near the Burkina Faso border. 
Malaria in BD is hyperendemic and is characterized by marked seasonal transmission of P. 
falciparum during the wet season between June and October. This age-stratified serial cross-
sectional study was conducted over two sequential seasons. The first survey was completed at 
the end of the wet season in October 2012, followed by a second survey at the end of the dry 
season between mid-May and June 2013. Details on the study population, data collection 
procedures and epidemiology have been published elsewhere19. Briefly, after obtaining 
informed consent, finger prick blood samples were collected for parasitological assessment 
for P. falciparum by blood smears, and dried blood spots for molecular genotyping19. The 
study was reviewed and approved by the ethics committees at the Navrongo Health Research 
Center, Ghana; Noguchi Memorial Institute for Medical Research, Ghana; New York 
University, United States; University of Melbourne, Australia; University of Michigan, 
United States; and the University of Chicago, United States. 
 

PCR amplification and var DBLα sequence analysis 
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The DBLα domain of P. falciparum var genes were amplified from genomic DNA using 
universal degenerate primers, as previously described42. Amplicons were pooled and 
barcoded libraries were sequenced on an Illumina MiSeq sequencer using the 2x300 paired-
end cycle protocol, MiSeq Reagent kit v3 chemistry (NYUGTC, New York USA; AGRF, 
Melbourne Australia). A custom pipeline was developed to de-multiplex and remove PCR 
and sequencing artefacts from the DBLα sequence tags. Reads were demultiplexed into 
individual fastq files for each isolate using flexbar v2.543 and paired based on valid 
combinations of MID tags in the forward and reverse reads. A minimum read length of 100nt 
and a maximum uncalled bases threshold of 15 were used. The resulting paired fastq files 
were then merged using PEAR v.0.9.1044 to ensure the resulting merged fastq files had 
appropriate base quality scores allowing for filtering of low quality reads. The minimum 
assembly length was set to 100nt and the minimum overlap required between a read pair was 
set to 20nt. Low quality reads were filtered if they had more than one expected error using 
the fastq_filter option of Usearch v8.1.183245,46. Next, chimeras were filtered using Uchime 
denovo47 and then the filtered reads were clustered using the cluster_fast function of 
Usearch45 after the removal of singletons to reduce the impact of errors. A threshold of 96% 
identity7 was used to cluster the reads. To increase the overall quality of the sequences, the 
resulting clusters were removed if they contained less than 15 reads to remove low support 
reads. The representative read from each cluster was kept for the remaining stages of the 
pipeline. Next, any non-DBLα sequences were filtered out using Hmmer48 with a domain 
score threshold of 80. Finally, as a quality check the remaining reads were aligned to the 
reference var DBLα sequences of the 3D7, Dd2 and HB3 laboratory clones from 
experimental sequence data. To subsequently determine DBLα types shared between isolates, 
the cleaned DBLa reads were clustered using a pipeline based on the USEARCH software 
suite version 8.1.183145. Initially duplicate reads were removed and the remaining reads were 
sorted by how many duplicates were present using the derep_prefix command. The remaining 
reads were then clustered at 96% pairwise identity using the usearch cluster_fast command. 
Finally, the original unfiltered reads were aligned back to the centroids of the clusters and an 
OTU table was generated using the usearch_global command before a binary version of the 
table was generated.  

 

Building of empirical networks and model prediction 

Empirical networks were built from var DBLα types sequenced and processed from 1284 P. 
falciparum isolates from individuals residing in BD, Ghana. Following a previously 
published analysis framework, the DBLα types were translated into all six reading frames and 
classified into either upsA or upsB/upsC (i.e., non-upsA) groups42. Gene networks are built 
based on pairwise similarities of unique upsB/upsC DBLα types that are above 0.6. The 
choice of the threshold is based on the average within-class sequence similarity of the 24 
DBLα subclasses (see %ID in Fig. 2 of Rask et al.16). Since infections by multiple parasite 
genomes (multiplicity of infection [MOI] larger than 1) are very common in malaria endemic 
regions, we selected isolates with a total number of upsB/upsC DBLα types ranging from 40-
55 copies to maximize the probability of selecting hosts with single-clone infections, which 
reduced the number of isolates to 161 (see main text for rationale of focusing on upsB/upsC 
DBLα types). The repertoire similarity network is built among these isolates (Extended Data 
Fig. 6). In order to build a classifier for the empirical network, a library of simulated 
networks was generated for parameter ranges representative of Ghana: global var gene pools 
from 10,000 to 20,000, duration of naïve infection equal to 1 year, and biting rates ranging 
from 0.1 to 0.5 person per day. The simulated networks were then constructed by sampling 
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161 random isolates from two periods seven months apart from each other, resembling the 
sampling regime of the empirical data. The trained discriminant functions from simulated 
networks32 are then applied on empirical networks to predict whether the network is 
generated from immune selection dominant forces or pure neutral forces. The Bayesian 
posterior probability of classification is calculated by assuming Gaussian densities of prior 
distributions of each class. 
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Extended Data Table 1 | List of network properties used in network classification. 
No Network Properties Description 

 Transitivity/clustering coefficient The degree to which nodes in a graph tend to cluster together 
1 Average local clustering coefficient Ratio of the triangles connected to a node and the triples centered on the node 

(undirected unweighted networks)49 
2 Average weighted local clustering coefficient Local clustering coefficient in weighted network50 
3 Global clustering coefficient The ratio of the triangles and the connected triples in the network51 

 
Degree Number of edges per node 

4 Graph density The ratio of the number of edges and the number of possible edges51 
5 Proportion of nodes with degree 0 

 
6 Proportion of nodes with degree 1 

 
7 Average degree 

 
8 Assortativity Pearson correlation coefficient of the degrees at either ends of an edge52 
9 Average strength Sum of edge weights of the adjacent edges for each node 
10 Straightness (Power law test) Pearson coefficient of a power-law degree distribution53 
11 Average measurement of the heterogeneity of the network Entropy of the degree distribution53 
12 Number of components relative to network size 

 
13 Average component size 

 
14 Entropy of component size distribution 

 
 

Geodesic distance Shortest path between two vertices 
15 Central point dominance Average difference in centrality between the most central node and all others30 
16 Average eccentricity Average maximum shortest paths from a node to all other nodes54 
17 Diameter Length of the longest distance between any pairs of nodes 
18 Mean diameter of all components 

 
19 Reciprocal of global efficiency Harmonic mean of the geodesic distances53,55 
20 Average closeness centrality Average steps to access every other node from a given node30 

 
Graph motifs proportions Percentage of each motif among all 3-node motifs within the network56 

21 A->B<-C, the binary in-tree. 
22 A->B->C, the directed line. 
23 A<->B<-C. 

 
24 A<-B->C, the binary out-tree. 
25 A->B<-C, A->C. 

 
26 A<-B->C, A<->C. 

 
27 A<->B->C. 

 
28 A<->B<->C. 

 
29 A->B->C, A<->C. 

 
30 A->B<-C, A<->C. 

 
31 A->B<->C, A<->C. 

 
32 A<->B<->C, A<->C, the complete graph. 

 
In and out edges 

 
33 Reciprocity Proportion of mutual connections 
34 In-out correlation Correlation between numbers of in and out edges for each node 
 Modules and FST Community detected with Newman-Girvan algorithm28 
35 Community Size Evenness Gini index of community sizes 
36 Number of common communities  
37 Ratio of biggest community  
38 Q Maximum modularity28 

39 Maximum FST Maximum diversity within community compared with between 
communitites31,41 
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Extended Table 2 | Characteristics of immune selection (balancing selection) captured 
by different network metrics compared with traditional approaches from community 
ecology and population genetics. Network properties provide more information on 
population structure compared to the diversity measures commonly used in ecology (see 
Supplementary results and discussion; Extended Data Fig. 7). Moreover, these properties are 
more appropriate for describing similarity patterns in the presence of frequent recombination 
than population genetics measures that assume the existence of a ‘tree’-like phylogeny. The 
table summarizes general patterns that arise from balancing selection, and includes a specific 
pattern relevant for gene families. The correspondence between common tests or indices in 
ecology and population genetics is shown, together with their predictions relative to those of 
neutral scenarios (in parentheses). Network metrics are for the most part explained in 
Methods and in the Extended Data table 1. Remaining ones are referred to specific figures or 
references in this table. 
 

Patterns Community ecology Population genetics* Network metrics  

Increased diversity 
around targets of 
selection 

Shannon diversity H 
(higher)39 

Hudson–Kreitman– 
Agaudé test (much higher 
polymorphism than divergence)57 

Greater number of components (see Fig. 1 
and Extended Data Fig. 2) 

Evenly sized niches 
(ecology); 
Excess of common 
polymorphisms 
(evolution) 

Evenness (higher)40 Fu and Li's F58, Tajima's D59 (positive) Negative relationships between frequency 
and relatedness (see text and Extended 
Data Fig. 4) 

 Abundance distribution 
(skewed toward 
intermediate-abundance)60 

Allele frequency spectrum (skewed 
toward intermediate-frequency 
alleles)61 

Even component/community sizes (see 
Fig. 1 and Extended Data Fig. 2) 

Persistence of niches 
(ecology); 
Shared variants across 
species (evolution)  

 FST among species compared to 
neutral sites (lower) 

Persistence of strain modules (not tested 
in this paper) 

  Persistence of similar gene variants 
across species 

 

Shared diversity across 
location 

Beta diversity across 
locations (lower)62 

FST among locations compared to 
neutral genes (lower) 

Module identities have less correlation 
with locations than neutral genes (not 
tested in this paper) 

Limiting similarity 
(ecology); 
Linkage disequilibrium 
among genes 
(evolution) 

Pairwise type sharing 
(low)29 

Long Range Haplotype test (longer 
haplotype than expected)63 

Modularity (see Fig. 1 and Extended Data 
Fig. 2)28 

  Integrated Extended Haplotype 
Homozygosity (negative, long 
haplotypes associated with derived 
alleles)64 

Module FST (see Methods for definition 
and references, Fig. 1 and Extended Data 
Fig. 2) 

   Transitivity 

   Higher proportion of complete graph in 
motif compositions (see Fig. 1 and 
Extended Data Fig. 2)  

High within-genome 
diversity of gene 
families 

  High reciprocity (see Fig. 1 and Extended 
Data Fig. 2) 

* Tests listed under population genetics are adapted from Fijarczyk and Babik14, where more tests and references are reviewed and 
discussed.
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Extended Data Figure 1.	Schematic illustration of the var gene model. a, Each parasite 
genome (ovals) consists of a repertoire of g copies of var genes. Each var gene (depicted by 
different colors within each parasite) is in turn represented as a linear combination of 
epitopes (depicted by different shapes), with each epitope having many possible variants 
(alleles, shown in different colors). b, At each transmission event, one donor and one receiver 
host are selected at random from the host pool. Each parasite genome in the donor host is 
transmitted to the mosquito with probability of 1/(number of repertoires). During the sexual 
stage of the parasite (within mosquitoes), different parasite genomes can exchange var 
repertoires through meiotic recombination to generate novel recombinant repertoires. The 
receiver host can receive either recombinant genomes or original genomes. During the 
asexual reproduction stage of the parasite (within the blood stage of infection), var genes 
within the same genome exchange epitope alleles through mitotic (ectopic) recombination. 
Also, epitopes can mutate. These two processes generate new var genes. Each var gene is 
expressed sequentially and the infection ends when all the var genes in the repertoires have 
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been expressed. A new transmission event may occur throughout the period of expression of 
var genes as the result of biting events. c, The local population receives var repertoires from 
a fixed global var gene pool through migration.  d, Gene pool size (regional var gene 
diversity), biting rate (transmission intensity), and duration of naïve infections all interact to 
influence the level of competition among var repertoires for human hosts. 
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Extended Data Figure 2 | Repertoire similarity networks and representative network 
metrics across scenarios for different diversity regimes generated with low and medium 
competition (shorter duration of naive infection and lower transmission rates). First and 
third panels, medium gene pool size (G = 1,200) and second and fourth panels, high gene 
pool size (G = 24,000). a, d, h, k, comparisons of strain similarity networks of 150 randomly 
sampled parasite var repertoires from one time point under the three scenarios. Only the top 
1% of the strongly connected links are drawn and used in the analyses, with the thickness of 
the edges representing the relative strength of connections within the network (see Extended 
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Data Fig. 3 for distribution of edge weights and degrees). Within the largest component of 
each network, the size of each node indicates its normalized betweenness centrality. The 
value of maximum modularity Q is calculated using edge-betweenness and shown at the 
lower right corner of each network. b, e, i, l, pairwise module FST distributions. c, f, j, m, 
proportion of occurrence of 3-node graph motifs for the three models.  
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Extended Data Figure 3 | Edge weight distributions and in-out degree distributions 
under different gene pool diversity and competition regimes. Distributions are ordered 
from medium diversity (left) to high diversity (right), and low competition (upper) to high 
competition (lower). Under each regime, scenarios are shown for immune selection (left), 
generalized immunity (middle) and neutrality (right). The blue dotted lines in the edge 
distribution plots shows the repertoire similarity cutoff (for the top 1% of edges used in 
building the networks). Bar plots of in and out degree are shown across 100 networks that are 
generated under these same regimes (respectively in black and grey).  
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Extended Data Figure 4.  The relationship between gene frequencies and number of similar 
genes. a, In a gene similarity network, each node represents a unique gene transmitted in the 
population and the edges encode the sharing of at least one allele between genes. The size of 
the node is proportional to its frequency in the population and the node degree k depicts the 
number of genes that share at least one allele with the focal gene. There is a negative 
correlation in the immune selection scenario (b, r = -0.412, p-value < 2.2e-16), and no 
statistically significant relationship for complete neutrality (c, r = 0.016, p-value = 0.17) and 
for generalized immunity (d, r = -0.002, p-value = 0.89). G = 24,000, b = 0.5, D = 1 year. 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2017. ; https://doi.org/10.1101/197954doi: bioRxiv preprint 

https://doi.org/10.1101/197954
http://creativecommons.org/licenses/by-nc-nd/4.0/


He et al. Main text| Figures| Methods| References| Acknowledgements| Extended Data Tables| Extended Data Figures| SI 

 28 

 
Extended Data Figure 5 | Strain similarity network of var upsB/C DBLα types in the 
Ghana samples. The color or each node represents the season in which the isolate was 
sampled. The top 1% of edges (i.e., Sij > 0.0755) is shown in the graph and used in the 
analyses.  
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Extended Data Figure 6 | Model parameters, differences between model scenarios, and 
computation of edge strength in network construction. a, Description of parameters and 
selected ranges. b, Model comparisons for immune selection, generalized immunity and 
complete neutrality. c, Illustration of the similarity index used in the directional similarity 
networks. We use a directional network because of the asymmetric competition resulting 
from different numbers of unique variants in a repertoire. In the example, strain i has 3 
unique alleles, while strain j has 5. Together they share 3 alleles. Therefore, strain i can be 
substituted by strain j completely, while strain j can only be substituted by strain i partially. 
Therefore, strain j will have a prolonged expression in a host which is immune to strain i, 
while strain i will not be able to cause infection in a host which is immune to strain j.  
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Extended Data Figure 7 | Comparisons of allelic diversity across immune selection (red), 
generalized immunity (blue) and neutral (yellow) scenarios. Simpson’s allelic diversity D (a) 
and allelic evenness J (b) are compared across biting rates. The number of epitopes per var 
gene (columns) vs. the number of var genes per genome (rows). Within repertoire diversity 
(c) is presented as the proportion of unique alleles divided by the length of the genome. 
Values are combined for all parameter combinations for a given biting rate.
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Supplementary information: 
Supplementary results and discussion 

Selection signature based on standard ecological diversity measures 

We investigated whether standard ecological diversity measures can be used to differentiate 
selection signatures. As expected from standard genetic signatures of frequency-dependent 
selection, the parasite var gene population has higher and more even epitope (allelic) 
diversities in the selection than in the neutral models for the same parameter ranges 
(Extended Data Fig. 7a, b). Diversity patterns under generalized immunity, although different 
from those under complete neutrality, nevertheless resemble those of complete neutrality 
more than those of immune selection. What is more unique to the system as a result of 
within-strain competition is a higher within-genome diversity than that of the null models 
(also see Buckee and Recker65 on the evolution of multi-domains in gene structures) 
(Extended Data Fig. 7c). Except for the allelic diversity indices, most of the other diversity 
indices (such as beta diversity, genetic or repertoire diversity) do not show clear trends 
differentiating the underlying processes. Because these differences are relative, a given value 
of these indices would not provide information about underlying processes. In this sense, they 
are un-informative and would require comparisons across endemicity gradients to provide 
evidence for non-neutrality in empirical systems. 
 
Supplementary file: 
 
1. Gene compositions of Ghana isolates. (To be provided as a separate file, as table is too 

large to be included here). 
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