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Abstract 

Computational modeling of the genome-wide metabolic network is essential for 

designing new therapeutics targeting cancer-associated metabolic disorder, which is a 

hallmark of human malignancies. However, previous studies generally assumed that 

metabolic fluxes of cancer cells are subjected to the maximization of biomass 

production, despite the wide existence of trade-offs among multiple metabolic 

objectives. To address this issue, we developed a multi-objective model of cancer 

metabolism with algorithms depicting approximate Pareto surfaces and incorporating 

multiple omics datasets. To validate this approach, we built individualized models for 

NCI-60 cancer cell lines, and accurately predicted cell growth rates and other 

biological consequences of metabolic perturbations in these cells. By analyzing the 

landscape of approximate Pareto surface, we identified a list of metabolic targets 
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essential for cancer cell proliferation and the Warburg effect, and further 

demonstrated their close association with cancer patient survival. Finally, metabolic 

targets predicted to be essential for tumor progression were validated by cell-based 

experiments, confirming this multi-objective modelling method as a novel and 

effective strategy to identify cancer-associated metabolic vulnerabilities. 

 

 

Introduction 

Since Otto Warburg’s first description that cancer cells exhibit abnormally high 

glucose uptake and concomitant lactate secretion(Warburg, 1956), metabolic 

alteration is widely noted as a hallmark of cancer(Boroughs and DeBerardinis, 2015; 

DeBerardinis and Chandel, 2016; Hanahan and Weinberg, 2011; Pavlova and 

Thompson, 2016). Besides the “wasteful” metabolism known as aerobic glycolysis or 

the Warburg effect(Dai et al., 2016; Liberti and Locasale, 2016), metabolism in 

malignant cells are shifted at the systematic level due to numerous factors including 

nutrient and oxygen availability in the tumor microenvironment, materials and energy 

required for rapid cell proliferation, as well as oncogenic signaling pathways. Thus, 

targeting metabolic reprogramming in cancer is a promising strategy for designing 

anti-tumor therapeutics(Cheong et al., 2012; Martinez-Outschoorn et al., 2017; 

Vander Heiden, 2011; Vernieri et al., 2016). 

While traditional methods are suited to dissect limited numbers of metabolic 

pathways, systems biology is a powerful tool to study metabolism from a global 
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perspective(Yizhak et al., 2015). Within the field of cancer metabolism, analyses of 

genome-scale metabolic models (GSMMs)(Thiele and Palsson, 2010; Thiele et al., 

2013) enabled researchers to elucidate the plausible mechanism of Warburg 

effect(Shlomi et al., 2011), quantify efficacies and side effects of cancer 

therapeutics(Agren et al., 2014; Folger et al., 2011; Shaked et al., 2016; Yizhak et al., 

2014a; Yizhak et al., 2014b), and unravel context-dependent functionality of 

metabolic enzymes during tumor progression(Frezza et al., 2011; Megchelenbrink et 

al., 2015; Rabinovich et al., 2015; Tardito et al., 2015). Among various strategies, 

flux balance analysis (FBA) exhibits itself as a highly effective approach to analyze 

GSMMs(Orth et al., 2010). FBA commonly assumes that cells organize metabolic 

fluxes by perusing metabolic objectives subjected to certain stoichiometric constraints 

and upper/ lower limits. The assumption of maximized biomass production 

(representing for optimal cancer cell growth) has been widely used in previous studies 

modeling cancer metabolism.  

Despite the rapid development in modeling cancer metabolism, the fundamental 

assumption of most computational methods – maximization of growth rate in cancer 

cells – is still open to doubt. Although studies investigating the metabolic objectives 

of cancer cells were scarce, several studies focusing on unicellular organisms 

provided useful insights(Gianchandani et al., 2008; Knorr et al., 2007; Schuetz et al., 

2007). Interestingly, the hypothesis of single-objective metabolic optimization was 

challenged even in Escherichia coli. Comparison of experimentally-measured 

metabolic fluxes and the Pareto-optimal surface defined by multiple metabolic 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 4, 2017. ; https://doi.org/10.1101/198333doi: bioRxiv preprint 

https://doi.org/10.1101/198333


4 
 

objectives revealed that cellular metabolism may be determined by trade-off among 

three competing objectives: maximization of biomass yield, maximization of ATP 

production, and minimization of gross metabolic fluxes(Schuetz et al., 2012). 

Similarly, the trade-off between biomass yield and ATP production was also 

considered as one plausible mechanism underlying tumor-associated metabolic 

disorders including the Warburg effect(Pfeiffer et al., 2001).  

In line with these findings, we present here the first theoretical strategy 

involving multi-objective optimality for modeling cancer metabolism to our best 

knowledge. Specifically, we developed algorithms for sampling balanced flux 

configurations with Pareto optimality and building individualized models based on 

publically-available omics data. To demonstrate our methodology, we constructed 

individualized models for NCI-60 cancer cell lines and predicted the impact of 

metabolic gene ablation on Pareto optimality, metabolism, and cell viability. With this 

approach, we identified a list of metabolic enzymes essential for cell proliferation and 

aerobic glycolysis (the Warburg effect), and further validated this list through survival 

analysis and cell-based experiments. These metabolic hubs will likely improve our 

understanding of cancer-associated metabolic disorders, and provide potential targets 

for novel cancer therapeutics.  

 

Results 

Four-objective optimization model for cancer metabolism 

Metabolism is pivotal for biomass synthesis and energy production 
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indispensable for cell viability. However, these two goals contradict with each other 

to some extent during cell division. For instance, when glucose is completely oxidized 

to carbon dioxide to generate maximal amounts of ATP, it can no longer be utilized as 

biomass precursors for amino acid and nucleotide biosynthesis. Therefore, we 

reasoned that the distribution of metabolic flux can only be comprehensively 

determined by multiple biological objectives (Fig 1A), including (1) maximization of 

biomass production, which is frequently considered as the only objective in previous 

FBA studies of cancer cells(Folger et al., 2011; Gatto et al., 2015; Megchelenbrink et 

al., 2015; Yizhak et al., 2014a), (2) maximization of ATP hydrolysis, which is 

considered as the objective in some FBA studies of non-malignant cells(Folger et al., 

2011; Yizhak et al., 2014b), (3) minimization of total abundance of metabolic 

enzymes, which is an analogue of the solvent capacity constraint(Shlomi et al., 2011; 

Vazquez et al., 2010), and (4) minimization of total carbon uptake(Savinell and 

Palsson, 1992). These four objectives reflect different aspects of metabolic demand, 

covering both maximization of biomass yield and minimization of energy cost. 

Combining them with a genome-scale metabolic network Recon 1(Duarte et al., 2007), 

we created a multi-objective linear programming model (Fig 1B), which serves as the 

theoretical framework for our subsequent analysis (see Materials and Methods for 

details). 

Based on this model, we quantitatively describe the trade-off among multiple 

metabolic objectives by considering solutions with Pareto optimality (Fig 1B). Pareto 

optimality is defined by inabilities to further optimize one objective function without 
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making any other objectives worse off. For instance, a metabolic flux configuration 

with Pareto optimality with regarding to the two objectives of maximizing biomass 

and ATP yield is one that cannot be altered to yield both higher biomass synthesis and 

higher ATP production. To uniformly sample from all solutions with Pareto 

optimality, we designed an algorithm based on ε-constraint method(Mavrotas, 2009), 

namely branched ε-constraint method (BECM). The resulting collection of all Pareto 

solutions, or the Pareto surface, can be visualized by projection to any ternary 

combinations of the metabolic objectives as mentioned above (Fig 1B).  

 

Individualized Pareto models accurately predict cell proliferation and responses 

to metabolic gene ablations in NCI-60 cancer cell lines  

To further validate the four-objective optimization method in modeling cancer 

metabolism, Pareto optimality is assumed to be achieved in the examined cancer cells 

or tissue types, and their metabolic flux configurations could be reconstructed by 

searching for Pareto solutions harboring the highest consistency with protein 

expression and metabolic flux profiles. To do this, we developed a population-based 

strategy based on the assumption that for a fixed metabolic pathway, the 

corresponding enzymatic expression correlates with its governed metabolic flux (Fig 

2A). Specifically, we used multi-omics datasets including LC-MS/MS based 

proteomics(Gholami et al., 2013) and consumption-release (CORE) profiles of 

metabolites(Jain et al., 2012) to reconstruct Pareto models for NCI-60 cell lines.  

We then validated the Pareto models by comparing model-predicted biomass 
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fluxes to the actual cell growth rates, and found that theoretical biomass production 

fluxes accurately predict the cell growth rates as previously reported (Fig 2B, 

Spearman’s rank correlation coefficient = 0.68). Moreover, model-predicted 

metabolic fluxes positively correlate with pathway-level protein expression profiles 

and experimentally-measured metabolic fluxes, demonstrating that our Pareto models 

successfully recapitulate cancer-associated metabolic phenotypes (Fig S1). 

Convergence to different solutions only slightly affect prediction results (Fig S2), 

while fewer metabolic objectives (Fig S3) or less omics data input (proteomics or 

CORE only, Fig S4) would significantly reduce prediction accuracies, suggesting that 

all four objectives and both omics datasets are indispensable for modeling the 

metabolic landscape of cancer cells. 

Next, we applied this model to predict cellular responses to metabolic gene 

ablations and compared the calculated results with Achilles, a genome-scale gene 

essentiality database(Cowley et al., 2014). Based on the assumption of Pareto 

optimality in modeling cancer metabolism, the distance between a metabolic flux 

configuration and the Pareto surface reflects how fitness of cells bearing such flux 

configuration is impaired. To better quantify this deviation, we defined a Pareto 

deviation score (PDS) as the Euclidean distance between the flux configuration after 

metabolic gene knockdown and the Pareto surface (Fig 2C, Materials and Methods). 

For each metabolic gene registered in Achilles and associated with only one reaction 

in Recon 1 (245 in total), we simulated the flux configurations after its knockdown in 

all NCI-60 cell lines and computed the PDS values. Then we compared the resultant 
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PDS with sensitivity scores in Achilles and demonstrated their positive correlations in 

a majority of examined genes (Fig 2D, p<0.001, Wilcoxon’s signed-rank test), thus 

corroborating the close association between theoretical deviations from Pareto 

optimality in achieving all four objectives and impairments of cell viability. 

 

Metabolic targets identified by Pareto surface analysis are essential for cancer 

progression 

Given that model-predicted PDS values reflect sensitivities to metabolic 

perturbation, we next sought to identify anti-tumor metabolic targets using this novel 

model. It is noted that rapid proliferation and the Warburg effect (fermentation of 

glucose in the presence of oxygen) are essential features of cancer cells, with the latter 

more related to tumor metastasis and drug resistance(Gatenby and Gillies, 2004; 

Liberti and Locasale, 2016). Counteracting these two features are critical for 

developing anti-tumor therapies. Therefore, we designed a perturbation strategy 

leading to larger Pareto deviation in flux configurations with increased biomass 

production or enhanced Warburg effect, aiming to selectively impair the viability of 

malignant cells. This perturbation can be achieved by activation or inhibition of 

metabolic enzymes, which can be quantified in our model as increased or decreased 

metabolic fluxes governed by a particular enzyme. Without loss of generality, we 

were able to use cell growth rate as a representative phenotype to illustrate our 

strategy for target identification. Next, we projected the Pareto surface to a 

two-dimensional space spanned by growth rate and one specific metabolic flux, in a 
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way that we can clearly define its lower and upper bounds (Fig 3A). Candidate targets 

can be identified based on the boundaries of projected Pareto surface. After that, we 

examined how the upper bound of metabolic flux varies with cell growth rate. If the 

upper bound decreases with growth rate, activation of this enzyme would lead to 

larger Pareto deviation for flux configurations with higher growth rate, thus 

conferring selectivities on cells with different growth rates (Fig 3A). Conversely, 

inhibition of an enzyme would impair the viability of fast-growing cancer cells, if the 

lower bound rises monotonously with their growth rates (Fig 3A). A correlation-based 

monotonousness score was defined to assess the tendency of declining upper bound or 

rising lower bound (Materials and Methods). The full criteria for target identification 

were summarized in Fig 3B. The requirement that most of the individualized models 

for NCI-60 cell lines locate close to the boundary is necessary to allow the metabolic 

perturbation to draw the flux configuration out of Pareto surface and confer 

significant impact on cell viability. 

By analyzing the geometry of projected Pareto surface as we introduced above, 

we identified a list of targets essential for cancer cell growth and the Warburg Effect. 

The extent of the Warburg effect was quantified as the flux ratio of lactate secretion to 

glucose consumption. Interestingly, we found that most targets capable of reducing 

the Warburg effect need to be activated, whereas those able to suppress cell 

proliferation need to be inhibited (Table 1). Complete information about these 

identified targets is listed in Table S3. It has been noted that cell proliferation is a 

highly orchestrated process in which several pathways function in concert, producing 
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multiple metabolic precursors for biomass synthesis (illustrated as BP1, BP2 and BP3 

in Fig 3C). Defects in these pathways would prevent cells from obtaining critical 

building blocks, and inhibiting key enzymes involved in these processes may suppress 

cell proliferation. On the other hand, the Warburg effect is largely controlled by 

lactate dehydrogenase (LDH) generating lactate from pyruvate, which diverts carbon 

flux away from oxidative glucose metabolism and other related pathways. Therefore, 

activation of enzymes capable of consuming carbon atoms other than glycolysis may 

compete with the LDH flux for glucose-derived carbon atoms, leading to the reduced 

Warburg effect. 

By cross-comparing the key metabolic enzymes controlling cell proliferation 

and the Warburg effect, we found that enzymes whose inhibition is predicted to 

reduce cell proliferation overlap significantly with enzymes whose activation 

suppresses the Warburg effect (Fig 3D). Moreover, no versatile target was predicted 

to exist whose perturbation is able to inhibit both processes. This result seems to be 

contradictory to several previous studies(Le et al., 2010; Xie et al., 2014). However, 

it is worth mentioning that our modeling results only reflect the direct consequence 

of metabolic perturbation. Metabolic enzymes often carry essential non-metabolic 

functions, and inhibition of cell proliferation may lead to metabolic shifts secondary 

to growth arrest, which were not considered by our theoretical analysis. Nevertheless, 

the predicted enzymes whose expression are critical for cell proliferation and/or the 

Warburg effect may serve as a potential target pool for therapeutic intervention, if 

their expression significantly correlate with disease progression.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 4, 2017. ; https://doi.org/10.1101/198333doi: bioRxiv preprint 

https://doi.org/10.1101/198333


11 
 

To validate the association between identified targets and cancer progression, we 

conducted Kaplan-Meier survival analysis on thousands of breast cancer patients to 

systematically evaluate the connection between these enzymes and patient 

survival(Gyorffy et al., 2010). We focus on the enzymes whose activation were 

predicted to reduce the Warburg effect and enzymes whose inhibition would inhibit 

proliferation, and classify all these targets into three categories (Fig 3D):  

C1: Inhibition of these targets was predicted to inhibit cell proliferation while 

no association with the Warburg effect was predicted; 

C2: Activation of these targets was predicted to suppress the Warburg effect 

while no association with cell proliferation was predicted; 

C3: Inhibition of these targets was predicted to inhibit cell proliferation, and 

activation of them to suppress the Warburg effect. 

C1 and C2 enzymes and their corresponding monotonousness scores are shown 

in Fig 3E and 3F. 

For C1 enzymes, we predict that their higher expression associate with worse 

disease progression, thus correlating with poorer prognosis and higher risk of death 

(i.e. hazard ratio>1 in Kaplan-Meier analysis). Similarly, higher expression of C2 

enzymes are expected to associate with lower risk of death (hazard ratio<1 in 

Kaplan-Meier analysis). The correlation between C3 enzymes and patient survival 

may not be significant, since their roles in regulating cell proliferation and the 

Warburg effect counteract with each other. Kaplan-Meier survival analyses strongly 

support these conclusions (Fig 3G-3I).  
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We further conducted Kaplan-Meier analyses of C1 and C2 enzymes using 

gene expression and clinical datasets for non-small-cell lung cancer(Gyorffy et al., 

2013) and observed similar results (Fig S5). The consistency between 

model-predicted functions of C1 and C2 enzymes and their association with cancer 

prognosis implies that these two categories of enzymes are potential anti-tumor 

targets. Although it is still challenging, recent progress in designing enzymatic 

agonists(Cool et al., 2006; Meng et al., 2016) makes C2 targets potentially druggable 

in developing new cancer therapeutics. On the other hand, C1 enzymes are more 

likely to be feasible targets, since their down-regulation is associated with better 

prognosis.  

Regarding C3 enzymes, their overexpression may suppress the Warburg effect, 

whereas their lower expression may inhibit cell proliferation. Interestingly, we found 

that the up-regulation of most C3 enzymes correlate with better patient prognosis, 

indicating that their roles in regulating the Warburg effect are more important during 

tumor progression (Fig 3I,S5C). To further test this idea, we constructed 

individualized models for 1101 invasive breast carcinoma (BRCA) tumors and 114 

adjacent normal tissue samples based on their gene expression profiles in the Cancer 

Genome Atlas(Cancer Genome Atlas, 2012), and used them to predict the 

proliferation potential and extent of the Warburg effect of corresponding samples. 

Indeed, tumor samples were predicted to exhibit significantly higher glycolysis than 

normal tissue samples (p=1.34×10
-41

, Wilcoxon’s rank sum test, Fig 3K), whereas the 

biomass production fluxes of tumor samples were predicted to be lower (Wilcoxon’s 
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rank sum test p=1.28×10
-35

, Fig 3J). These results confirm that the Warburg effect, 

rather than rapid proliferation, is a more distinguished feature for malignant tumors, 

although targeting cell proliferation may still be considered as a therapeutic option, 

especially for early-staged cancers. Consistent with this notion, we observed the 

up-regulation of a large number of C1 enzymes (Fig 3L) and down-regulation of most 

C2 enzymes (Fig 3M) in tumor relative to normal tissue samples. Taken together, 

these integrated analyses of omics datasets validated the close association between 

model-predicted anti-tumor targets and cancer progression. 

 

Ablation of C1 enzymes impairs cancer cell proliferation 

To further validate our modeling method, we focused on the top five C1 targets 

(Fig 3D) (Materials and Methods) and subjected four of them (RPIA, AHCY, 

PHGDH, and PSAT1) to experimental validation. PSPH was omitted because it 

catalyzes the very last reaction of serine anabolism(Locasale, 2013), thus is identical 

to PSAT1 as a target for our analysis. Most cell lines used in our experiments were 

selected from the NCI-60 panel, whereas some unavailable lines were replaced by 

alternatives with identical cancer types (Table S6). For each specific target, the top 

four cell lines with the largest growth reduction upon target inhibition as predicted by 

our model were selected for experimental validation, and HeLa was also included as a 

common cancer cell line. Efficiencies of gene ablations were validated by quantifying 

the mRNA levels using RT-PCR (Fig 4A-4D) and protein levels using Western blot 

(Fig S6). Indeed, knockdown of each individual target was associated with strong 
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anti-proliferative effects in almost all cell lines predicted to be sensitive for target 

inhibition (Fig 4E-4H). 

 

Knockdown of C1 enzymes fail to inhibit the Warburg effect in cancer cells 

A key prediction of our theoretical model is that goals of inhibiting cell 

proliferation and the Warburg effect largely conflict with each other. In other words, 

there is few perturbation strategies on a single enzyme capable of inhibiting cell 

proliferation and the Warburg effect simultaneously. To validate this conclusion, we 

measured lactate secretion rates with or without C1 knockdown in cell lines whose 

proliferation rates exhibit significant reduction upon C1 ablation. Consistent with our 

model, lactate production rates were not reduced in these cell lines (Fig 5A-5D). 
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Discussion 

A multi-objective optimization model correctly predicts cancer cell responses to 

metabolic perturbation 

In this study, we developed a novel strategy to model metabolism based on the 

assumption of multi-objective optimization. Specifically, we applied the concept of 

Pareto optimality to predict flux configurations with optimality in balancing the 

maximization of yields (growth and energy) and minimization of costs (enzymes and 

nutrients). By integrating these metabolic objectives with multi-omics datasets, we 

were able to construct individualized models to correctly predict multiple phenotypes 

of cancer cells including cell growth rates and responses to metabolic perturbation. 

This is the first attempt, to our best knowledge, to incorporate multiple objectives in 

modeling cancer metabolism, which demonstrates that calculated deviations from 

Pareto optimality with different goals closely resemble impairments of cell viability. 

In our current model, we selected 4 most commonly utilized metabolic 

objectives for FBA analysis, including maximization of biomass production, 

maximization of ATP hydrolysis, minimization of total abundance of metabolic 

enzymes, and minimization of total carbon uptake. Nevertheless, some other 

objectives may also be considered for quantifying the metabolic network, such as 

minimization of redox imbalance, maximization of resistance to cytotoxic agents, 

minimization of reactive oxygen species (ROS) production, etc. Incorporating 

additional objectives in our model may further improve the fitting accuracy of Pareto 

surfaces to the actual metabolic network under different circumstances. Strategies to 
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deduct the best combinations of objectives(Hart et al., 2015; Zhao et al., 2016) may be 

combined with our modeling method, and provide new insights in the reprogramming 

mechanism of cancer metabolism. 

 

The landscape of Pareto surface implicates roles of metabolic enzymes in cancer 

progression 

Our theoretical model successfully dissects the cancer metabolic network and 

identifies its vulnerabilities from a global perspective. More specifically, we were 

able to determine several key metabolic targets to control cancer cell proliferation or 

the Warburg effect by analyzing the geometry of Pareto surface. Most of the potential 

targets associate with patient survival and exhibit differential expression patterns in 

cancer and normal tissues. Specifically, we identified 12 enzymes whose 

down-regulation exhibit strong inhibitory effects on cell proliferation yet no inhibitory 

impact on the Warburg effect (C1 enzymes). These enzymes are involved in multiple 

metabolic pathways including the Krebs cycle, oxidative phosphorylation, de novo 

serine synthesis, pentose phosphate pathway, and pyrimidine metabolism. Among 

these 12 enzymes, 11 were confirmed to correlate with cancer progression (Table 2), 

and some of them already have chemical inhibitors subjected to clinical tests. The 

clear enrichment of known anti-tumor targets in C1 enzymes, together with their 

significant association with patient survival, highlight the ability of Pareto 

optimality-based strategy in unraveling the metabolic vulnerabilities of cancer cells. 

Finally, we validated the top 4 C1 enzymes in human cancer cell lines with shRNA 
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knockdown, confirming that inhibition of these enzymes would significantly reduce 

cell growth rates but have no inhibitory effect on aerobic glycolysis. Taken together, 

our theoretical and experimental results suggest that roles of metabolic enzymes in 

cancer progression can be uncovered by analyzing the landscape of Pareto surface 

under the framework of four-objective optimization model. 

 

The multi-objective optimization model sheds new light on designing 

anti-tumor therapeutics 

Our study also suggests a novel route to target cancer-specific metabolic 

abnormalities by activating metabolic enzymes to compete with the Warburg effect. 

Although suppressing the Warburg effect has been intensely studied as a promising 

cancer therapy, most related strategies focus on direct or indirect inhibition of 

enzymes associated with aerobic glycolysis. One example is PDK1, the inhibition of 

which would attenuate its inhibitory effect on PDH, and facilitate oxidative glucose 

metabolism(Galluzzi et al., 2013). Interestingly, PDH was predicted as a C1 enzyme 

by our model, due to the longer distance between the individualized models and the 

upper bound of projected Pareto surface for the Warburg effect, as compared to the 

distance between the NCI-60 models and lower bound for cell growth rate, suggesting 

that PDH is more likely to be rate-limiting for proliferation. Consistent with this 

prediction, PDH inhibition has been reported to suppress cell proliferation (Table 2). 

Except for PDH, our analysis also reveals the wide existence of enzymes whose 

activation may impair tumor development mainly by inhibiting the Warburg effect. 
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Compared to traditional methods that directly target glycolysis, this strategy may 

greatly reduce the side effects in normal cells that also use glucose as the major 

energy source. Therefore, this approach warrants further investigation even though 

efforts may be taken to generate enzymatic agonists. 

Moreover, our model highlighted a contradictory role played by several 

metabolic enzymes in affecting cell growth and the Warburg effect. For a group of 

enzymes identified as potential targets for rapid proliferation, their activations were 

predicted to inhibit aerobic glycolysis (C3 enzymes in Figure 3D). The conflict 

between inhibiting cell proliferation and the Warburg effect reflects the intrinsic 

robustness of cancer as a complex disease, and was further supported by the fact that 

ablations of C1 enzymes failed to impair lactate production in most tested cancer cells. 

However, this could also be due to the fact that our modeling approach only considers 

the direct influence of metabolic perturbation, not the secondary effects derived from 

primary manipulations. In addition, our method only incorporated the stoichiometric 

constraints of metabolic fluxes, and ignored nonlinear factors such as the allosteric 

regulation of metabolic enzymes for modeling feasibilities. Further investigation is 

needed to characterize precise roles of those enzymes in cancer. Nevertheless, our 

study presented a comprehensive strategy to identify cancer-associated vulnerabilities 

with much-improved accuracies, as supported by survival analyses and cell-based 

experiments.  

In summary, we have developed a novel method to model cancer metabolism 

based on Pareto optimality under the framework of multi-objective optimization. This 
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approach created an integrated workflow from omics-based mathematical model to 

metabolic target identification, and predicted metabolic hubs essential for cancer cell 

proliferation and/or the Warburg effect. The high consistency between predicted roles 

of metabolic enzymes in cancer and tumor ‘omics’ data suggests that the overall 

effect of a specific enzyme during tumor development is determined by its functions 

in multiple metabolic tasks rather than a single task such as cell proliferation. In 

addition to modeling cancer metabolism, this methodology may also be applied to 

explore other disease-related metabolic abnormalities with accessible omics datasets. 

 

Materials and Methods 

Defining metabolic objectives in the genome-scale metabolic model 

We considered four metabolic objectives including maximization of biomass 

production flux (fBM), maximization of ATP turnover (fATP), minimization of carbon 

uptake (CU), and minimization of total metabolic enzyme abundance (EA). The 

genome-scale metabolic model used here, Recon 1, already contains a biomass 

producing flux whose coefficients are determined by the molecular composition of 

mammalian cells. We employed a curated and decomposed model by Shlomi et al (i.e. 

all reversible reactions are decomposed into forward and backward reactions) to 

simplify the following procedures, but this model lacks some critical fluxes and 

biomass components. Therefore, we downloaded model files in the SBML format 

from the BioModels Database, translated them into MATLAB files using COBRA, 

and supplemented the original model with ignored components for the following 
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analysis. The MATLAB file of updated model bas been included in the 

Supplementary Materials (Data S1). This model also contains an ATP hydrolysis flux, 

whose maximization was considered as the second objective. Eventually the carbon 

uptake (CU) flux was calculated as follows: 

CU =∑ 𝑛𝐶,𝑖𝑓𝑖
𝑛

𝑖=1
 

n is number of fluxes in the model, 𝑛𝐶,𝑖 is the number of carbon atoms imported into 

intracellular compartments by the ith flux and 𝑓𝑖 is its flux rate. If this flux does not 

lead to any carbon uptake, the value of 𝑛𝐶,𝑖 is zero. 

     The enzyme abundance (EA) was determined by: 

EA =∑
𝑊𝑖

𝐾𝑐𝑎𝑡,𝑖
𝑓𝑖

𝑛

𝑖=1
 

Since the coefficients 
𝑊𝑖

𝐾𝑐𝑎𝑡,𝑖
 have already been evaluated in the curated model with a 

solvent capacity constraint, they were simply utilized in our analysis. In other words, 

the solvent capacity constraint has been replaced by the objective of minimizing total 

enzyme abundance. Upper limits of nutrient influxes were set according to the 

composition of RPMI-1640 medium (Table S2). 

 

Sampling the Pareto surface with the Branched 𝛆-Constraint Method (BECM) 

Pareto solutions of optimization problems with N objectives can be calculated 

by ε-Constraint Method, in which N-1 of the objectives are transformed into soft 

constraints and the left single objective can be optimized with the resultant constraints. 

Assume that we are interested in solving the following problem: 

max(𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑁(𝐱)) 
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s. t.  𝑺 ∙ 𝐱 = 0, 𝟎 ≤ 𝐱 ≤ 𝐮𝐛 

In which S is the stoichiometric matrix, x is the flux configuration in which 

each element is flux rate of a reaction, ub is the vector of maximal rates of reactions. 

Assume that 𝑓1(𝐱) is the objective to be optimized and all other objectives are 

treated as constraints, the derived single objective optimization problem (SOOP) 

becomes: 

max  𝑓1(𝐱),    s. t. 

{
 
 

 
 

𝑓2(𝐱) ≥ 𝑒2
𝑓3(𝐱) ≥ 𝑒3

…
𝑓𝑁(𝐱) ≥ 𝑒𝑁

𝐒 ∙ 𝐱 = 𝟎, 𝟎 ≤ 𝐱 ≤ 𝐮𝐛

 

 By transforming different combinations of objectives to constraints, adjusting 

the constants e1 to en, and repeatedly solving the corresponding optimization problem, 

we can obtain a solution set with Pareto optimality. In our model all objectives and 

constraints are linear, enabling us to solve the SOOPs with efficient algorithms (e.g. 

simplex method, interior point method, etc) for linear programming (LP). The LP 

problems were solved using Mosek (http://www.mosek.com/). 

To generate feasible SOOPs more efficiently, we employed a branched strategy. 

First we calculate the maximal values for the biomass production flux (𝑓𝐵𝑖𝑜𝑚𝑎𝑠𝑠
𝑚𝑎𝑥 ) and 

the ATP hydrolysis flux ( 𝑓𝐴𝑇𝑃
𝑚𝑎𝑥 ). We then sampled 10000 combinations of 

(𝑒𝐵𝑖𝑜𝑚𝑎𝑠𝑠, 𝑒𝐴𝑇𝑃)  in the region [0, 𝑓𝐵𝑖𝑜𝑚𝑎𝑠𝑠
𝑚𝑎𝑥 ] × [0, 𝑓𝐴𝑇𝑃

𝑚𝑎𝑥]  with Latin Hypercube 

Sampling. For each combination we calculated the minimal values of CU and EA 

(𝐶𝑈𝑚𝑖𝑛 and 𝐸𝐴𝑚𝑖𝑛) compatible with constraints in the GSMM, 𝑓𝐵𝑖𝑜𝑚𝑎𝑠𝑠 ≥ 𝑒𝐵𝑖𝑜𝑚𝑎𝑠𝑠 

and 𝑓𝐴𝑇𝑃 ≥ 𝑒𝐴𝑇𝑃. Let 𝐶𝑈𝑚𝑎𝑥 and 𝐸𝐴𝑚𝑎𝑥 denote the value of CU when EA reaches 
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its lowest limit, and the value of EA when CU reaches its lowest limit. Calculating the 

range of [𝐶𝑈𝑚𝑖𝑛, 𝐶𝑈𝑚𝑎𝑥]  and [𝐸𝐴𝑚𝑖𝑛, 𝐸𝐴𝑚𝑎𝑥]  according to sampled 

(𝑒𝐵𝑖𝑜𝑚𝑎𝑠𝑠, 𝑒𝐴𝑇𝑃) prior to SOOP generation helps to avoid generating a large number 

of infeasible SOOPs. We finally generated SOOPs in a branched manner in which 

stratified sampling were applied to select 𝑚1 values within [𝐶𝑈𝑚𝑖𝑛, 𝐶𝑈𝑚𝑎𝑥] and 

𝑚2 values within [𝐸𝐴𝑚𝑖𝑛, 𝐸𝐴𝑚𝑎𝑥]. 𝑚1 +𝑚2 SOOPs were generated according to 

𝑚1  minimizing EA and 𝑚2  minimizing CU. The values of 𝑚1  and 𝑚2  were 

determined by the range of [𝐶𝑈𝑚𝑖𝑛, 𝐶𝑈𝑚𝑎𝑥] and [𝐶𝑈𝑚𝑖𝑛, 𝐶𝑈𝑚𝑎𝑥] with 10 as the 

maximal value. Possible solutions of all feasible SOOPs (42930 in total) were 

summed up as the sampled Pareto surface. 

 

Retrieving and processing the omics datasets 

Proteomics data of the NCI-60 cell lines are available at the NCI-60 Proteome 

Resource: http://wzw.tum.de/proteomics/nci60. The exchange flux rates of these cell 

lines were presented in a study at 2012(Jain et al., 2012). However, these proteomics 

and fluxomics data were only normalized by cell numbers, and NCI-60 cell lines were 

noted to exhibit different cell sizes. Therefore, we further normalized the original data 

by cell volumes calculated based on cell diameters available at: 

http://www.nexcelom.com/Applications/Cancer-Cells.html, with the assumption that 

single cells are perfect spheres. Expression levels of metabolic enzymes were 

evaluated by gene-protein-reaction rules included in the GSMM (Details in 

Supplementary Materials). Gene scores quantifying sensitivities to gene knockdown 
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are available at: http://www.broadinstitute.org/achilles. Cell growth rates are available 

at: http://discover.nci.nih.gov/cellminer/. The TCGA datasets for breast cancer are 

available at the Cancer Genome Browser (https://genome-cancer.ucsc.edu)(Zhu et al., 

2009). Kaplan-Meier survival analyses were performed using the Kaplan-Meier 

Plotter (http://kmplot.com/analysis/)(Szasz et al., 2016). 

 

Constructing the individualized models 

We defined a similarity score to evaluate to which extent the distribution of flux 

configurations as predicted by the individualized models can reproduce the 

distribution of corresponding omics data. The similarity metric (S) is comprised of 

two parts: 𝑆1 and 𝑆2 . 𝑆1  is the summation of correlation coefficients between 

model-predicted and experimentally-determined exchange flux rates: 

𝑆1 =∑ 𝐶𝑜𝑟𝑟[(𝑥1,𝑖
exp
, 𝑥2,𝑖
exp
, … 𝑥𝑛,𝑖

exp
), (𝑥1,𝑖

model, 𝑥2,𝑖
model, … 𝑥𝑛,𝑖

model)
𝑛exc

𝑖=1
] 

𝑆2  is the summation of correlation coefficients between model-predicted 

average flux rates and average expression levels of metabolic pathways: 

𝑆2 =∑ 𝐶𝑜𝑟𝑟[(𝑒1,𝑖
exp
, 𝑒2,𝑖
exp
, … 𝑒𝑛,𝑖

exp
), (𝑥1,𝑖

model, 𝑥2,𝑖
model, … 𝑥𝑛,𝑖

model)
𝑛P

𝑖=1
] 

𝑛exc is the number of exchange fluxes whose measurements were available, 𝑛P is 

the number of metabolic pathways in the KEGG Database, n is the number of NCI-60 

cell lines whose fluxomics and proteomics data are both available,  

(𝑥1,𝑖
exp
, 𝑥2,𝑖
exp
, … 𝑥𝑛,𝑖

exp
) is the experimentally-determined flux rates of cell lines for the 

ith exchange flux, (𝑒1,𝑖
exp
, 𝑒2,𝑖
exp
, … 𝑒𝑛,𝑖

exp
) is the average expression levels of metabolic 

enzymes for the ith pathway according to proteomics data, 
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(𝑥1,𝑖
model, 𝑥2,𝑖

model, … 𝑥𝑛,𝑖
model) is the flux rates predicted by our models (individual 

fluxes in 𝑆1 and pathway-averaged fluxes in 𝑆2). The correlation metric used here is 

Spearman’s rank correlation coefficients. Single enzymes were mapped to metabolic 

pathways according to the BRENDA Database based on their EC Numbers. The 

individualized models (i.e. flux configurations for the cell lines) were constructed 

along the approximate Pareto surface by maximizing the similarity metric S with 

simulated annealing. For the TCGA datasets in which no flux rates are available, the 

similarity score S2 was maximized alone. 

 

Simulation of metabolic gene ablations and calculation of the Pareto deviation 

score 

We simulated the effects of metabolic gene knockdowns with minimization of 

metabolic adjustments (MOMA)(Segre et al., 2002). First we assumed that all 

metabolic genes have equal expression levels of 1 and evaluate the expression levels 

of all enzymes contained in the GSMM. We then changed the expression level of 

to-be-ablated gene to zero and re-evaluated this enzyme. For all reactions associated 

with enzymes whose expression levels change in this process, let 𝐸0 and 𝐸1 denote 

the evaluated expression levels of the corresponding enzyme before and after the 

knockdown, respectively. After that, we adjusted the upper bound of flux through this 

reaction by multiplying itself with 𝐸1/𝐸0. Finally, the new flux configuration 𝒙1 

after gene knockdown was calculated by minimizing the Euclidean distance to the 

original flux configuration 𝒙0  with the new upper bound constraints. Pareto 
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deviation score (PDS) was then computed as below: 

𝑃𝐷𝑆 = 𝑚𝑖𝑛𝒙∈𝑃𝑆‖(𝑓𝐵𝑀(𝒙), 𝑓𝐴𝑇𝑃(𝒙), 𝐶𝑈(𝒙), 𝐸𝐴(𝒙))

− (𝑓𝐵𝑀(𝒙𝟏), 𝑓𝐴𝑇𝑃(𝒙𝟏), 𝐶𝑈(𝒙𝟏), 𝐸𝐴(𝒙𝟏))‖ 

  

Analyzing the projected Pareto surface 

Briefly, the upper and lower bounds of projected Pareto surface were 

approximated by mathematical discretization. Ranges of cell growth rate or the 

Warburg effect (defined as the ratio of lactate secretion flux to glucose uptake flux) of 

all Pareto solutions were divided into 100 bins with identical size. Let 𝑓𝑖 denote the 

variable describing the ith flux used in combination with cell growth rate or the 

Warburg effect for the projection, the lower and upper bounds of 𝑓𝑖 in all Pareto 

solutions whose growth rates or the Warburg effect fell in each of the 100 bins were 

calculated as [𝐿𝐵1, 𝐿𝐵2, … , 𝐿𝐵100] and [𝑈𝐵1, 𝑈𝐵2, … , 𝑈𝐵100]. The tendency of these 

bounds to be monotonous (increasing or decreasing) were quantified by Spearman’s 

rank correlation coefficients between the vector [𝐿𝐵1, 𝐿𝐵2, … , 𝐿𝐵100]  or 

[𝑈𝐵1, 𝑈𝐵2, … , 𝑈𝐵100] and the vector [1, 2, 3, ..., 100]. We refer to these correlation 

coefficients as monotonousness scores (Table S5). Bounds were considered as 

monotonously decreasing if correlation coefficients were less than -0.9, and 

monotonously increasing if larger than 0.9. If a projection has decreasing upper bound 

and more than half of the individualized models for NCI-60 cell lines are located 

closer to the upper bound than to the lower bound, the enzyme catalyzing the flux 

used for projection would be identified as a potential target to be activated. 
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Conversely, increasing lower bound to which more than half of the individualized 

models are located closer would identify a potential target to be inhibited. 

 

Experimental validation of identified metabolic targets 

Cell lines were selected from the NCI-60 panel based on their predicted 

changes of biomass production flux using the NCI-60 individualized models as 

previously constructed. The simulation of enzymatic perturbations was performed by 

MOMA. Cell lines predicted to have significant reduction of biomass production flux 

were selected for further experimental validation.  

Cell Culture. BT549, MDA_MB_231, A549, U87, SW_620, COLO205, and 

RPMI_8226 cell lines were purchased from the China Infrastructure of Cell Line 

Resources and cultured in RPMI containing 10% FBS and antibiotics. Purchased 

U251 and HeLa cells were cultured in DMEM containing 10% FBS. All cell lines 

were confirmed to be mycoplasma negative. shRNA constructs were transfected into 

cells using Lipofectamine and selected with corresponding antibiotics.  

Immunoblot Analysis.  Cells were lysed with lysis buffer (25 mM Tris, 100 

mM NaCl, 1% Triton X-100, 1 mM EDTA, 1 mM DTT, 1 mM NaVO4, 1 mM 

b-glycerol phosphate, and 1 mg/mL aprotinin), and then the lysates were resolved by 

SDS-PAGE and proteins transferred to PDVF membranes. The filters were incubated 

with various primary antibodies diluted in TBST (20 mM Tris, 135 mM NaCl, and 

0.02% Tween 20). The primary antibodies were detected with horseradish 

peroxidase-conjugated secondary antibodies followed by exposure to ECL reagent. 
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Cell growth and metabolic assays.  Cells were plated in dishes at a density of 

5×10
4
 cells/dish and cultured in low serum medium for 5 consecutive days. Every 

other day one set of cells was collected and counted, while the medium on the 

remaining sets of cells was replenished. The rates of lactate production were 

determined using a BioProfile basic biochemistry analyzer (Nova Biomedical). 

Statistical analysis.  Statistical tests were performed using MATLAB. 

Algorithms for sampling the Pareto surface, constructing individualized models, and 

identifying targets were implemented in MATLAB codes. 
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Table 1. Numbers of identified targets 

 Targets to be activated Targets to be inhibited 

Inhibit cell proliferation 10 79 

Inhibit the Warburg effect 71 1 

Inhibit both 0 0 

 

 

Table 2. Summary of C1 enzymes 

*Drugs in bold are commercially available for cancer treatment. 

Enzyme Metabolic 

Pathway 

Inhibitors Association 

 with cancer 

AHCY Cysteine and 

methionine 

metabolism 

 Its enzymatic product, 

L-homocysteine, is a marker of 

multiple cancers(Sun et al., 

2002; Wu and Wu, 2002)  

NADH 

dehydrogenase 

(ETC Complex 

I) 

Oxidative 

phosphorylation 

Tamoxifen(Rohlena et al., 

2011)  

Deguelin(Rohlena et al., 

2011)  

Metformin(Liu et al., 

2016; Rohlena et al., 

2011; Wheaton et al., 

2014)  

 

ubiquinol-6 

cytochrome c 

reductase 

Oxidative 

phosphorylation 

Adaphostin(Rohlena et al., 

2011)  

Resveratrol(Rohlena et 
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(ETC Complex 

III) 

al., 2011)  

Xanthohumol(Rohlena et 

al., 2011)  

Benzyl 

Isothiocyanate(Rohlena et 

al., 2011)  

Lamellarin D(Rohlena et 

al., 2011)  

PM031379(Rohlena et al., 

2011)  

cytochrome c 

oxidase (ETC 

Complex IV) 

Oxidative 

phosphorylation 

Porphyrin 

photosensitizers(Rohlena et 

al., 2011)  

Fenretinid(Rohlena et al., 

2011)  

 

ATP synthase 

(ETC Complex 

V) 

Oxidative 

phosphorylation 

Piceatannol(Rohlena et al., 

2011) 

DIM(Rohlena et al., 2011)  

Bz-423(Rohlena et al., 

2011)  

Rhodamine 123(Rohlena 

et al., 2011)  

MK-077(Rohlena et al., 

2011)  

 

PDH Glycolysis, 

TCA cycle 

CPI-613(Lee et al., 2011; 

Pardee et al., 2014; 

Zachar et al., 2011)  

Over-expression in gastric 

cancer(Goh et al., 2015)  

PHGDH Glycine, serine 

and threonine 

CBR-5884(Mullarky et al., 

2016) 

Copy number amplification in 

multiple cancers(Locasale et 
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metabolism NCT-502, NCT-503(Pacold 

et al., 2016) 

PKUMDL-WQ-2101, 

PKUMDL-WQ-2201(Wang 

et al., 2017) 

al., 2011; Possemato et al., 

2011)  

PSAT Glycine, serine 

and threonine 

metabolism 

 Essential for breast cancer 

proliferation(Possemato et al., 

2011); miR-340, which inhibits 

PSAT, suppresses cell growth 

and invasion in esophageal 

cancer(Yan et al., 2015); 

association with the 

proliferation and drug 

resistance of colon cancer 

cells(Vie et al., 2008)  

PSPH Glycine, serine 

and threonine 

metabolism 

 Over-expression in 

hepatocellular carcinoma(Sun 

et al., 2015)  

SOD  Mangafodipir, 

Calmangafodipir, 2ME, 

ENMD-1198,  

ATN-224(Sborov et al., 

2015)  

 

RPI Pentose 

phosphate 

pathway 

 Over-expression in 

hepatocellular carcinoma，

essential for cancer cell 

growth(Ciou et al., 2015); Its 

ablation inhibits the 

proliferation of colorectal 
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cancer cells(Qiu et al., 2015)  

UMPK Pyrimidine 

metabolism 
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Figure Legends 

 

Fig 1. Four-objective optimization model for cancer metabolism. (A) Illustration 

of the four metabolic objectives incorporated in this model. (B) Mathematical 

description of the model and approximate Pareto surface projected on four ternary 

combinations of included objectives. Data points are presented in shade to depict the 

shape of Pareto surface.  

 

Fig 2. Individualized Pareto models for NCI-60 cancer cell lines predict cell 

proliferation rates and responses to metabolic gene ablations. (A) Illustration of 

the strategy used in constructing the individualized models based on multiple omics 

datasets. (B) Comparison between actual and model-predicted cell growth rates in the 

NCI-60 cancer cell panel. (C) Illustration of Pareto deviation score (PDS) as a metric 

quantifying the impact of metabolic perturbation on cell viability. (D) Distribution of 

Spearman’s rank correlation coefficients between model-predicted PDS values and 

sensitivity scores for metabolic gene ablations in the Achilles Database.  

 

Fig 3. Metabolic targets identified by Pareto surface analysis exhibit strong 

correlations with cancer progression and patient prognosis. (A) Illustration of the 

criteria for target identification. (B) Workflow of identifying potential metabolic 

targets essential for cell proliferation and the Warburg effect. (C) A simplified 

illustration of glucose utilization in biomass synthesis and lactate production. (D) 

Summary of different categories of identified targets. (E) C1 enzymes and their 
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monotonousness scores. (F) C2 enzymes and their monotonousness scores. (G)-(I) 

Results of Kaplan-Meier survival analysis of genes encoding C1, C2 and C3 enzymes. 

(J) and (K) Distribution of biomass production and extent of the Warburg effect 

predicted by the individualized models of breast tumor and adjacent normal tissues 

based on their gene expression profiles in TCGA. (L) Expression levels of genes 

associated with C1 enzymes in breast tumors and adjacent normal tissues. (M) 

Expression levels of genes associated with C2 enzymes in breast tumors and adjacent 

normal tissues. Significance levels: *: p<0.05; **: p<0.01; ***: p<0.001; ****: 

p<0.0001. 

 

Fig 4. Knockdowns of C1 enzymes impair cancer cell proliferation. (A-D) 

Relative mRNA expression levels of AHCY, RPIA, PHGDH and PSAT1 upon 

shRNA knockdown in the tested cell lines.  (E-H) Number of cells after 4 days upon 

shRNA knockdown of AHCY, RPIA, PHGDH and PSAT1 in the tested cell lines. 

 

Fig 5. Knockdowns of C1 enzymes have minimal effect on the Warburg effect. (A) 

Effects of AHCY knockdown on lactate secretion. (B) Effects of RPIA knockdown on 

lactate secretion. (C) Effects of PHGDH knockdown on lactate secretion. (D) Effects 

of PSAT1 knockdown on lactate secretion. 
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