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Abstract 

The network of grid cells in the medial entorhinal cortex forms a fixed reference frame for mapping 

physical space. The mechanistic origin of the grid representation is unknown, but continuous 

attractor network (CAN) models explain multiple fundamental features of grid-cell activity. An 

untested prediction of CAN grid models is that the grid-cell network should exhibit an activity 

correlation structure that transcends behavioural or brain states. By recording from MEC cell 

ensembles during navigation and sleep, we found that spatial phase offsets of grid cells predict 

arousal-state-independent spike rate correlations. Similarly, state-invariant correlations between 

conjunctive grid-head-direction and pure head-direction cells were predicted by their head-direction 

tuning offsets. Spike rates of grid cells were only weakly correlated across modules, and module scale 

relationships disintegrated during slow-save sleep, suggesting that modules function as independent 

attractor networks. Collectively, our observations suggest that network states in MEC are expressed 

universally across brain and behaviour states. 
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Main text 

A fundamental goal in systems neuroscience is to uncover the mechanistic and structural bases for 

information processing in the brain in vivo. The sensory pathways of the mammalian brain have over 

decades become established as model systems for studying this matter because they endow 

experimenters with the power to precisely and systematically manipulate stimuli while observing 

neuronal responses1,2. Additionally, neurons in primary sensory cortex typically encode low-

dimensional stimulus features3,4, making it possible to draw clear relationships between input signals 

and neuronal responses and thus deduce the neural code. 

In higher-order sensory and association cortex, our understanding of coding and computation is 

comparatively poor. Activity within these areas comprises a complex integration of many signals, 

making interpretation and experimental dissection of the encoded information highly challenging. A 

notable exception to this rule is the mammalian brain’s “cognitive map”, which employs a system of 

neurons that represents an animal’s location allocentrically within its physical environment5,6. 

Crucially, this map is not dependent on or responsive to any particular sensory modality, but instead 

appears to be a high-order cognitive abstraction based on multimodal sensory cues and self-motion 

information7,8. Several functionally and anatomically distinct classes of neurons in the hippocampal 

region are part of the cognitive map – notably place cells, head-direction (HD) cells, border cells, and 

grid cells, each of which signals a different aspect of the animal’s spatial location in its environment9–

13. 

The overarching question of how such robust low-dimensional neuronal representations are 

maintained in a highly dynamic sensory and behavioural context has attracted widespread attention 

from both experimentalists and theoreticians. In relation to grid cells, a variety of computational 

network models have demonstrated that in principle, there are multiple distinct mechanisms by 

which periodic grid patterns might be generated6,14. One group of models is based on continuous 

attractor network (CAN) dynamics: a phenomenon in which network activity reliably converges on an 
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intrinsic manifold consisting of a continuum of equally favourable states, allowing a network activity 

pattern to be smoothly translated across the manifold15. CAN models have gained credence in the 

field because they predict several essential properties of place cells and grid cells6–8,16–19. Specifically, 

the models predict that grid cells within a functional network should share a common spacing and 

orientation, and that grid cells should have fixed grid phase (translational offset) relationships across 

different environments6,8. A corollary of these predictions is that independent grid spacing, 

orientation, or spatial phase offsets could only exist through a modular organization of functionally 

discrete grid networks8,20. Indeed, all of these predictions have been experimentally confirmed21–24. 

However, it remains uninvestigated whether these signatures of CAN dynamics are expressed 

outside of the active explorative state. 

An important feature of all attractor network models is that the grid phase offset of any two grid 

cells in the network is a function of the net synaptic connectivity between them (the cells with the 

highest net connectivity have the smallest spatial phase offsets). Thus, the network’s design 

prescribes an intrinsic correlation structure which should manifest as “noise” correlation, irrespective 

of the network’s mode of activity. Models without continuous attractor characteristics do not, in 

general, make this prediction – therefore, probing for this specific correlation structure is an assay for 

the mechanisms described in grid CAN models. 

An attractive experimental approach for measuring the intrinsic correlation structure of the grid cell 

network would be to record grid cell activity when the spatial signal is absent and the network is 

instead predominated by self-organized dynamics. During such a state, correlations observed in the 

grid cell network should be a close reflection of the circuit’s synaptic organization. An ideal candidate 

for such a state is slow-wave sleep (SWS), during which afferent transmission of sensory information 

is suppressed, top-down cognitive influences are absent, and functional connectivity is more 

localized25, allowing internally generated brain dynamics to predominate. Indeed, in the rodent head-

direction circuit, which has also been postulated to depend on continuous attractor mechanisms26–28, 
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population activity remains constrained within the same low-dimensional state space across arousal 

states29. We therefore find it pertinent to ask whether the same could be true for grid cells. 

We thus recorded from grid, HD and conjunctive grid-HD cell ensembles in the medial entorhinal 

cortex (MEC) and parasubiculum (PaS), while rats ran in an open field environment and also while 

they slept. We show that the grid phase relationships between intramodular grid-cell pairs during 

wakeful navigation are rigidly preserved during SWS as well as REM, in the form of temporal spiking 

correlations, consistent with the predictions of CAN models. 
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Results 

We obtained in vivo extracellular electrophysiological recordings from MEC and PaS in 7 rats, during 

foraging behaviour in a 1.5-metre square open field arena (RUN), as well as during natural sleep in a 

rest chamber, from which we extracted periods of slow-wave sleep (SWS) and rapid-eye-movement 

sleep (REM). Periods of REM and SWS were identified from sustained immobility, accompanied by 

signature patterns of activity in the MEC local field potential (LFP): SWS was signified by high-

amplitude 1–4 Hz waves, while 5–10 Hz theta waves predominated during REM (Supplementary Fig. 

1a,b). MEC or PaS single units were classified with established methods according to their spatial 

tuning properties during the RUN session (see methods). Units were identified as pure grid cells (n = 

138), pure head-direction cells (HD, n = 95), or conjunctive grid × head-direction cells (grid-HD, n = 

39). 

Since the basic spiking properties of spatially tuned cells in MEC and PaS during sleep have not 

previously been described in detail, we first investigated whether these cells remained active during 

the states of SWS and REM. We fitted a repeated-measures ANOVA to the mean spike rates of the 

units in each state, with neuronal class as the between-subjects factor and arousal state as the 

within-subject factor. During each state, the mean spike rates of all three neuronal classes were 

similar (between-subjects effect of cell class F(2, 269) = 2.89, P = 0.0572; all post-hoc comparisons P > 

0.05; Tukey-Kramer; Supplementary Fig. 1c). Individual cells of each class exhibited significant 

changes in mean rate between the three states, with rates lowest in SWS and highest in REM (within-

subject effect of state F(2, 538) = 44.3, P = 1.57 × 10-18; all post-hoc state comparisons P < 0.01; 

Supplementary Fig. 1c). RUN, SWS and REM were accompanied by markedly different patterns of 

synchronous population activity (Supplementary Fig. 1a,b). During RUN and REM, prominent theta 

oscillations were present in the LFP, and individual grid cells showed periods of elevated spiking in 

the order of seconds. During SWS, the LFP became irregular and was dominated by <5 Hz waves 

accompanied by large fluctuations in the population spike rate30.  
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We then set out to test the prediction of CAN models that the same low-dimensional network states 

are expressed across all brain behavioural states. This should manifest as a fixed structure of spiking 

correlations between pairs of grid cells tightly linked to the degree of correspondence in their spatial 

activation patterns. Specifically, grid cells with overlapping or nonoverlapping spatial fields should 

respectively exhibit positive and negative spiking correlations. 

Spiking correlations represent the sum of all influences on a cell pair’s spiking. One notably strong 

influence on correlations can be the global population rate31. To allow us to isolate coupled spiking of 

units irrespective of their modulation by the population rate, we calculated pairwise couplings by 

fitting a simple Poisson generalized linear model (GLM) to the spike rate of one neuron (see 

methods). The model had two regressors: first the spike rate of the paired neuron, and second the 

population spike rate. We demonstrated with simulated spike trains that the GLM method was able 

to faithfully extract coupling between units where the Pearson correlation became distorted by 

population rate effects (Supplementary Fig. 2a). 

We hence used the model’s coefficient for the coupling between the two cells’ rates, hereafter 

referred to as “”, as our principal correlation metric. We calculated cross-correlations by iteratively 

applying the GLM analysis over a range of time lags between the two neurons’ spike trains. When 

applying the GLM to our single-unit recordings, we observed that units in each neuronal class were 

overwhelmingly positively coupled to the population rate (P < 10-10, z > 6 in all states, binomial sign 

test, n = 138 grid cells, n = 95 HD cells, n = 39 grid-HD cells; Supplementary Fig. 2c). Accordingly, we 

found that the GLM cell-pair couplings were negatively compensated with respect to the 

corresponding Pearson correlation r-values (Supplementary Fig. 2b). 

We then identified pairs of co-recorded grid cells and quantified their phase offsets. We only 

considered pairs of grid cells that were recorded on different tetrodes, to avoid the potential 

confounds of spike sorting errors or missed detection of temporally overlapping spikes. Using a 

previously described method32 (Fig. 2a–c; see methods), we classified co-recorded grid-cell pairs as 
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being from the same module (‘intramodular’, n = 135) or separate modules (‘transmodular’, n = 63). 

For each intramodular grid-cell pair, we calculated G, the magnitude of the grid phase offset vector 

during RUN. We also calculated spike rate cross-correlograms (SRCs) separately for RUN, SWS and 

REM epochs. Both the raw SRC histograms and the GLM SRCs of individual cell pairs were typically 

characterized by a single positive or negative peak close to zero-lag (Fig. 1a, Supplementary Fig. 

3a,b). The polarity and size of the zero-lag peak was generally conserved between states, although 

the SWS peaks were markedly compressed in time relative to RUN and REM. Cell pairs with the 

largest phase offsets showed near mutual exclusivity of spiking at zero-lag (Fig. 1a2).  

To determine how spiking correlations varied as a function of grid phase, we sorted the GLM SRCs by 

G and compared the ranked SRC matrices across states (Fig. 1b2), which revealed a consistent 

negative relationship between G and the value of  at zero-lag (0) during all states (Spearman rank 

r-values RUN -0.79, SWS -0.68, REM -0.67; all P-values < 10-9, n = 135 grid/grid pairs; Fig. 1c). We 

obtained a similar relationship between the zero-lag Pearson spike rate correlations and G 

(Spearman rank r-values RUN -0.77, SWS -0.65, REM -0.65; all P-values < 10-9, n = 135 grid/grid pairs; 

Fig. 1b1, Supplementary Fig. 3d), although there was an absence of strong negative correlations, in 

accordance with the positive bias expected from population coupling effects (Supplementary Fig. 

2a–c). It therefore appears that the spatial tuning relationships of grid cells persist across arousal 

states in the form of temporal spiking correlations. 

We also observed that the grid phase offset value that optimally split positive and negative 

correlations (0-values) was similar during each state (RUN 0.32, SWS 0.33, REM 0.33; 

Supplementary Fig. 4g). These values closely matched the expected value determined by simulating 

the correlation of grid patterns as a function of phase offset (P > 0.05 in all cases, bootstrap, n = 135 

grid/grid pairs; Supplementary Fig. 4g). 

 

Functional independence of modules 
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In contrast to the invariant spatial relationships between the grid cells within the same module, the 

grid patterns of cells from different modules vary independently in scale and orientation23. In terms 

of CAN models, grid modules may exist as distinct attractor networks. In such networks, activity of 

grid cells drawn from separate modules should be only weakly correlated across states, in 

comparison to correlations between cells from the same module. 

We tested this prediction by identifying pairs of grid cells from different modules (Fig. 2a–c). We 

calculated SRCs for all intramodular and transmodular grid-cell pairs, during RUN, SWS and REM. 

Strong positive or negative peaks were generally absent from SRCs of individual transmodular cell 

pairs (Fig. 2d,e). When all GLM SRCs were ranked by the 0-value during RUN, there was a marked 

absence of large peaks or troughs among the transmodular SRCs compared with the intramodular 

SRCs, across all states (Fig. 2f). In confirmation of this observation, the distribution of 0 showed a 

significantly wider spread among the intramodular pair SRCs versus the transmodular SRCs (two-

tailed Ansari-Bradley dispersion test, P < 0.005 during all states, W* < -3 during all states, n = 135 

intramodular grid/grid pairs, n = 63 transmodular grid/grid pairs; Fig. 2g). This result was not 

dependent on the particular threshold chosen for classifying module membership, since we observed 

the same outcome across a wide range of thresholds (Supplementary Fig. 5). 

In summary, we find weaker correlations between transmodular grid cell pairs, consistent with the 

hypothesis that separate grid modules function as distinct attractor systems. 

 

Preservation of conjunctive grid-HD representations during sleep 

The head-direction signal is a necessary precursor to the grid signal in a number of CAN 

models8,18,19,33,34. A recent study demonstrated the integrity of the network HD representation across 

arousal states29, raising the possibility that a CAN mechanism depending on HD input could maintain 

a similar mode of activity during offline periods. 
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Grid-HD cells, which conjunctively express head-directional and grid spatial tuning patterns, are a 

distinct class of cell that represent an interface of the HD and grid signals8,35. As such, they provide an 

opportunity to investigate the correspondence between these two signals across different brain 

states. If grid-HD cells inherit their HD tuning via inputs from pure HD cells, it follows that, during 

sleep, their spiking could remain tightly correlated with coordinated activity of the HD system29. 

We therefore investigated how the directional tuning relationships between grid-HD and pure HD 

cells during RUN related to their spiking correlations across arousal states. We defined the phase 

difference of two HD tuning curves, HD, as the absolute angle between the two tuning curves’ 

centres of mass. Individual HD/grid-HD and HD/HD cell pairs exhibited characteristic SRC shapes, 

consisting of a single positive or negative peak near zero-lag whose valence was preserved across 

states (Fig. 3a). When all cell-pair SRCs were ranked by HD, a state-independent negative 

relationship between HD and 0 was evident, both for HD/HD pairs29 (r < -0.7, P < 0.001 during all 

states, Spearman rank, n = 141 HD/HD pairs for RUN and SWS, n = 138 HD/HD pairs for REM; Fig. 

3b1,c1), as previously reported, and for HD/grid-HD pairs, not reported before (r < -0.7 P < 0.001 

during all states, Spearman rank, n = 91 HD/grid-HD pairs; Fig. 3b2,c2). 

For comparison, we also computed SRCs for grid/HD cell pairs. Since these two cell types are tuned 

with respect to independent domains of physical space (head angle and 2D location, respectively), 

correlated spiking between these two cell types should not be expected during any arousal state. 

Accordingly, we noted an absence of strong zero-lag correlations between these two cell types 

during all states: the cumulative distribution of 0 was more narrowly concentrated around zero for 

grid/HD pairs compared with HD/HD and HD/grid-HD pairs (P < 10-14 during all states, W* < -7 during 

all states, two-tailed Ansari-Bradley dispersion test, n = 360 grid/HD pairs, n = 138 HD/HD pairs, n = 

91 grid-HD/HD pairs; Fig. 3d). We therefore concluded that HD and grid-HD cells' directional tuning 

relationships are strongly preserved across arousal states, while the activity of grid cells is 

uncorrelated with HD cells across states. 
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Next, we examined the positional component of grid-HD cell tuning. Grid-HD cells coexist in modules 

with pure grid cells23; therefore we hypothesized that a fixed correlation structure should also exist 

between these two cell classes. Hence, we investigated the spiking correlations of intramodular 

grid/grid-HD cell pairs (n = 16; Fig. 1a3, Supplementary Fig. 6). The small number of cell pairs 

precluded conclusive analysis, and although we did observe a negative relationship between grid 

phase G
 and zero-lag spiking correlation 0 during all states, this failed to reach significance during 

SWS (Spearman rank, RUN r = -0.61, P = 0.013; SWS r = -0.40; P = 0.129; REM r = -0.60; P = 0.015, n = 

16 grid/grid-HD pairs). We considered that grid/grid-HD correlations may be poorly predicted by G 

because of the additional influence of the HD signal on the spiking of grid-HD cells, which would 

generate more complex temporal spiking relationships. Therefore we instead used the 0-value from 

RUN as a predictor for 0 during SWS and REM (Supplementary Fig. 6c,d). In this case, we found a 

strong correlation between 0 during RUN and 0 during SWS/REM (r = 0.81 for both RUN-SWS and 

RUN-REM; P < 0.001, Spearman rank, n = 16 grid/grid-HD pairs). Thus, while G is insufficient to 

predict grid/grid-HD correlations across states, there is nevertheless a persistence of correlation 

structure across states. 

 

Intra-state stability of correlation structure 

Although we found overall grid, grid-HD and HD spiking correlations to be highly conserved across 

three widely different brain/behaviour states, it is not clear whether these correlations manifest at 

all times, or are restricted to particular time windows. To probe for short-term correlation variability, 

we examined how the spiking correlations between pairs of MEC cells varied over time during SWS 

epochs. We isolated all cell pairs that were recorded during rest sessions containing at least 60 

minutes of SWS (n = 101 intramodular grid/grid and n = 102 HD/HD). For each cell pair, we calculated 

SRCs from spikes within a 2-minute moving window shifted in 1-minute steps (Fig. 4). The shapes of 

time-resolved SRCs showed remarkably little departure from the aggregate SRCs. 
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To quantify the variability of correlations across SWS epochs, we merged the activity from SWS 

epochs together and divided the merged activity into 15-minute blocks, for each of which we 

calculated 0 for each cell pair. To quantify coupling variability, we compared the GLM 0 vaues for 

the first and last 15-minute windows, using the correlation between these two variables as a 

measure of coupling stability. Among grid/grid and HD/HD cell pairs, the 0-values from the two time 

windows were strongly correlated (grid/grid pairs, r= 0.80, P < 10-8, Spearman rank, n = 100; HD/HD 

pairs, r = 0.89, P < 10-8, Spearman rank, n = 97; Fig. 5a), indicating high stability of grid and HD 

correlation structure across SWS. 

A major difference between entorhinal and hippocampal spatial maps is the low dimensionality of 

the former and the high dimensionality of the latter36. Unlike grid cells22–24, head direction cells37–39, 

and border cells12, hippocampal place cells remap between contexts and environments in a manner 

that often generates completely orthogonal maps for very similar environments, even when the 

number of environments compared is extensive40–42. This difference led us to compare the fixed 

activity structure of the MEC network during sleep with activity in hippocampal area CA1. Using a set 

of previously published recordings of CA1 putative pyramidal cells during rest before a linear track 

running session (see methods)43, we applied the same analyses as for the MEC data from the present 

recordings. Due to the large number of cells in some recordings, we selected a maximum of 200 cell 

pairs at random from each recording (n = 6 recordings, n = 934 cell pairs total). In contrast to 

grid/grid and HD/HD cell pairs, CA1/CA1 cell-pair couplings showed weak stability between the first 

and fourth 15-minute SWS blocks (r = 0.49, P < 10-10, Spearman rank, n = 934 CA1/CA1 pairs; Fig. 5a), 

indicating more variable CA1 pyramidal correlations during SWS (P < 0.001 compared with grid/grid 

and HD/HD correlations, bootstrap, n = 100 grid/grid pairs, n = 97 HD/HD pairs, n = 934 CA1/CA1 

pairs). Indeed, there was not a single recording in which the CA1 correlation stability reached that of 

HD or grid cells (highest r-value 0.63; Supplementary Fig. 7c). The lower stability of CA1/CA1 pair 

correlations was preserved when all units’ spike rates were subsampled to 0.2 Hz, in comparison to 

both grid/grid pairs and HD/HD pairs (bootstrap, n = 934 CA1/CA1 pairs, 100 grid/grid pairs, 97 
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HD/HD pairs), ruling out differences in mean spike rate as a possible cause. Furthermore, the effect 

was robust across a wide range of rate smoothing kernel widths (Supplementary Fig. 7b). 

To examine grid-cell correlation stability at a wider network level, we examined the ensemble activity 

of 8 concurrently recorded grid cells from a single module (Fig. 5b1). We divided the recording into 

nonoverlapping 5-minute time windows, and within each window created a vector comprising the 

set of 0-values for all cell-pair combinations within the ensemble (Fig. 5b2–3). From these 0-value 

vectors, we generated a matrix of metacorrelations by correlating the 0-value vectors at every pair 

of time points (Fig. 5b6). This metacorrelation matrix was predominated by strongly positive r-values, 

indicating a global preservation of the spiking correlation structure among the 8 grid cells, measured 

at the network level. We also performed this analysis on an ensemble of 50 CA1 pyramidal cells (Fig. 

5c). The metacorrelation matrix was predominated by much smaller positive values, indicating less 

global stability of correlation structure. 

In summary, we found that grid and HD correlations show similarly strong intra-state stability, while 

CA1 pyramidal correlations are comparatively dynamic. 

 

Effect of hippocampal sharp-wave-ripple activity on correlations 

The CA1 region of hippocampus provides a major input to to the deep layers of MEC444245–47, and 

synchronous population events generated in hippocampus known as sharp-wave-ripples (CA1-SWR) 

have been shown to shortly precede activation of deep-layer MEC neurons48,49. To investigate the 

possibility that correlated spiking between grid cells could be due to selective coactivation by CA1-

SWR, we examined the relationship between pairwise spiking correlations and CA1-SWR activity. 

CA1-SWRs have been shown to induce sharp-wave deflections in MEC (MEC-SW)49,50. We identified 

MEC-SW which were correspondent with CA1-SWR events (2 rats; Fig. 6a–c). Higher-amplitude CA1-

SWR events were associated with higher-amplitude MEC-SW events (Fig. 6c). For each single unit, we 
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calculated its average spike rate in a ±0.25 s window around MEC-SW. In each class of units, a large 

proportion of cells showed strong rate modulation by MEC-SW occurrence, with peak rates typically 

falling within 20 ms of the MEC-SW (latency of peak in mean perievent rate: grid +3 ms, HD -12 ms, 

grid-HD -7 ms; n = 95 HD cells, 134 grid cells, 39 grid-HD cells; Fig. 6d,e). 

Having observed that all cell types showed substantial spike rate modulation by MEC-SW, we went 

on to examine how MEC-SW impacted pairwise spiking correlations. For each HD/HD and grid/grid 

cell pair, we calculated spike rate correlations iteratively across a ±0.25 s window around MEC-SW 

(Fig. 6f). Due to the limited number of MEC-SWs available, which resulted in unreliable fitting for the 

GLM, we reverted to using the conventional Pearson correlation coefficient as the correlation metric 

(rRATE). To quantify the impact of MEC-SW on pairwise spike rate correlations, we defined a ±25 ms 

window around the sharp-wave peak which encompassed the times when all cell types reached their 

peak mean rates (Fig. 6e). For both HD/HD and grid/grid cell pairs, rRATE appeared unperturbed by 

MEC-SW (Fig. 6f), and was similar between MEC-SW and non-MEC-SW periods (HD/HD pairs r = 0.68, 

Spearman rank, n = 141; grid/grid pairs r = 0.54, Spearman rank, n = 130; Fig. 6f,g), despite the large 

effects on single unit spike rates (Fig. 6d,e). For both grid/grid and HD/HD pairs, spatial phase offsets 

were similarly correlated with spike rate correlations during (IN) and outside (OUT) MEC-SW periods 

(HD/HD pairs IN: r = -0.580, P < 10-10, OUT: r = -0.676, P < 10-10, Spearman rank, n = 141; grid/grid 

pairs IN: r = -0.390, P < 10-5, OUT: r = -0.594, P < 10-10, Spearman rank, n = 130; no difference between 

IN/OUT r-values for both HD/HD and grid/grid pairs, P > 0.05, bootstrap, n = 141 HD/HD pairs and 

130 grid/grid pairs; Fig. 6f). In conclusion, the HD- and grid-cell correlations described in the present 

study appear to persist irrespective of the occurrence of MEC-SWRs. 

  

Temporal dynamics of latent states 

Spike rate cross-correlations contain information about the temporal dynamics of the signals that 

influence the cells’ spiking29,51,52. Since our observations of preserved correlation structure are 
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consistent with grid module networks containing a covert grid representation during sleep, we 

reasoned that we should be able to infer the dynamics of such a signal by using a generative model 

to reconstruct spiking cross-correlations29. Such a reconstruction would show whether a covert grid 

pattern would generate a structure of pairwise cross-correlations similar to the one observed in our 

sleep data. 

Adapting an approach previously applied to HD cells29, we modelled the covert grid signal as a 2-

dimensional random-walk process (see methods; Fig. 7a). For each pair of intramodular grid cells, we 

simulated the cells' spike rates in response to the random walk, and generated SRCs from the 

simulated spike rates (Fig. 7b). We iteratively simulated SRCs using a wide range of random walk drift 

rates, and determined which speed yielded the closest fit to the original SRCs from both RUN and 

SWS. The best-fit model SRCs closely approximated the shape of the original SRCs (Fig. 7b,c). The 

median best-fit drift rate markedly increased from 1.69 cycles s-1 (where one cycle corresponds to 

the grid spacing) during RUN to 8.40 cycles s-1 during SWS (P < 10-13, sign-rank test, n = 85 grid/grid 

pairs), with the best-fit drift rates during SWS being a median of 4.98 times higher than during RUN 

(Fig. 7g,h). 

During wakeful navigation, each grid module represents an animal's location in its environment using 

a grid pattern with a single spacing23. When the animal moves at a particular speed, grid signals 

encoded in larger-scale modules must show a slower temporal rate of change than grid signals 

encoded by smaller-scale modules; thus there is a direct relationship between spatial and temporal 

scales of grid cell activity. It is not clear whether a scale relationship exists between grid modules 

during sleep, so we addressed this question by comparing the grid spacing of grid/grid cell pairs with 

their best-fit random walk drift rate. During RUN, as expected, drift rate was negatively correlated 

with grid spacing (r = -0.449, P = 2.19 x 10-6, Spearman rank, n = 102 grid/grid pairs; Fig. 7i). In 

contrast, we observed no such relationship during SWS (r = 0.0684, P = 0.499, Spearman rank, n = 
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100 grid/grid pairs), suggesting that there is no temporal scale relationship between modules during 

SWS. 

So that we could compare the temporal dynamics of the grid and HD representations during SWS, we 

also applied the above analysis to pairs of HD cells by modelling the covert HD signal as a 1-

dimensional circular random walk process (Fig. 7d). As with grid cell pairs, we found that random 

walks yielded good fits to the observed HD/HD SRCs (Fig. 7e,f). During both RUN and SWS, the 

estimated drift rates of HD/HD cell pairs were substantially lower than grid/grid pairs (median drift 

rates RUN 0.599 cycles s-1, SWS 2.42 cycles s-1, where 1 cycle corresponds to a full 360° rotation; 

comparisons with grid drift rates P  < 10-26, rank-sum test, n = 85 grid/grid pairs, 66 HD/HD pairs, z > 

10). The median SWS:RUN acceleration factor of 3.90 was similar to that of grid/grid cell pairs (P = 

0.107, rank-sum test, n = 85 grid/grid pairs, n = 66 HD/HD pairs, z = 1.61; Fig. 7h), indicating a parallel 

change in temporal dynamics of the grid and HD systems between alert wakefulness and SWS.  
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Discussion 

We have shown that spatial tuning relationships between grid cells are upheld across brain states in 

the form of a rigid temporal spiking correlation structure. The preserved network states extended to 

conjunctive grid-HD cells, suggesting that the functional relationship between the HD and grid 

networks is also fixed. The highly constrained activity that these correlations signify is a signature of 

continuous attractor network dynamics, and therefore lends support to hypotheses of grid formation 

based on such mechanisms. 

 

Persistent constraints on grid cell activity 

We demonstrated that the spatial tuning relationships between pairs of grid cells during open-field 

navigation are accompanied by spiking correlations which remain fixed between arousal states. 

Furthermore, the pairwise correlations between grid cells varied little within SWS, in stark contrast to 

CA1 pyramidal cell correlations, which were highly dynamic. The correlations in MEC were notably 

strong, considering the short timescale on which they were measured and the low mean spike rate of 

the cells53, which points to forceful constraints on coordinated activity. Although our observations 

were principally based on pairwise correlations rather than large-scale ensemble activity, it is difficult 

to conceive how a strong pairwise correlation structure could exist in the absence of coordination at 

the population level. Therefore, the most parsimonious interpretation of the persistent pairwise 

correlation structure between grid, grid-HD and HD cells is that these networks behave according to 

low-dimensional intrinsic manifolds that result from selective, fixed synaptic connectivity. 

Previous attempts to examine correlation structure in the grid-cell network have relied on analyses 

that subtracted inferred signal components from correlations in order to measure the residual noise 

correlations32,54. In these studies, particular assumptions had to be made about the nature of signal 

correlations, and therefore it is possible that signal correlations were not fully accounted for. We 

circumvented the issue of separating signal and noise correlations by focussing on a state during 
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which spatial signals are absent. Our observations are reminiscent of the recent discovery that HD 

network activity remains constrained on a 1-dimensional circular manifold across all states29. In that 

study as well as our own, cells’ spatial tuning relationships were tightly linked to invariant temporal 

spiking correlations across arousal states. It was demonstrated in the previous study that during SWS 

and REM, HD network activity coherently represented a covert HD signal that drifted continuously 

and independently of the animal’s actual head direction. It is plausible that a similar covert grid signal 

exists during sleep. Due to the additional dimension represented in the grid signal, precise decoding 

requires many more cells than is required to decode the HD signal, and more than was available in 

the present work. Yet we demonstrated through modelling that random-walk dynamics of a covert 

grid signal were sufficient to replicate grid cells' spiking cross-correlation patterns during wake and 

SWS. 

Conjunctive grid-HD cells, which are abundant in layer 3 of MEC35, provide a valuable opportunity to 

determine the relationship between HD and grid representations. Remarkably, we found that the 

conjunctive nature of these cells was maintained during sleep: they demonstrated spiking 

correlations with pure HD cells as prescribed by their HD phase offset, while the shape of their 

spiking correlations with grid cells was also maintained across states. As such, our findings are 

consistent with conjunctive grid-HD cells functioning as an interface between covert HD and grid 

signals during sleep, in a fashion which would parallel their activity during navigational behaviour8. 

During SWS, we observed a 4–5-fold acceleration of grid and HD correlation temporal dynamics. This 

is consistent with prior accounts of activity in other forebrain regions, which generally point to an 

acceleration of neural dynamics during SWS 29,51,52,55. REM correlations, conversely, showed a 

temporal scale that was similar to RUN, reinforcing the notion that REM mimics the general dynamics 

of wakefulness in the entorhinal-hippocampal and HD systems 29,56,57. 

 

Relationship to continuous attractor network models 
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A number of theoretical models for grid pattern formation are based on continuous attractor 

network mechanisms 8,18,19,33,58. A universal feature of CAN models is that selective recurrent synaptic 

connectivity forms the basis for the spatial phase offsets between grid cells: grid cells with the 

strongest net excitatory connectivity have the smallest spatial phase offsets. Therefore, an important 

prediction of CAN models is that functional connectivity should exist between grid cells as a function 

of their spatial phase offset, irrespective of the network’s mode of activity. In support of these 

predictions, previous work has demonstrated fixed spatial relationships between the receptive fields 

of grid cells within a module 22–24. The present study adds to those observations by revealing that 

constraints on grid cell spiking relationships span not only different spatial environments, but also 

different brain states. This observation is difficult to explain in terms other than a fixed synaptic basis 

for grid-cell phase offsets, which underlies all CAN models of grid cells. Our study also showed that 

grid modules act independently during sleep, with similar temporal dynamics irrespective of the 

spatial scale of the modules. This is in accordance with the hypothesis that grid modules exist as 

distinct attractor networks, a necessary requirement of all CAN models for grid cells8,20.  

The mechanisms of CAN models vary widely, however, and a natural further question is whether our 

present findings specifically lend support to any subset of CAN models. One salient aspect of our 

findings is the relationship between the HD and grid signals. In some CAN grid models, the HD signal 

is a crucial input which, together with a signal encoding the animal’s speed 59,60, is used to translate 

the grid pattern in correspondence with the animal’s movement 8,18,19,33,58 . Conjunctive grid-HD 

representations may emerge as intermediate steps in the computation of the “pure” grid signal8. Our 

findings suggest that an interface between the HD and grid signals remains during sleep, since grid-

HD cells retained their correlations with both pure grid and HD cells. This would be consistent with a 

path-integrating CAN model in which the HD signal is an essential precursor. It should be added, 

however, that our observations do not directly rule out alternative mechanisms, such as feedforward 

Hebbian self-organization mechanisms61, as long as the fixed activity structure of the MEC networks 

is formed prior to experience, during early development of the nervous system62. However, in their 
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native form, these alternative models predict neither the independent operation of the grid modules 

nor the coherence of grid cells and grid-HD cells. 

 

Functional implications 

While the present results are predicted by CAN grid models, the functional role that a grid-like 

network representation might serve during sleep, if any, is not clear. One possible mode of activity of 

the offline grid signal could be to “replay” patterns of neuronal activity that were previously 

established during spatial navigation63. Replay has been studied in detail in the hippocampus, where, 

during restful periods, place cells reactivate in brief and rapid sequences that follow the same 

temporal order that they were activated in a particular locomotive trajectory 51,55,64,65. More recently, 

it has been reported that hippocampal replay is accompanied by synchronized reactivations of 

homologous trajectories in grid cells in deep layers of MEC 48. It has additionally been claimed that 

superficial MEC cell ensembles, including grid and non-grid cells, can generate sequences that 

represent navigational trajectories, independently of hippocampal activity 30. However, whether 

sequence replay takes place in MEC ensembles remains to be determined, as concerns have been 

raised over the methodological complications of detecting replay in grid cell populations 66,67. 

Furthermore, we observed a loss of module scale relationships during SWS, which is incompatible 

with coordinated replay across modules. 

In the present study, we do not directly address the phenomenon of replay but the findings have 

implications for the interpretation of replay-like activity in MEC. Our study shows that continuous 

attractor dynamics provide a good description of coordinated grid-cell activity across different 

arousal states. The constrained nature of the grid-cell network contrasts starkly with the 

hippocampal place cell network, whose correlation structure is highly dynamic by comparison, 

undergoing orthogonalization across different contexts 40–42,68, and showing comparatively low 

stablility of spiking correlations during SWS in the present results. This fundamental difference 
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between the grid- and place-cell networks has important methodological implications for detecting 

replay. Assessing the significance of sequential spiking events typically involves randomly shuffling 

neuronal activity to generate a null distribution of sequences that would be expected to occur by 

chance 56,65,69. In the hippocampus, shuffling methods that independently permute activity between 

place cells may generate a valid null distribution, since the randomized sequences may all be equally 

permissible during stochastic behaviour of the hippocampal network. However, in the grid cell 

network, the same shuffling methods would overwhelmingly generate “off-manifold” population 

states that would violate the network's low-dimensional constraints, and therefore would not 

constitute a valid null hypothesis. Because employing such shuffling methods would inevitably favour 

the detection of false-positive replay events, we cannot exclude that prior observations of grid-cell 

replay that relied on cell-independent shuffling methods reflect purely stochastic network processes. 

It will be vital for future studies of replay in MEC to employ statistical approaches that respect the 

low-dimensional constraints on grid-cell population activity. 
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Methods 
 

Subjects 

Data were collected from 7 male Long Evans rats, which were experimentally naive and 3–5 months 

old (350–600 g) at the time of implantation. The rats were group-housed with 3–8 of their male 

littermates prior to surgery, and were singly housed in large Plexiglas cages (45 x 44 x 30 cm) 

thereafter. The rats were kept on a 12 hr light/12 hr dark schedule, and humidity and temperature 

were strictly controlled. The experiments were performed in accordance with the Norwegian Animal 

Welfare Act and the European Convention for the Protection of Vertebrate Animals used for 

Experimental and Other Scientific Purposes. 

 

Electrode Implantation and Surgery 

Tetrodes were constructed from four twisted 17 μm polyimide-coated platinum-iridium (90%/10%) 

wires (California Fine Wire). The electrode tips were plated with platinum to reduce electrode 

impedances to between 120–300 kΩ at 1 kHz. 

Anaesthesia was induced by placing the animal in a closed plexiglas box filled with 5% isoflurane 

vapour. Subsequently, the animal received a subcutaneous injection of buprenorphine (0.03 mg kg-1), 

atropine (0.05 mg kg-1) and meloxicam (1.0 mg kg-1), and was mounted on a stereotactic frame. The 

animal’s body rested on a heat blanket to maintain its core body temperature during the surgical 

procedure. Anaesthesia was maintained with isoflurane, with air flow at 1.0 litres/minute and 

isoflurane concentration 0.75–3% as determined according to breathing patterns and reflex 

responses. 

The scalp midline was subcutaneously injected with the local anaesthetic lidocaine (0.5%) prior to 

incision. After removal of the periost, holes were drilled vertically in the skull, into which screws 
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(M1.4) were inserted. Two screws positioned over the cerebellum were used as the electrical ground. 

Craniotomies were drilled anterior to the transverse sinus. Subsequently, the animal was implanted 

with either a hyperdrive containing 14 independently moveable tetrodes (six animals), or two 

microdrives, each containing a single bundle of 4 tetrodes (one per hemisphere; one animal). 

Hyperdrive implants were always on the left side. Hyperdrive tetrodes were implanted between 3.75 

and 5.0 mm ML, with the posterior edge of the bundle located 0.1–0.2 mm anterior to the edge of 

the transverse sinus. Each tetrode was immediately advanced by 960–1280 µm. Microdrive tetrodes 

were inserted at 4.5 mm ML, 0.1–0.15 mm anterior to the transverse sinus edge at an angle of 20 

degrees from vertical in the saggital plane. The tetrodes were immediately inserted to a depth of 

1800 µm. Two animals with hyperdrive implants were also implanted with a single-wire LFP electrode 

in hippocampus CA1 (-4.0 mm AP, 3.2 mm ML, 2.2–2.4 mm ventral to brain surface). Implants were 

secured with dental cement (Meliodent). 8–12 hours after the beginning of the surgery, the animal 

was treated with an additional dose of buprenorphine (0.03 mg kg-1). 

 

Recording procedures 

Over the course of 1–3 weeks, tetrodes were lowered in steps of 320 µm or less, until high-amplitude 

theta-modulated activity appeared in the local field potential at a depth of approximately 2.0 mm. In 

hyperdrive experiments, two of the tetrodes were used to record a reference signal from white 

matter areas. The drive was connected to a multichannel, impedance matching, unity gain 

headstage. The output of the headstage was conducted via a lightweight multiwire tether cable and 

through a slip-ring commutator to a Neuralynx data acquisition system (Neuralynx, Tucson, AZ; 

Neuralynx Digital Lynx SX, for all hyperdrive-implanted animals), or via a counterbalanced lightweight 

multiwire cable to an Axona acquisition system (Axona Ltd., Herts, U.K., for the one microdrive-

implanted animal). Both cables allowed the animal to move freely within the available space. Unit 

activity was amplified by a factor of 3000–5000 and band-pass-filtered 600–6000 Hz (Neuralynx) or 
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from 800 –6700 Hz (Axona). Spike waveforms above a threshold set by the experimenter (50-80 μV) 

were time-stamped and digitized at 32 kHz (Neuralynx) or 48 kHz (Axona) for 1 ms. Local field 

potential (LFP) signals, 1 per tetrode for the hyperdrives and 1 in total per Axona microdrive, were 

amplified by a factor of 1000 and recorded continuously between 0 and 475 Hz at a sampling rate of 

1893 Hz or 2000 Hz. In some Neuralynx recordings, the raw signals were also recorded (32 kHz). The 

LFP channels were recorded referenced to the ground screw positioned above the animal’s 

cerebellum (Neuralynx), or against an electrode from one microdrive tetrode (Axona). Light-emitting 

diodes (LEDs) on the headstage were used to track the animal's movements at a sampling rate of 25 

Hz (Neuralynx) or 50 Hz (Axona). 

 

Behavioural procedures 

The rats were food-restricted, maintaining their weight at a minimum of 90% of their free-feeding 

body weight, and were food deprived 12–18 hr before each training or recording session. During the 

2–3 weeks between surgery and testing, the animals were trained to forage in an open field arena. 

The arena was a 150 x 150 cm square box with a black floor mat and 50 cm-high black walls, into 

which vanilla or chocolate biscuit crumbs were randomly scattered. Curtains were not used and 

abundant visual cues were available to the foraging rat. The animals were also habituated to a small 

sleep chamber, which was a 35 (l) x 40 (w) x 70 (h) cm plexiglas box with towels lining the floor and 

walls. This chamber was placed at the center of the larger open field arena, but due to the height and 

opacity of the sleep chamber’s walls, the animal was not able to see external cues. Between sessions 

in the open field and sleep chamber, the rat was placed next to the arena on an elevated flower pot 

lined with towels. 

Each recording contained one or two open field foraging sessions and one or two sleep box sessions, 

with a combined duration of 20–95 minutes (median 43 minutes) for open field sessions and 55–360 

minutes (median 97 minutes) for sleep box sessions. The open field arena floor was cleaned prior to 
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beginning each recording. Data from multiple sessions of the same type was concatenated for 

analysis purposes. In some recordings, the animal also ran on a linear or circular track; the data from 

these sessions was not used in the present study. Intervals between successive sessions in a 

recording were of the minimum duration necessary to set up equipment for the following session 

(median 6 minutes). Recordings were generally performed during the dark and early-light phase of 

the 12h/12h light cycle. 

 

Spike sorting and single unit selection 

Spike sorting was performed offline using a either manual or semiautomatic methods. MClust (A.D. 

Redish, http://redishlab.neuroscience.umn.edu/MClust/MClust.html) was used for manual sorting; 

semiautomatic sorting was done with KlustaKwik (K.D. Harris) followed by manual curation in MClust, 

or with Kilosort70 (https://github.com/cortex-lab/KiloSort) followed by manual curation in Phy (C. 

Rossant, https://github.com/kwikteam/phy). Spike rate autocorrelation and crosscorelation were 

used as additional tools for separating or merging spike clusters. 

Single units were discarded if more than 0.5% of their interspike interval distribution was comprised 

of intervals less than 2 ms. Additionally, units were excluded if they had a mean spike rate of less 

than 0.5 Hz or greater than 10 Hz in either the sleep box or open field sessions. 

 

Spatial tuning curves 

Animal position was estimated by tracking the LEDs on the headstage connected to the drive. Only 

time epochs where the animal was moving at a speed above 2 cm s-1 were used for spatial analyses. 

To generate 2D rate maps for the open field arena, position estimates were binned into a 4 x 4 cm 

square grid. The spike rate in each position bin was calculated as the number of spikes recorded in 
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the bin, divided by the time the animal spent in the bin. The resultant 2D rate map was smoothed 

with a gaussian kernel with σ = 1.5 bins. 

The animal’s head direction was determined from the relative positions of LEDs on the headstage. 

Head-direction tuning curves were calculated by binning the head-direction estimates into 6-degree 

bins. The spike rate in each angular bin was calculated as the number of spikes recorded in the bin, 

divided by the time the animal spent in the bin. The resultant tuning curve was smoothed with a 

gaussian kernel with σ = 1 bin, with the ends of the tuning curve wrapped together. 

 

Identification and selection of grid cells 

For all units, autocorrelations of the open field rate maps were generated as described previously9. 

From the autocorrelogram, a gridness score was calculated to quantify periodicity in the rate map. 

We modified a previously described method23, in order to improve its ability to detect strongly 

elliptical grid patterns. 

Similar to previous methods, the algorithm iteratively defined an expanding annulus centred on the 

autocorrelogram’s origin. The annulus’ outer radius began at twice the radius of the central peak, 

and increased up to the width of the autocorrelogram. The annulus’ inner radius was always 80% of 

its outer radius. To define coordinates for sampling the autocorrelogram, lines were created 

radiating outward from the origin at equal angular intervals. For each line, the mean value of the 

autocorrelogram in the segment bounded by the annulus was calculated, yielding a circular “slice” of 

radial autocorrelogram samples. 

To account for elliptical distortions of the grid pattern, we linearly transformed the annulus’ 

coordinates such that its bounding circles became elliptical. Specifically, the transformation mapped 

the coordinates of a unit circle onto the coordinates of an ellipse with orientation 𝜃, semimajor axis 

𝑎 and semiminor axis 𝑏: 
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[
𝑥′

𝑦′] = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑎 cos 𝜃 𝑎 sin 𝜃

−𝑏 sin 𝜃 𝑏 cos 𝜃
] [

𝑥
𝑦] 

where the column vector [
𝑥
𝑦] denotes a coordinate pair and [

𝑥′

𝑦′] denotes the transformed coordinate 

pair. We iteratively adjusted the ellipse parameters and sampled the autocorrelogram at the 

transformed coordinates, thus accounting for many possible elliptical distortions of the 

autocorrelogram spanning the full 360° range of ellipse rotations and a range of eccentricities. 

To compensate for the additional degrees of freedom introduced by the ellipse parameters, it was 

necessary to define more stringent criteria for identifying grid patterns in order to avoid detection of 

false-positives. Since grid patterns are characterized by both rotational and concentric periodicity, we 

defined two separate gridness scores: first, a “rotational” score was used to identify rotational 

symmetry (this has been the basis of previous gridness scores9,54), and second a “concentric” score 

which was used to identify concentric periodicity. 

To calculate the rotational score, each elliptical slice of the autocorrelogram was compared with 

shifted versions of itself, corresponding to 30° rotations of the original circle. This was performed 

using unnormalized circular autocorrelation 𝑅𝑦𝑦, defined by: 

𝑅𝑦𝑦(𝜏) = ∑ 𝑦(𝑖) ∙ 𝑦( ((𝑖 − 𝜏 − 1) 𝑚𝑜𝑑 𝑁) + 1 )

𝑁

𝑖=1

 

where 𝑦 is the elliptical autocorrelogram slice, 𝜏 is the lag and 𝑁 is the number of elements in the 

slice. The modulo operator wraps the ends of the slice together. According to the six-fold rotational 

symmetry of a grid pattern, the rotations were grouped as “in-phase” (60° and 120°) and “out-of-

phase” (30°, 90° and 150°). The rotational gridness score was defined as the mean in-phase 

autocorrelation minus the mean out-of-phase autocorrelation. 

The concentric gridness score was based on the principle that the autocorrelogram of a grid cell 

shows concentric periodicity, with maxima at each ring of peaks. To quantify this property, a second 

“inner” elliptical annulus was defined, having half the scale of the main “outer” elliptical annulus, and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/198499doi: bioRxiv preprint 

https://doi.org/10.1101/198499
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

the same orientation. In the event of the outer elliptical annulus falling exactly over the inner ring of 

peaks in the autocorrelation, the inner elliptical annulus would fall along the valley between the 

central peak and the inner ring of peaks. The concentric gridness score was defined as the mean 

value of the autocorrelogram within the outer elliptical annulus, minus the mean value within the 

inner elliptical annulus. 

The gridness scores for a cell were determined by finding the elliptical annulus that maximized the 

rotational gridness score. The same elliptical annulus was then used to determine the concentric 

gridness score. To establish a significance value, the scores were recalculated for shuffled 

experimental data. For each single unit, its spike train was time-shifted by a random amount of 

minimum 20 s and maximum 20 s less than the session’s duration, wrapping the end of the session to 

the beginning. 2D rate maps and autocorrelograms were generated from the shuffled data, and the 

rotational and concentric gridness scores were recalculated as described above. This process was 

repeated 1000 times for each unit, yielding a distribution of both rotational and concentric gridness 

scores. The shuffled rotational and concentric scores were individually z-score-normalized and then 

added together to yield a “combined” gridness score. The combined gridness score was then 

calculated for the original data, by applying the same transformation to its rotational and concentric 

scores as was applied to the shuffled data. Finally, the percentile of the cell’s combined gridness 

score was calculated with respect to the distribution of shuffled combined gridness scores. The unit 

was classified as a grid cell if its score exceeded the 99th percentile of the shuffled distribution. 

To ensure that phase relationships between grid cells could be reliably measured, additional 

constraints were applied to select grid cells for subsequent analysis. To select only cells with refined, 

regular grid patterns, cells were discarded if six inner autocorrelation peaks could not be identified 

within a small distance of the ellipse at which the optimal gridness score was evaluated, or if their 

open field rate map had a sparsity value greater than 0.5, where sparsity s is defined as: 
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𝑠 ≝
( ∑ (𝑓(𝑥𝑖) ∙ 𝑃(𝑥𝑖)) 𝑁

𝑖=1 )
2

∑ ( 𝑓(𝑥𝑖)2 ∙ 𝑃(𝑥𝑖) )𝑁
𝑖=1

 

where 𝑥𝑖 is the ith position bin, 𝑓(𝑥𝑖) is the firing rate of the cell when the animal is located in the ith 

position bin, and 𝑃(𝑥𝑖) is the probability of the animal being located in the ith position bin. 

Cells were also discarded if their grid spacing (defined as the mean distance of the six inner peaks 

from the origin) was greater than 1.4 metres. 

 

Grid module classification 

According to a previously described method32, grid-cell module membership was classified on a 

pairwise basis: each cell pair was either defined as intramodular (both cells from the same module) 

or transmodular (cells from different modules). Briefly, an ellipse was fitted to the inner ring of peaks 

of each cell’s open-field rate map autocorrelogram (Fig. 2a). The area of the intersection I and union 

U of the two ellipses was calculated (Fig. 2b). The I/U ratio provided the module classification metric: 

cell pairs with a I/U ratio of 0.75 or greater were classified as intramodular, while cell pairs with a 

lower I/U ratio were classified as transmodular. While the method’s original description used a lower 

threshold (0.6), we found that almost all thresholds between 0.5 and 0.8 yielded significantly 

different distributions for intramodule and transmodule grid-cell pair correlations (Supplementary 

Fig. 5a). 

 

Grid phase offset measurement 

Intramodular grid-cell phase (G) was quantified using a previously described method that improves 

the robustness of phase measurements to elliptical distortions of the grid pattern32. Briefly, the 

cross-correlogram of the two cells’ open-field rate maps was calculated, and the nearest peak to the 

origin was identified. An autocorrelogram was then generated from the cross-correlogram, and its 
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inner Voronoi cell was used to define the boundary of the phase tile. G was defined as the distance 

from the origin to the innermost peak, divided by the distance to the phase tile edge that was closest 

to the innermost peak. 

 

Identification of head-direction cells 

For each cell’s head-direction (HD) tuning curve, its concentration parameter к was estimated, and 

Rayleigh test for circular nonuniformity was performed. The cell was classified as a HD cell if the 

value of к exceeded 1.0 and the Rayeigh P-value was less that 0.001. Cells that passed both the HD 

and grid criteria were classified as conjunctive grid-HD cells. 

 

Exclusion of duplicate recordings 

Since the single unit recordings took place over successive days, with tetrodes being moved in small 

increments, many neurons may have been recorded on more than one occasion. Countermeasures 

were taken to minimize the probability of including duplicate recordings of the same cells or cell 

pairs. The positions of tetrodes were monitored across recordings, such that it was possible to 

localize where each unit was recorded. It has been reported that the majority of separable units in 

extracellular recordings are recorded within 50 µm of the soma71,72; therefore we classified units 

recorded within 50 µm of each other on the same tetrode as being potential duplicates. 

Since the spatial firing patterns of grid and HD cells are highly stable across days, it was possible to 

use these characteristics to rule out many possible duplicate unit recordings. For grid cells and grid-

HD cells, units recorded within 50 µm were compared by calculating the Pearson correlation 

coefficient of their open field rate maps. Cell comparisons with r-values below 0.5 were ruled out as 

duplicates. Similarly, for HD cells, possible duplicate recorded cells were ruled out if the Pearson 

correlation coefficient of their HD tuning curves was below 0.5. 
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For single and pairwise unit analyses, all units or unit pairs were judged to be unique according to the 

above criteria. 

 

Classification of sleep states 

Periods of sleep were identified from when the animal was continuously immobile (speed < 1 cm s-1) 

for at least 120 s. To discriminate between slow-wave-sleep (SWS) and rapid-eye-movement (REM) 

sleep, the ratio between rhythmic activity in the theta (θ, 5–10 Hz) and delta (δ, 1–4 Hz) bands in the 

MEC LFP was used. The instantaneous amplitude in each frequency band was determined by 

calculating the absolute value of the Hilbert transform of the band-pass-filtered LFP. The 

instantaneous amplitude was smoothed with a gaussian kernel with σ = 5 s. Periods of sleep in which 

the value of θ/δ remained above 2.0 for at least 20 seconds were classified as REM; remaining sleep 

periods were classified as SWS. 

 

Analysis of pairwise spike rate coupling 

Spike rates were calculated by binning spike times at a resolution of 10 ms and smoothing the 

resultant spike count vector with a Gaussian kernel with σ = 10 ms for SWS and σ = 150 ms for RUN 

and REM. The population rate was calculated by binning unsorted MEC multiunit activity at a 

resolution of 10 ms and smoothing with a Gaussian kernel with σ = 30 ms. 

Two approaches were used for quantifying coupled spiking of cell pairs: the Pearson correlation 

coefficient, and a generalized linear model (GLM). 

The Pearson method simply correlated the spike rate vectors of the two cells and used the resultant 

r-value as the metric for coupled spiking. Cross-correlations were calculated by iteratively lagging one 

of the spike rate vectors relative to the other.  
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The GLM framework is an established means for quantifying the contributions of multiple factors 

that may influence the spiking of a cell 54,73,74. We implemented a GLM to calculate the functional 

coupling between the spike rates of two cells A and B, while discounting common coupling to the 

global population spike rate, which is known to strongly influence pairwise spiking correlations31. The 

spike rate of cell A was modelled as an inhomogeneous Poisson process, as a function of both the 

spike rate of cell B and the population spike rate, using a log link function. MATLAB function “glmfit” 

was used to fit the model. To compensate for differences in the distributions of spike rates for single 

units and MUA spike trains, both regressors were z-score-normalized prior to fitting the model. The 

fitted model yielded a coefficient for the coupling between the spike rates of cells A and B (here 

referred to as ), as well as a coefficient for the coupling of cell A to the population spike rate (here 

referred to as POP). As an analog to conventional cross-correlation, the GLM spike rate cross-

correlation (SRC) was defined, for a given time lag τ, as the -value yielded by fitting the GLM after 

adding τ to the spike times of cell A. 

 

Random-walk modelling of grid and HD spiking correlations 

We refer a previously employed rationale29, that for two cells whose spiking is tuned to a variable 𝑥 

expressing random-walk dynamics (such as an animal’s head direction or position), the temporal 

spike rate cross-correlogram (SRC) of the two cells is determined by the velocity distribution of 𝑥. 

Suppose that the spike rates of two neurons are tuned to one-dimensional random-walk process 𝑥 

with tuning curves 𝑓1(𝑥) and 𝑓2(𝑥), giving rise to spike trains with rates 𝑠1(𝑡) and 𝑠2(𝑡), where 𝑡 

represents time. 

The unnormalized cross-correlation between the spike rates of two neurons 𝑅𝑠1𝑠2
 is defined by: 

𝑅𝑠1𝑠2
(𝜏) ≝ ∑ 𝑠1(𝑡)𝑠2(𝑡 + 𝜏)

∞

𝑡=0
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where τ is the time lag. If 𝑣 represents the velocity of 𝑥, then at a particular time lag 𝜏, the value of 𝑥 

changes by amount 𝑣𝜏. Therefore, for a particular value of 𝑣, the SRC can be approximated by the 

correlation of the two neurons’ tuning curves, offset by 𝑣𝜏: 

𝑅𝑠1𝑠2
(𝜏, 𝑣) ≈ ∑ 𝑓1(𝑖)𝑓2(𝑖 + 𝜏𝑣)

𝑁

𝑖=0

 

where 𝑁 is the number of bins in the tuning curve and 𝑖 is the tuning curve bin index. If we assume 

that 𝑣 is a random variable with a known distribution, a more general approximation can be obtained 

by averaging across all possible velocities, indicated here by 〈∙〉𝑣. 

𝑅𝑠1𝑠2
(𝜏) ≈ 〈∑ 𝑓1(𝑖)𝑓2(𝑖 + 𝜏𝑣)

𝑁

𝑖=0

〉𝑣 

Thus, the distribution of 𝑣 determines the temporal scaling of the cross-correlation of 𝑠1 and 𝑠2. 

To estimate the average speed of the grid position variable underlying grid-cell SRCs, we modelled 

the variable as a 2-dimensional random walk process with a specified mean speed. At each step of 

the random walk, the direction of the discplacement vector was randomly drawn from a uniform 

distribution, while the vector’s magnitude was drawn from a chi-squared distribution with two 

degrees of freedom, multiplicatively scaled such that its mean matched the desired value. 

For each pair of grid cells, we fitted a parameterized grid pattern to their rate maps which preserved 

the phase offset and mean spike rate of the cell pair. Spike trains were simulated for each of the two 

cells as inhomogeneous poisson processes with rates determined by sampling its grid pattern at the 

coordinates of the random walk. The GLM SRC was then calculated from the simulated spike trains. 

This process was repeated using a wide range of random walk speeds, and the speed that yielded the 

GLM spike rate cross-correlation that most closely matched the original was selected as the 

estimated speed. For finding the optimal match, we used a cost function that used equally weighted 

contributions from the Pearson correlation coefficient and the mean squared difference between the 

simulated and original cross-correlations. Some cell pairs (particularly those with intermediate phase 
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offsets) had empirical SRCs that were relatively flat, which yielded unreliable model fits; we therefore 

excluded cell pairs whose optimal model fits were poor (specifically, if their Pearson correlation with 

the original cross-correlation was less than 0.25). 

For HD cells, the speed of the head direction signal was estimated as for grid cells, except that a 1-

dimensional angular random walk was used instead. The spike trains of HD cells were simulated as 

inhomogeneous poisson processes whose rates were sampled from the cells’ HD tuning curves at the 

coordinates of the random walk. 

 

Detection of CA1 sharp-wave-ripple (CA1-SWR) events 

A previously described method75 was followed. Briefly, the hippocampal local field potential signal 

was band-pass-filtered between 125-250 Hz and rectified, and the instantaneous amplitude was 

quantified by fitting a cubic spline to the peaks of the rectified filtered signal. CA1-SWR events were 

identified by detecting time periods where the 125–250 Hz amplitude surpassed a threshold of 3.5 

standard deviations from the mean. A lower threshold of 2.0 standard deviations from the mean was 

used for defining the start and end times of each CA1-SWR event. 

 

Detection of MEC sharp-wave (MEC-SW) events 

The MEC-SW is a negative deflection in the MEC LFP occuring most prominently in layer III, 

immediately following a CA1-SWR49,50. In each recording, one tetrode was designated for detecting 

MEC-SW, on the basis of visually identified sharp-wave events being present in the LFP. To detect 

MEC-SW, the MEC LFP from SWS epochs was band-pass-filtered between 10–40 Hz. Negative peaks 

with an amplitude exceeding 4 standard deviations from the mean were classified as MEC-SW 

events. Only SWS epochs were considered for identifying MEC-SW events, to avoid possible 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/198499doi: bioRxiv preprint 

https://doi.org/10.1101/198499
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

interference from harmonics of the theta oscillation, which fall in the same frequency range of MEC-

SW. 

Histology and reconstruction of tetrode placement 

Rats received an overdose of sodium pentobarbital and were perfused intracardially with saline 

followed by 4% formaldehyde. The brains were extracted and stored in 4% formaldehyde, and frozen 

sagittal sections (30 µm) were cut and stained with cresyl violet (Nissl). Each section through the 

relevant part of MEC / PaS was collected for analysis. All tetrodes from the 14-tetrode bundle were 

identified from digital photomicrographs by comparing tetrode traces from successive sections. 

 

CA1 dataset 

The recordings of CA1 putative pyramidal cells were obtained from a previously published dataset43, 

downloaded from http://dx.doi.org/10.6080/K0862DC5. Only data from the “PRE” rest session was 

used, and the original arousal state labels were used. From 3 animals in which large numbers of 

pyramidal cells were recorded on both probes, a total of 6 recordings were used. In each recording, a 

random sample of 200 pyramidal cell pairs was taken. Pairs were exclusively formed of cells on 

separate probes, to prevent spiking correlations being spuriously affected by erroneous spike sorting 

or missed detections of temporally overlapping spikes. Cells were excluded if their mean spike rate 

was below 0.2 Hz during any of the four 15-minute divisions of the first hour of SWS. Population 

spike rates were quantified by combining activity from all pyramidal cells. 

 

Data analysis and statistics 

Data analyses were performed with custom-written scripts in MATLAB (MathWorks). All statistical 

tests were two-tailed. Each test used was judged to be the most suitable for the data in question. 

Where possible, nonparametric methods were used in preference to parametric methods, to avoid 
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making unwarranted assumptions about the underlying data distributions. All confidence intervals 

were estimated using bootstrap resampling (n = 1000 resamples). Spearman rank was used for all 

correlation measurements apart from for cell-pair spike rate correlations, where Pearson correlation 

was used, following convention. Comparisons which lacked established testing methods were 

performed using nonparametric resampling methods. Samples included all available cells that 

matched the classification criteria for the relevant cell type, but excluded repeated recordings of the 

same cells (see “exclusion of duplicate recordings”). The study did not involve any experimental 

subject groups, therfore random allocation and experimenter blinding did not apply and were not 

performed. 

 

Code availability 

Code is available on request from the authors. 
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Figure legends 

 

Figure 1: Grid spatial phase and temporal spiking correlations 

a: Grid phase-offset and spike-timing relationships of two representative grid/grid cell pairs (rows a1 

and a2) and a grid/grid-HD cell pair (row a3). Top left of each row: head-direction tuning curve of 

both units of the cell pair during RUN, one in red shade and one in grey. Bottom left of each row: 

superimposed 2D firing rate maps for the same two units during RUN. Centre of each row: 

normalized spike rate cross-correlograms (SRCs) for each state (a value of 1 represents chance, based 

on a uniform distribution). Note that SWS SRCs are plotted on a 20-fold narrower time scale than 

RUN and REM. Right of each row: SRCs calculated using the GLM method. y-axis) is the GLM 

coefficient for the coupling between the spike rates of the two cells. Note that SWS SRCs are plotted 

on a different x- and y-scale. b: Colour-mapped SRCs for all intramodular grid/grid cell pairs, ranked 

by their spatial phase offset G. Each row of the matrix is the colour-coded SRC of one cell pair, with 

red for positive cross-correlations and blue for negative cross-correlations. b1 shows SRCs calculated 

using the Pearson correlation coefficient, while b2 shows SRCs calculated according to the GLM 

method. The black line to the right of the matrix indicates the value of G for each pair. Note the 

larger magnitude of negative correlations resulting from the GLM analysis. c: Relationship between 

the grid phase offset G of grid/grid cell pairs and their -value at zero-lag (0). Displayed statistics 

are for Spearman rank (n = 135 grid/grid pairs) 

 

Figure 2: Dependence of grid-cell sleep correlations on module membership 

a: Illustration of the module classification process. The autocorrelograms of two cells’ 2D rate maps 

during RUN are shown in superimposition. Ellipses are fitted to each autocorrelogram’s innermost 

ring of peaks, and the intersection/union area ratio (I/U) of the two ellipses is calculated (see (b)). 
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The I/U ratio of the cell pair shown is below the threshold of 0.75 that defines them as originating 

from separate modules. b: Illustration of the intersection (dark grey) and union (pale grey) of an 

arbitrary pair of ellipses (black lines). c: Distribution of ellipse I/U ratios across all grid/grid pairs. The 

stippled vertical line indicates the module classification threshold. d: Relationship of grid/grid cell 

pairs’ GLM zero lag coupling coefficient (0) values during SWS with the I/U ratio of their fitted 

ellipses. Note wider range of 0-values for high I/U ratios, in blue (intramodular comparisons). e: 

Spatial spiking patterns and spike-timing relationships of two example grid-cell pairs from different 

modules (e1 and e2, respectively). Top left of each row: head-direction tuning curve of both units of 

the cell pair during RUN, one in red shade and one in grey. Bottom left of each row: superimposed 2D 

firing rate maps for the same two units during RUN. Centre of each row: normalized spike rate cross-

correlograms (SRCs) for each state (a value of 1 represents chance, based on a uniform distribution). 

Note that SWS SRCs are plotted on a 20-fold narrower time scale than RUN and REM. Right of each 

row: SRCs calculated using the GLM method. y-axis) is the GLM coefficient for the coupling 

between the spike rates of the two cells. Note that SWS SRCs are plotted on a different x- and y-

scale. f: SRCs of all intramodular (f1) and transmodular (f2) grid-cell pairs, ranked by their 0-value 

during RUN. Each row of the matrix is the colour-coded SRC of one cell pair, with red for positive 

cross-correlations and blue for negative cross-correlations. Note the wider range of values near zero-

lag among intramodule pairs during all states, and the closer correspondence of the SRC values 

across states in the intramodular group. g: Cumulative distributions of 0 for intramodular and 

transmodular groups. Note the wider spread of 0 around zero for intramodular cell pairs in all cases. 

Displayed P-values are for two-tailed Ansari-Bradley dispersion test (n = 135 intramodular pairs, 63 

transmodular pairs). 

 

 

Figure 3: Preservation of head-directional phase offsets of conjunctive grid–HD cells during sleep 
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a: Spatial spiking patterns and spike-timing relationships of two representative HD/grid-HD cell pairs 

(a1 and a2, respectively). Top left of each row: head-direction tuning curve of both units of the cell 

pair during RUN, one in red shade and one in grey. Bottom left of each row: superimposed 2D firing 

rate maps for the same two units during RUN. Centre of each row: normalized spike rate cross-

correlograms (SRCs) for each state (a value of 1 represents chance, based on a uniform distribution). 

Note that SWS SRCs are plotted on a 20-fold narrower time scale than RUN and REM. Right of each 

row: SRCs calculated using the GLM method. y-axis) is the GLM coefficient for the coupling 

between the spike rates of the two cells. Note that SWS SRCs are plotted on a different x- and y-

scale. b: Colour-mapped GLM SRCs of all cell pairs, ranked by HD phase offset HD. Each row of the 

matrix is the colour-coded SRC of one cell pair, with red for positive cross-correlations and blue for 

negative cross-correlations. The black line to the right of the matrix indicates the value of HD for each 

pair. c: Relationship between HD phase HD and GLM zero-lag coupling (0) for HD/HD (grey) and 

HD/grid-HD (blue) cell pairs. Displayed r-values are for Spearman rank. d: Cumulative distributions of 

GLM 0-values. Across all states, the spread of 0-values is markedly wider for HD/HD or HD/grid-HD 

pairs, than for HD/grid pairs. 

 

Figure 4: Temporal stability of correlations: example cell pairs 

a1-a3, Example time-resolved SRC plots for 6 cell pairs (one panel each). Top of each panel: 2D firing 

rate maps (left) and HD tuning curves (right) calculated during RUN, with one cell in red shade and 

one cell in grey shade; bottom of each panel: time-resolved SRCs calculated in 2-minute bins across 

the whole recording. Each row of the matrix represents the SRC for one 2-minute bin, with the 

bottom row representing the beginning of the recording. Cross-correlation () is colour-coded. Time 

bins with fewer than 100 counts in the SRC histogram were excluded (blank rows). The grey line to 

the right of the plot indicates the movement speed of the animal. The coloured blocks to the right of 

the plot indicate periods of SWS (red) and REM (blue). a shows three pairs of pure grid cells (a1, in-
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phase; a2, out-of-phase; a3, separate modules). Note the persistence of zero-lag correlations in 

a1/a2, and the absence of correlation in a3. b shows a pure grid cell paired with a grid-HD cell; c 

shows a HD cell paired with a grid-HD cell; d shows two HD cells. 

 

Figure 5: Within-state stability of correlation structure 

a: Stability of GLM 0-values between grid/grid, HD/HD and CA1/CA1 cell pairs. 0-values were 

calculated separately for the first and fourth 15-minute blocks of concatenated SWS (0–15 and 45–60 

minutes). These two 0-values are shown for each cell pair (dot) on the x- and y-axes respectively. 

Note the substantially higher stability of grid/grid and HD/HD correlations compared with CA1/CA1 

correlations. Displayed P-values are for Spearman rank correlation (n = 100 grid/grid pairs, 97 HD/HD 

pairs, 934 CA1/CA1 pairs). b: Time course of correlation structure in an example ensemble of 8 grid 

cells from the one module. b1: Locations of spikes for each neuron during RUN (rat’s trajectory in 

grey, spike locations in black). b2:  Calculation of pairwise zero-lag GLM 0-values. Left: spike rates of 

the eight cells. Centre: matrix showing 0-values for pairs of cells. Cell pairs originating from the same 

tetrode are not counted and are greyed out. Right: vector containing all 0-values from the 

correlation matrix. b3: Matrix composed of 0-values for all grid-cell pairs, calculated in 5-minute 

time bins. Cell pairs are in rows (in arbitrary order), time bins are in columns. Note persistence of 0-

values over time. b4: Spike rates of the 8 grid cells across the same time range plotted in (b3). b5: 

Brackets marking the boundaries of different sessions within the recording, and identified sleep 

periods during the sleep box session (coloured bars). b6: Metacorrelation matrix representing 

pairwise correlation structure within the 8-cell ensemble. Each row or column in the matrix 

represents the vector of 0-values at the corresponding time bin in (b3), and each matrix element 

represents the Pearson r-value yielded by correlating the two 0 vectors corresponding to its row and 

column indices. Note the predominance of strongly positive values (red colour) across the entire 

matrix, indicating global preservation of the ensemble spiking correlation structure. c: Same as (b6), 
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but generated from a sample of 50 concurrently recorded CA1 pyramidal cells. Note the much lower 

general preservation of correlation structure across time periods in comparison to (b6).  

 

Figure 6: Effect of MEC sharp waves on spike rates and correlations 

a: Example trace of MEC and CA1 LFP activity during SWS, showing wideband MEC LFP (top) and 125-

250 Hz bandpass-filtered CA1 LFP (bottom). The CA1 LFP contains brief periods of high-amplitude 

125–250 Hz activity known as sharp-wave-ripples (CA1-SWR), marked with blue arrows, while the 

MEC LFP contains prominent sharp waves (MEC-SW), marked with black arrows. Note that two of the 

MEC-SW events coincide with CA1-SWR events. b: Example trace of MEC and CA1 LFP activity during 

a single CA1-SWR / MEC-SW event. c: Event-triggered LFP traces from an example recording. c1 

shows MEC LFP traces anchored to the times of CA1-SWR events detected during SWS. Events are 

ordered from the lowest amplitude (bottom) to the highest amplitude (top). The average MEC LFP 

response is shown above. c2 shows CA1 LFP amplitude within the 125–250 Hz band, anchored to the 

times of identified MEC-SW events detected during SWS. Events are ordered from the lowest 

amplitude (bottom) to the highest amplitude (top). The average 125–250 Hz amplitude response is 

shown above. d: Time course of spike rates anchored to MEC-SW events. Each row represents the 

mean MEC-SW-triggered spike rate of one unit. Firing rate is colour-coded. Rates were normalized by 

dividing by the mean value across the perievent time window. Units are displayed ordered by the 

timing of their maximal firing rate. e: Mean MEC-SW-triggered spike rates across all units (n = 95 HD 

cells, 134 grid cells, 39 grid-HD cells). The grey bar indicates the time range defining the MEC-SW 

period. Shaded areas represetn 95% bootstrap confidence intervals. f: Time course of pairwise spike 

rate Pearson correlations (rRATE) anchored to MEC-SW events, for HD/HD (left) and grid/grid pairs 

(right). Pairs are ordered by their phase offset, from smallest (bottom) to largest (top). The black line 

to the right of the matrix indicates the phase offset of each cell pair. The black line beneath the 

matrix indicates the Spearman rank correlation between rRATE at each time step and the cell-pair 
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phase offset values (n = 141 HD/HD pairs, 130 grid/grid pairs; the shaded area shows 95% bootstrap 

confidence intervals). Note the lack of perturbation of rRATE-values at zero-lag. g: Comparison of rRATE 

during MEC-SW epochs (IN), versus rRATE outside of MEC-SW epochs (OUT). The IN period 

corresponds to the range shown by the grey horizontal bar in (e); the OUT period corresponds to the 

remaining part of the ±0.25 s perievent window. Displayed r-values are Spearman rank (n = 141 

HD/HD pairs, 130 grid/grid pairs). 

 

 

Figure 7: Comparison of temporal dynamics in grid and HD signals in RUN and SWS 

a: Illustration of a two-dimensional random walk through 2D space (black line). Time is represented 

as increasing along the vertical axis. The red and black grid patterns indicate the receptive field 

locations of two simulated grid cells. b: SRCs for two grid/grid pairs calculated during SWS. The rate 

maps for the grid/grid cell pair are shown in the inset (left pair in-phase, right pair out-of-phase). In 

the line plot below, the thick grey line shows SRCs for recorded data in RUN, whereas the coloured 

lines indicate simulated SRCs generated using random walks with mean drift rates of 1, 2 or 10 cycles 

per second. One cycle corresponds to the grid spacing. c: Colour-mapped GLM SRCs of all cell pairs, 

ranked by grid phase offset G. Each matrix row is the SRC of one cell pair. The black line to the right 

of the matrix indicates the value of G for each pair. Cross-correlation () is colour-coded. c1 shows 

the original SRCs; c2 shows the best-fit reconstruction from the random-walk model. Note that the 

original SRCs generally have -values smaller in magnitude than the random-walk reconstructions. 

This effect is likely due to population rate coupling in the original spike trains, which is not 

incorporated into the random-walk model. d: Illustration of a random walk in the head-direction 

domain. The tuning curves of an example pair of HD cells are shown. The angles of the random walk 

are plotted on a cylinder, with time as the vertical axis. e: Same as (b), but for two pairs of HD cells 

(one pair in-phase, one out-of-phase). One cycle corresponds to a full 360-degree rotation. f: Same as 
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(c), but for HD/HD cell pairs, ranked by HD phase offset HD. g: Distribution of estimated drift rates for 

grid/grid and HD/HD pairs during RUN and SWS. Note the faster cycling of grid cells during both 

states. h: Box plot for estimated SWS/RUN drift rate ratio. Box indicates median and quartiles; 

whiskers indicate 1.5× interquartile range (n = 85 grid/grid pairs, 66 HD/HD pairs). i: Relationship 

between grid spacing and estimated drift rate, during RUN and SWS. For RUN, variations in the 

running speed of the animal are accounted for by dividing each drift rate by the animal’s mean 

running speed during the RUN session (“norm. drift rate”). For SWS, the raw drift rate is shown. Drift 

rates are strongly correlated with grid spacing during RUN, but become uncoupled during SWS. The 

displayed statistics are for Spearman rank correlation (n = 100 grid/grid pairs during RUN, 102 

grid/grid pairs during SWS). 
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Supplementary figure legends 

 

Supplementary Figure 1: Basic LFP and single-unit spiking characteristics 

a: Example traces of MEC activity during RUN, SWS and REM. From top to bottom: combined spike 

rate of all recorded units; spike rasters for 8 grid cells; wideband LFP signal. b: MEC LFP power 

spectra generated from the recording shown in (a). The power spectra were calculated in 5-second 

windows using the multitaper method, using all available time periods for each state. The lines and 

shaded areas represent mean ±S.E.M. c: Distributions of mean spike rates of all units during RUN, 

SWS and REM (n = 138 grid cells, 95 HD cells, 39 grid-HD cells). Box plots show the median, 

interquartile and full range of mean spike rates in each group. d: Comparison of mean spike rates of 

grid, HD and grid-HD cells between RUN, SWS and REM (cell types are displayed in the same vertical 

order as in (c) ). 

 

Supplementary Figure 2: Population coupling effects on Pearson and GLM correlation measures 

a: Demonstration of effect of global population rate modulation on correlations. a1 shows spike 

trains from two simulated neurons producing inhomogeneous Poisson spike trains (black rasters, 

top) with rates oppositely modulated by a signal of interest (grey line). The Pearson and GLM spike 

rate cross-correlograms (SRCs) of the spike trains (bottom) show the time course of the relationship 

between the two neurons’ spike rates. a2 shows the same situation as (a1), but with the two 

neurons’ spiking also positively modulated by global population rate fluctuations (red line). The 

population rate strongly impacts the Pearson SRC, whose zero-lag deflection changes from negative 

to positive. Conversely, the GLM SRC retains a similar shape to the SRC in (a1). b: Relationship 

between zero-lag Pearson (r-value) and zero-lag GLM coupling coefficient (0) for grid/grid (top) and 

HD/HD (bottom) cell pairs. Note that cell pairs of both types with Pearson r-values near zero are 
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generally negative when measured with the GLM method. c: Coupling of single unit spiking to 

population spike rate. A Poisson GLM was fitted to the spike rate of each unit, with the population 

spike rate as the single regressor. The plots show the resultant distributions of zero-lag GLM 

couplings for the population rate (POP). Population rates were z-score transformed before fitting the 

model, such that results were comparable across different mean population rates. Note the almost 

exclusively positive POP-values. 

 

Supplementary Figure 3: Spiking correlations between pairs of grid cells 

a: Scatter plots showing the lag time of the largest peak for each GLM SRC, versus the corresponding 

GLM 0. For cell pairs with positive 0, the largest positive peak was identified; for cell pairs with 

negative 0, the largest negative peak was identified. Most of the peaks falling far from zero lag are 

for cell pairs with small absolute 0, indicating weak correlations. b: Histograms of the peak times 

shown in (a). c: Histograms of 0 distributions (n = 138 grid, 95 HD, 39 grid-HD). d: Relationship 

between the grid phase offset G of grid/grid cell pairs and their zero-lag correlation, measured with 

the Pearson correlation coefficient. Note the lack of strong negative correlations predominance of 

negative correlations, in contrast to the strong correlations evident when using the GLM approach in 

Fig. 1c. e: Relationship between grid/grid cell pair rate map similarity (measured as the r-value of the 

Pearson correlation between each cell pair’s respective rate maps), and GLM 0. 

 

Supplementary Figure 4: Signatures of hexagonal geometry in grid-cell-pair spiking correlations 

a: A simulated triangular grid pattern. Each grey dot represents a vertex (receptive field) of the grid. 

The hexagonal tiles surrounding the vertices are Voronoi cells which form the phase space of the grid 

pattern. The black arrow marked “s” denotes the distance between adjacent vertices (the grid 

spacing). Within the central tile are drawn a series of concentric rings, indicating zones corresponding 
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to different values of G, the magnitude of a grid phase offset vector. Note that the phase tile border 

encroaches on the outermost  zone, meaning that the largest values of G have a nonuniform radial 

distribution. b: Illustration of the four spatial kernel types used to simulate grid firing fields. c: Rate 

map similarity (RMS, defined as the Pearson correlation coefficient of the two grid patterns’ 

simulated spike rate maps) scores for simulated pairs of grids as a function of phase offset. Each 

position on the hexagonal phase tile represents a particular phase offset of one grid from the other. 

The colour at each point indicates the RMS value of a grid-cell pair of that phase offset. Each plot 

shows the result of simulations using a different spatial kernel type. In each case, the normalized 

field width parameter w was 0.19, equal to the empirically estimated value. Contour lines follow 

equal RMS values. Note the white ring where RMS is zero, and the non-concentric deviations near 

the phase tile’s edge. Inset: examples of simulated rate maps. d: Relationship of RMS with G and 

field width w. The dashed line traces the path of the value of G at which RMS crosses zero (G0) Note 

the convergence of G0 on a value of 0.33 as w increases. The black circle on the first plot indicates 

G0 at the empirically estimated value of w for the sample of grid cells (see f,g). e: Empirical 

relationship between G and RMS (black dots) among grid/grid pairs. The grey line indicates the 

values obtained from simulated rate maps for grid/grid pairs with uniform-randomly distributed 

phases. f: F1 scores for dividing the distribution of grid/grid pair zero-lag GLM -values into positive 

and negative values at different G0-values. The vertical dotted grey line indicates the empirical G0-

value of 0.32.  g: G-values that maximise the F1 score as shown in (f), with 95% bootstrap confidence 

intervals. The dotted line indicates the simulated G0-value of 0.32. h: Relationship between grid 

spacing and w. 

 

Supplementary Figure 5: Effect of module classification threshold on zero-lag correlation 

comparisons. When classifying grid-cell pairs as intramodular or transmodular, a threshold I/U ratio 
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of 0.75 was used. To ensure that the outcomes shown in Fig. 2f were not dependent on the 

particular threshold value used, we examined the results of using different threshold values. 

a: Relationship of I/U ratio module classification threshold on the two-sample Kolmogorov-Smirnov 

P-value when comparing the cumulative distributions of zero-lag correlations (0) for intramodular 

and transmodular pairs, as shown in Fig. 2g. Each line shows the resultant P-values for each 

threshold in a given arousal state. The bars at the top of the plot indicate the threshold values for 

which P < 0.05. The dashed black line indicates the actual threshold that was used in analyses (0.75). 

b: Same as (a), but showing P-values for the 2-sample Student’s t-test. 

 

Supplementary Figure 6: Spike rate correlations between grid and conjunctive grid-HD cells 

a: Colour-mapped GLM SRCs for all intramodular grid/grid-HD pairs, ranked by their spatial phase 

offset magnitude G. Each row of the matrix is the SRC of one cell pair. The black line to the right of 

the matrix indicates the value of G for each pair. b: Relationship between grid phase magnitude G 

and GLM zero-lag coupling (0) during each state. Displayed statistics are for Spearman rank 

correlation (n = 16 grid/grid-HD pairs). c: Same as (a), but with cell pairs ranked in order of the 0-

value during RUN. d: Same as (b), but showing relationship between 0 during RUN and 0 during 

SWS / REM. 

 

Supplementary Figure 7: Stability of spike rate coupling in MEC and CA1 cell pairs 

a: Same as Fig. 5a, with subsampled spike rates. Since mean spike rates influence the magnitude of 

observed correlations53, it is possible that differences in observed correlation stability could merely 

reflect differences in mean spike rate. To discount this possibility, we randomly subsampled each 

unit’s mean spike rate to 0.2 Hz during each 15-minute window of the first hour of SWS. 0-values 

are compared between the first 15 (0_0-15) and last 15 minutes (0_45-60) of the first hour of SWS. 
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Displayed r-values are for Spearman rank correlation. b: Stability of zero-lag spike rate correlations 

for different Gaussian kernel widths, for intramodular grid/grid, HD/HD and CA1/CA1 cell pairs, 

calculated as the correlation between the cell pairs’ 0_0-15 and 0_45-60 values. c: Coupling stability for 

CA1 putative pyramidal cell pairs within each recording. Each plot shows, for one recording, all CA1 

pyramidal cell pair GLM spiking correlations from the first 15 (0_0-15) and last 15 minutes (0_45-60) of 

the first hour of SWS. 
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