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Abstract: 13 

1. We propose MinHash (as implemented by MASH) and NMF as alternative methods to estimate similarity 14 

between metagenetic samples. We further describe these results with cluster analysis and correlations 15 

with independent ecological metadata.  16 

2. Using sample to sample similarities based on MinHash similarities we use hierarchal clustering to 17 

generate clusters, simultaneously we generate groups based on NMF, and we compare groups generated 18 

from the MinHash similarity derived clusters and from NMF to those determined by the environment, 19 

looking to Silhouette Width for an assessment of the quality of the cluster.  20 

3. We analyze existing data from the Atacama Desert to determine the relationship between ecological 21 

factors and group membership, and using the generated groups from MASH and NMF we run an 22 

ANOVA to uncover links between metagenetic samples and known environmental variables such as pH 23 

and Soil Conductivity.  24 

Introduction 25 
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How microbial communities, and in some broader context local communities, are determined, described, and 26 

validated is a matter of some debate (Holyoak et al. 2005). Principal Components Analysis (PCA) is the most 27 

common computational approach used to asses patterns of community. A typical metagenetic experimental design 28 

being the sequencing of gene regions that have gone through PCR from aquatic or soil samples, sequences would 29 

then be made OTUs, and PCA applied. PCA is biased towards components that have the most variance (Parsons 30 

et al. 2009).  Communities also can be delineated from another by inferred differences in the identity and 31 

abundance of species detected within one or more samples (Rusch et al. 2007; Seshadri et al. 2007). Here we 32 

present two such alternative computational methods: MinHash (Broder, 1997) sketching and Non-Negative 33 

Matrix Factorization (NMF) (Seung & Lee 1999). NMF can be paired with k-means to estimate the number of 34 

groups (i.e., potential local communities) present and has the benefit of determining the most important feature 35 

driving inferred relationships. MinHash sketches can be used to quickly estimate similarities between whole 36 

samples in an alignment-free approach, i.e., OTUs do not need to be generated first. While MinHash and NMF are 37 

used here to cluster metagenetic samples based on inferred relationships, note that NMF focuses on what is 38 

distinct (in a cluster) while a MinHash implementation (Ondov et al. 2016) is combined with hierarchical methods 39 

to infer clusters based on pairwise similarities.  40 

Because detected abundances of a species in metagenetic samples may not correlate with its actual abundance 41 

in a broader area, drawing boundaries between actual local communities using any computational approach can be 42 

difficult.  As a result, prior work in community analysis has often relied on metadata such as physical barriers and 43 

environmental measurements to refine the structure of estimated local communities based on the species observed  44 

(Holyoak et al. 2005).  We propose similar metadata-driven analysis using Silhouette plots for cluster assessment, 45 

which is a computational measure of how close each point in a cluster is to other clusters.  Finally, we use 46 

ANOVA statistical tests to determine association of known environmental factors to the inferred clusters using 47 

our new and existing approaches.  The advantage of these novel, data-driven (unsupervised) approaches for 48 

defining communities is that it allows us to artificially induce computational cutoffs, and, as a result, no prior 49 

knowledge/metadata are required to infer associations.  Because environmental characteristics can change the 50 
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viability of a microbial species occupying that area (Hultman et al. 2015; Gibbons & Gilbert 2015), subsequent 51 

comparisons of groupings to independent environmental variables provides a biologically motivated assessment 52 

of whether these computationally generated results uncover local communities.  53 

To assess our new approachm we have chosen Atacama desert microbial community because of the data’s 54 

wide geographic range and inclusion of environmental variables. Log-likelihood statistical analysis of an indicates 55 

that among these de novo methods applied to Atacama data, hierarchical clustering using MinHash similarities 56 

has more explicative power than NMF on OTU abundance (see supplemental). In the previously reported analysis 57 

of this Atacama desert dataset samples taken from the same sampling location (North/Central/South) were more 58 

similar according to alpha diversity (Crits-Christoph et al. 2013); however, we show that other environmental 59 

variables can have a statistically higher correlation than sampling location, and specifically that pH, air relative 60 

humidity (RH) and soil conductivity best explain observed local communities derived computationally.  61 

Combined, these results indicate data-driven methods can be directly used to estimate community structure from 62 

NGS data. 63 

Methods 64 

To define clusters we introduce MinHash (Ondov et al. 2016) based similarity for determining local 65 

community structure, which is essentially an approximation of the Jaccard similarity based on shared species 66 

within samples (see Rusch et al. 2007 and Ondov et al. 2016 for details). We also apply Non-Negative Matrix 67 

Factorization (NMF) (Gaujoux & Seoighe, 2010);(Seung & Lee 1999);(Paatero & Tapper 1994) using the nsNMF 68 

algorithm (Pascual-Montano et al. 2006) to determine non-shared species based on OTU abundances. 69 

NMF—or Non-Negative Matrix Factorization—is method by which to split a matrix into a component based 70 

on the factors that are most important in making that split. For example, for RNA-seq expression analysis, 71 

suppose there are ‘k’ known clusters.  NMF will break a provided expression matrix (genes by cells or cell 72 

tissues) into k total clusters while also producing the most important genes for doing so (Yu-Jui, 2017). When 73 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2018. ; https://doi.org/10.1101/198614doi: bioRxiv preprint 

https://doi.org/10.1101/198614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

applied to observed OTU abundances, NMF will ideally return the most important OTUs to generate a fixed 74 

number of clusters. The power in this method is that different factors may be indicators for each cluster, instead of 75 

just the presence or absence of a particular observed species.  NMF becomes particularly powerful when paired 76 

with k-means (Hartigan & Wong, 1979);(Forgey, 1965), which is a clustering method that can be used to measure 77 

how many clusters exist (aka, the ‘fit’).  Determining factors in NMF can be done with Non-Negative coefficients 78 

while PCA has orthogonal vectors with positive and negative cofficients and since NMF combines factor 79 

discovery with iterative determination of the total number of clusters, NMF can be a more descriptive alternative 80 

to simple PCA-based visualization.   81 

MASH, which is based on MinHash sketching (Broder, 1997), is an alignment-free method by which to 82 

estimate the distance between two sequences or sets of sequences. Using this computational method, a set of 83 

samples can be sequenced and then quickly compared to estimate how similar they are. The resulting pairwise 84 

similarity matrix can then be clustered hierarchically and visualized in the form of dendrograms and/or heatmaps. 85 

MASH can be run on raw samples at the cost of potentially higher inferred distances. Example hierarchical 86 

clustering algorithms are Diana (Struyf et al. 1997);(Kaufman & Rousseeuw, 2009) and McQuitty-WPGMA 87 

(McQuitty, 1966).   88 

Using Silhouette Widths (Rousseeuw, 1987);(Handl et al. 2005) and the clustering information derived from 89 

NMF we can further describe structure within a cluster. Specifically, Silhouette Width highlights the 90 

‘belongingness’ of each data point within a cluster; higher averages indicate cluster points are more tightly 91 

correlated with each other. Silhouettes are a tool to show how much overlap there is between clusters, or how 92 

consistent or distinct they are, similar to looking for distinct clusters in PCA plots.  93 

Finally, we hypothesize that the local assortment of species is largely determined by the environment in 94 

which they live.  If so, a change in environment and a corresponding change in observed species should, for the 95 

most part, correlate and this correspondence can be tested using both ANOVA and a mantel test under the right 96 

conditions (DeLong, 2013).   We also realize that environment itself can correlate with distance, i.e., in the 97 
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northern hemisphere, northern samples have fewer growing degree days than southern samples. For this reason98 

isolation-by-distance (IBD) could also manifest as distinct clusters using our computational alternatives just as99 

they would in a traditional PCA analysis.   100 

Results 101 

Sample clustering based on OTUs was performed using Non-negative matrix factorization (NMF), which 102 

determines OTUs that are most informative using linear algebra-based techniques (Ondov et al. 2016; Seung &103 

Lee 1999; Paatero & Tapper 1994; Yu-Jui, 2016). Sample to sample distances were determined based on minh104 

sketches, which estimate the Jaccard similarity of two samples based on shared subsequences (k-mers).  We al105 

determined the OTUs present in these Atacama samples using mothur (see Methods).  Given our focus on 106 

unsupervised analysis, we processed the mash-based sample distances with multiple clustering methods: K-me107 

(Hartigan & Wong, 1979; Forgey, 1965), hierarchical (Everitt, 1974; Hartigan, 1975), Agglomerative and 108 

Divisive (Kaufman & Rousseeuw, 2009). 109 
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 110 

Figure 1. Sample clusterings of Crits-Christoph et al. (2013) data using two measures of distance: site 111 

location (top) and cardinal direction (bottom). Dendrograms were generated with McQuitty Algorithm and are112 

colored by sampling location (top, 6 total).  113 

 114 

 115 
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Figure 2. Heatmap of Various Environmental Variables, scaled in color from low (blue) to high (red), colo116 

scale per column. The left hand side is determined by McQuitty clustering algorithm on sample to sample 117 

similarities, as in Figure 1.  118 

Although prior work had shown that alpha diversity relationships among Atacama desert samples were dri119 

by geographic location (Crits-Christoph et al. 2013), our preliminary analysis suggested sample to sample 120 

similarities based on mash and NMF were better explained by pH, Relative Air Humidity, and Conductivity as121 

well as the previously reported location variable. Note that this “cluster first” computationally focused approac122 

a departure from previous techniques that draw local communities using external metadata to overcome specie123 

dispersion, although the species’ relationships are often defined by interrelated sequence clusters (OTUs).  124 
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 125 

Figure 3. PCA (Hartigan & Wong, M 1979) of environmental variables, colored according to sampling site. 126 

To be consistent with current practice, we first applied Principal Component Analysis (PCA) using the 127 

samples’ environmental variables (Air Humidity, Depth, Elevation, Soil Conductivity, and PH) to assess whether 128 

there is a ecological basis for observed clusters (Figure 2).   We also used Average Silhouette Width (Rousseeuw, 129 

1987), which provides a measure of how dense clusters are, with denser clusters being preferred. Average 130 

Silhouette can be used to determine the number of clusters by picking the higher average, in the case of 131 

comparing two candidate clusterings. 132 
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Figure 4. Left side has 3 clusters, while right side utilizes 4 clusters. Top to Bottom: PCA determined clusters 134 

on OTU abundance, PCA determined environmental clusters, kmeans on mash distances, diana on mash 135 

distances, kmeans on OTU data (euclidean distance), NMF on OTU data, K=3 and k=4 were found to be viable, 136 

on the determination that an Average Silhouette Width above 0.5 was acceptable. A score above 0.25 may 137 

indicate structure (Rousseeuw, 1987). The environmentally driven PCA produced viable clusters at both K=3, 138 

and K=4, Kmeans on sequence similarity at K=3 weakly indicated structure, Diana clustering weakly indicated 139 

structure at K=3 and K=4, and NMF on OTUs produced structured clusters at both K=3 and K=4. All Silhouette 140 

Widths show that clustering at 3 or 4 maybe viable, with the exception of K-means on OTUs, in which most 141 

samples clustered into a single, large group. Not all samples were viable in each method, “n=” indicates number 142 

of samples utilized in each method.  143 

Because Silhouette Width Average for different clustering methods fell at the best values at either K=4, or at 144 

K=3, new clusters were generated at both. At K=3, clusterings were generated by Random Assignment, Non-145 

negative Matrix Factorization based on abundance information, as well as log transformed OTU abundance, the 146 

three clusters with least within cluster distances from both the Diana, and from Mcquitty-WPGMA hierarchical 147 

clustering. Clusters were also made from Sample PH and from a North, South, or Central location. Since 148 

environmental variable mixing was previously reported to be the driver of beta diversity at k=3 (Crits-Christoph 149 

et al. 2013), we used environmental variable mixing to also generate clusterings. K=4 clusterings were generated 150 

with Random Assignment, Non-negative Matrix Factorization based on abundance information, as well as log 151 

transformed abundance information, the four clusters with least within cluster distances from both the Diana, and 152 

from Mcquitty-WPGMA hierarchical clustering, as well as from PH. Cluster to Cluster correlations show that 153 

Mcquitty-WPGMA is more similar to environmental clusterings; however, all non-random clusterings are more 154 

similar  to each other than to randomly generated clusterings, indicating all detect some elements of community 155 

structure present in the data.  Although this analysis has indicated that there was an ecological correlation to 156 

computationally derived clusters, it has not shown which factors, or how those factors affect clustering.  Further, 157 

skewed species abundances with a few dominant species could make it more difficult to sample rare species at 158 
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modest sequencing depth; however, because Mash estimates the similarity between two sets, slight stochastic 159 

differences in observed abundances should not significantly affect the results relative to traditional OTU 160 

approaches that are also subject to  161 

Figure 5. represents cluster similarities between each cluster, cluster similarity jaccard algorithm was use162 

k=3 clusterings are shown.  163 

ic 

used, 
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 164 

Figure 6. represents cluster similarities between each cluster, cluster similarity jaccard algorithm was use165 

k=4 clusterings are shown.  166 

 167 

ANOVA 
Results 

MCQUITTY_CUTREE_
K3 

NMF_LOG_OTU_K
3 

MCQUITTY_CUTREE_
K4 

NMF_LOG_OTU
4 

Variable P-value Signf. P-value Signif. P-value Signif. P-value Signi

pH 6.97E-13 *** 1.13E-12 *** 3.99E-14 *** 2.41E-07 *** 

Elevation 0.14448 0.015637 * 0.000823 *** 0.02558 * 

Conductivity 0.00573 ** 7.32E-05 *** 0.398154 0.02377 * 
Air_Relative_Humidi
ty 5.03E-07 *** 0.000361 *** 0.006096 ** 0.01114 * 

used, 

TU_K

nif. 
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Depth 0.08345 . 0.310562 0.004934 ** 0.02009 * 

pH with Conductivity 0.81559 0.026234 * 0.005361 ** 0.00579 ** 
Elevation with 
Conductivity 0.50011 0.784539 0.14726 0.01553 * 
Elevation with 
Air_Relative_Humidi
ty 0.01035 * 0.375278 0.029011 * 0.69145 
Conductivity with 
Air_Relative_Humidi
ty 0.00156 ** 0.927365 0.022087 * 0.04518 * 

pH and Depth 0.1124 0.99117 0.039508 * 0.01784 * 
Conductivity with 
Air_Relative_Humidi
ty with Depth 0.03048 * 0.371664 0.133212 0.91445 
pH with Elevation 
with Conductivity 
with Depth 0.22824 0.425284 0.777819 0.03665 * 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

8 observations deleted due to missingness in NMF Analyses, 1 observations deleted due to missingness in Mcquitty Analyses 
 168 

The clusterings were modeled by ANOVA, and after calculating a log likelihood test, we found that for both 169 

K=3 and K=4 Mcquttity hierarchical clustering, followed by NMF on OTUs, were the most significant and 170 

therefore best corresponded to the environmental data. For McQuitty hierarchal clustering, PH and Elevation were 171 

found to have the most significance, however, since the elevation was the same for all of the samples of any given 172 

sampling site, and since elevation is highly correlated with sampling location there may be some other latent 173 

variable that is being indirectly measured, also highly correlated with sampling location. For NMF on log 174 

abundance PH, Conductivity, and Relative humidity of the air were found to be most significant;  however, 175 

because relative humidity of each sampling site was the same, it is unknown whether relative humidity of the air 176 

was the contributing factor or some other, unknown variable, that also differed from site to site was a factor. 177 

McQuitty clustering has a .65 similarity with the Cardinal Direction, and similarly high similarities with other 178 

environmentally determined groupings. We also see that both McQuitty and NMF have high p-values with some 179 

environmental variables in anova, with Ph being particularly significant in both McQuitty and NMF, and to a 180 

lesser extent Relative Air Humidity being significant as well, and that the sample similarities within these 181 
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groupings are high. This shows that OTU based methods and distance-based methods produce similar results, if 182 

driven by slightly different environmental variables, and is getting at the underlying structure of the local 183 

communities.   184 

As per the clustering Silhouette Widths, some of the methods, Diana and NMF, work better at four clusters, 185 

while McQuitty and K-means did better at three. The most explicative results, as per ANOVA, NMF on log OTU 186 

abundance and McQuitty slightly disagree on which environmental variables have the most importance, but PH 187 

and Relative Air Humidity can be seen across all four ANOVAs.  188 

Discussion 189 

 How communities are determined, or even how they are considered, is up for debate. Are communities 190 

composed of nearly homogenous samples or are they composed of a mix of different kinds becomes an important 191 

question that drives experimental design (Holyoak et al. 2005). If the expectation is that samples should be nearly 192 

homogenous, determining communities algorithmically via sketch-based clustering is possible.  In this study, 193 

however, we observed that samples’ clusters derived from MASH had low cluster to cluster similarities relative to 194 

the derived clusters using OTUs/Mothur, even with quality trimmed data supplied to MASH. One likely 195 

explanation is MASH-driven clustering is being affected by sequences not deemed as OTU sequences either 196 

because of low coverage, contamination, insufficient length, or some combination therein in the read data 197 

published previously. Even so, ANOVA analysis on the derived clusters showed that some measured 198 

environmental variables were consistently significant while others depended on the clustering method used, with 199 

MASH and NMF having the high associations. When considering NMF as an alternative this may make some 200 

sense given that it is a factorization method focused separating two clusters, while traditional PCA would focuse 201 

on variables with the most divergence between samples. As such NMF factors can be intuitively understood and 202 

can allow for an overlap in basis components (Gaujoux & Seoighe, 2010) making it a viable choice in 203 

determining communities.  204 
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Finally, we believe that abundance derived de novo clusters are useful specifically because they group 205 

samples without prior knowledge of geospatial or other overriding factors. This is powerful to assess associations 206 

between species abundance, communities, and environmental variables (inc. geospatial) without requiring a more 207 

complex statistical model.  208 

Concluding Remarks 209 

 210 
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Figure 9. Workflow for Determining, Describing, and Validating Atacama data.  211 

 212 

 213 

As a general workflow (figure 9), after sample collection either OTUs abundances are generated, or sampl214 

sample distances are calculated by comparing their contained trimmed sequences.  In the case of the sample to215 

sample distances a distance matrix is generated that can be clustered though hierarchical or other means, and in216 

the case of OTU abundances NMF or K-means is better suited. We calculated pairwise distance on both shared217 

ple to 

 to 

 in 

red 
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sequences and on OTUs, and then clustered OTUs and shared sequences via K-means, and for shared sequences 218 

diana clustering was also utilized, and for NMF was also utilized for OTU abundance. The groupings can then be 219 

checked for the influence of independent variables, through a statistical model, in this case anova, which was run 220 

on clusters, the 'anova' function from the R 'stats' package was used, and LogLik from the R 'stats' package was 221 

used to compare Log-Liklihoods.  Clusters were compared to each other using both RAND and Jaccard similarity 222 

cluster evaluation methods, as well as a wilcox test (Hollander et al. 2013);(Bauer, 1972).  223 

The Atacama data used here is from SRA:SRA091062, Bioproject ID: PRJNA208226, which was thought of 224 

as three clusters of data, aligning with sampling site: North, Central, and South.  Atacama was chosen for its 225 

previous environmental analysis, geographically distinct sampling sites, and curated metadata. 226 

Mothur was used to process Raw files for OTU analysis as per non-shhh (Quince et al. 2009) 454 SOP: 227 

https://www.mothur.org/wiki/454_SOP.  for sequence similarity distance Mothur was used to filter  samples 228 

based quality scores, as per the shhh and trimming portion of the mothur 454 SOP. Initial NMF analysis (figure 229 

10) was done with “sake” ( https://github.com/naikai/sake ), which was originally created to analyze gene 230 

expression data, was here utilized to look at OTU abundance data, at k=3 both log transformed and non-log 231 

transformed data was utilized, the nsNMF NMF algorithm NMF algorithm  was used and the the NMF tool was 232 

run at 350 runs, at k=4 only log transformed data was run, with the nsNMF (Pascual-Montano et al. 2006) , NMF 233 

algorithm at 350 runs. nsNMF was chosen for its design to deal with perceived sparseness in the data. The R 234 

'cluster_similarity' function from the 'clusteval' package was used for Jaccard and RAND similarities, while 235 

'wilcox.test' function from the R 'stats' package was used for the wilcox test. wpgma was chosen for 236 

Agglomerative clustering because clusters were expected to be of unequal size, as unweighted hierarchical 237 

methods can become distorted when large and small groups are compared, and a clear contrast to centroid 238 

clustering, as like k-means, was desired. The R 'hclust' function was used from the 'stats' package was used for 239 

agglomerative clustering. Diana, from the R ‘cluster’ package was used for divisive hierarchical clustering, in 240 

agglomerative hierarchical clustering samples are combined until all samples are in the same cluster, whereas in 241 

divisive hierarchical clustering all samples start in the same cluster and then are partitioned into daughter 242 
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clusters.. And further analysis and figure analysis was done with the caret ( https://cran.r-243 

project.org/package=caret ), clusteval ( https://cran.r-project.org/package=clusteval ), cluster ( https://CRAN.R-244 

project.org/package=cluster ), corrplot ( https://CRAN.R-project.org/package=corrplot ), d3heatmap ( 245 

https://CRAN.R-project.org/package=d3heatmap ), fpc ( https://CRAN.R-project.org/package=fpc ), gplots ( 246 

https://CRAN.R-project.org/package=gplots ), and NMF ( https://CRAN.R-project.org/package=NMF ) R 247 

packages.  248 

Supplemental files  ( https://github.com/status-five/Methods-in-Description-and-Validation-of-Local-249 

Metagenetic-Microbial-Communities/releases/tag/v1.0 ) (Molik, 2018) 250 
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