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ABSTRACT  

Continuous attractor network models of grid formation posit that recurrent connectivity 

between grid cells controls their patterns of co-activation. Grid cells from a common 

module exhibit stable offsets in their periodic spatial tuning curves across environments, 

which may reflect recurrent connectivity or correlated sensory inputs. Here we explore 

whether cell-cell relationships predicted by attractor models persist during sleep states 

in which spatially informative sensory inputs are absent. We recorded ensembles of grid 

cells in superficial layers of medial entorhinal cortex during active exploratory behaviors 

and overnight sleep. Per pair and collectively, we found preserved patterns of spike-

time correlations across waking, REM, and non-REM sleep, which reflected the spatial 

tuning offsets between these cells during active exploration. The preservation of cell-cell 

relationships across states was not explained by theta oscillations or CA1 activity. 

These results suggest that recurrent connectivity within the grid cell network drives grid 

cell activity across behavioral states. 

 

 

Grid cells of the medial entorhinal cortex (MEC)1 together with place2, head direction3,4, 

border5, speed cells6, and cells that simultaneously code multiple navigational 

variables7, convey information about the evolving location and orientation of mammals 

as they move through 2D open fields, run on 1D linear tracks, or fly through 3D space8. 

Grid cells are defined by regular, periodic responses to an animal's 2D spatial location. 

Each grid cell’s multiple spatial receptive fields (“grid fields”) form a characteristic 

geometric pattern well-described by a lattice of equilateral triangles.  
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Several different classes of models seek to explain grid cell activity and 

function9,10,11,12,13,14.  One of the principal models is based on continuous attractor 

dynamics that emerge through pattern formation in networks with strong lateral 

connectivity9,11,15. In such continuous attractor network models, connectivity between 

cells tightly constrains their patterns of co-activation, and thus connectivity is closely 

related to relationships in spatial tuning. Specifically, these models predict that cell pairs 

with strong short-time correlations should exhibit similar spatial tuning phases, whereas 

most pairs with weak short-time correlations or negative correlations should exhibit 

offset or anti-phase spatial tuning. Moreover, these correlations should be preserved 

across states because the circuit dynamics are always shaped by the same recurrent 

connectivity in the network. This prediction can be tested in recordings of the same grid 

cell ensembles across active waking, quiescent, and sleep states.  

 

Other spatially responsive cells appear to have structured activity patterns during sleep. 

During waking rest and non-REM sleep (NREM), place cells show a transient increase 

in their spike time correlations that is related to the firing patterns of the place cells 

during exploration16,17,18,19. Head direction cells have been shown to exhibit structured 

activity during sleep states as well20,21. Considering that place cells, head direction cells, 

and grid cells are part of a larger navigational and spatial memory system, and that grid 

cells in the superficial layers of the MEC provide input to place cells22,23,24,25, it is 

possible that grid cells in the superficial layers of MEC drive hippocampal place cell 

reactivation during sleep. However, little is known about superficial layer MEC grid cell 

firing patterns across overnight sleep, and a recent study suggested that coordinated 
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reactivation typically does not occur between place cells and grid cells in the superficial 

layers of MEC26.  

 

The central question of this paper is to ask whether, and to what extent, states in the 

grid cell circuit across sleep resemble those during waking. These findings will help to 

better understand the potential role of the grid cell circuit in driving dynamics of the 

larger navigational and spatial memory system. Grid cells are hypothesized to integrate 

velocity cues as an animal navigates through an environment, thus obtaining a 

continuously updated estimate of location even when spatially informative external cues 

are unavailable1,27,28. Also, grid cells have more recently been shown to play a role in 

non-spatial tasks, namely measuring the passage of time29 or creating a map of the 

visual field30. Although grid cells have been characterized as exhibiting grid-like 

responses during both spatial and non-spatial tasks, the presence or stability of 

relationships between grid cell pairs across both spatial and non-spatial tasks has not 

been examined. Thus, it remains unclear whether the cell-cell relationships predicted by 

the continuous attractor network models persist across spatial and non-spatial 

behaviors.  

 

Here, we examined spike time cross-correlations in large numbers of MEC grid cell 

pairs in freely behaving rats during exploratory behaviors and across several hours of 

overnight sleep. Hippocampal circuits have been shown to exhibit preserved patterns of 

very recent past experience during the first 20 mins of sleep17,19. In contrast, we 

examine a prediction of low-dimensional continuous attractor models, namely that 

patterns of activity during sleep in grid cells exhibit a preserved structure across hours 
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of overnight sleep. We found that spike-time and spike-rate correlations between grid 

cells were related to the degree of overlap in their spatial tuning curves and that, 

remarkably, these relationships persisted during rapid eye movement (REM) and non-

REM (NREM) sleep. Moreover, the preserved patterns of co-activity during sleep were 

not explained by theta entrainment of spike times or analogous hippocampal co-activity 

patterns.  

 

RESULTS 

Activity of grid cells during waking and sleep  

 

To examine the structure of the grid cell circuit responses during sleep, we 

simultaneously recorded multiple single units in MEC over several hours as rats (n=6) 

ran in open field and across the entirety of their overnight sleep cycle. From these 

ensembles, we identified putative grid cells using a gridness score3 (see Methods) 

calculated from three twenty-minute open field sessions. Grid cell recordings were only 

obtained from MEC superficial layers (i.e., II and III). Grid cells were only included if 

they remained stable across active waking recordings, subsequent overnight sleep 

recordings, and additional open field recordings the next morning (see Methods). From 

a total of 157 putative grid cells and 417 possible putative grid cell pairs, 226 grid cell 

pairs from 6 animals passed our inclusion criteria (see Methods; Table 1).  

 

Grid cells were active during spatial exploration of open field environments and during 

both REM and NREM stages of sleep (Figure 1). However, firing rates were significantly 

different across the three behavioral states (157 grid cells; RUN: 2.04 +/- 0.10 Hz, REM: 
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1.08 +/- 0.06 Hz, NREM: 0.76 +/- 0.04 Hz, F(2, 468)=89.6, p < 0.0001; 1-way ANOVA; 

Figure 1b-c). Firing rates during REM and NREM were significantly lower than during 

waking behaviors (p < 0.0001 in both cases, post hoc Tukey’s HSD test). In addition, 

REM firing rates were significantly higher than NREM firing rates (p = 0.004, post hoc 

Tukey’s HSD test).  

 

Patterns of co-activation in individual grid cell pairs were maintained across 

active and sleep states 

We next investigated whether co-activity patterns of pairs of grid cells were related to 

overlap in their spatial tuning properties, as predicted by attractor network models of 

grid cells9,11,15. Cross-correlograms between pairs of grid cell spike trains showed 

structure related to the spatial overlap between the cells’ grid fields (Figure 2). During 

running (Figure 2b-c, left column), grid cell pairs with highly overlapping grid fields 

(sorted to correspond to higher cell pair IDs in Figure 2) showed high cross-correlations 

between their spike trains at zero or near zero lags. Grid cell pairs with only partially 

overlapping grid fields tended to show moderately low correlations at short time lags, 

whereas grid cell pairs with anti-phase spatial tuning (corresponding to lowest cell pair 

IDs in Figure 2) showed the lowest correlations at short time lags. Remarkably similar 

correlated and anticorrelated activity patterns were observed for the same set of grid 

cell pairs during REM and NREM states (Figure 2a-c, middle two columns and right 

column). The overall widths of the short-time lag peaks and dips in the cross-

correlograms were narrower during NREM than during waking and REM, suggesting 

that grid cell network dynamics operate on a faster (by a factor of approximately 5) time 
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scale during NREM. This finding is consistent with temporal compression of spike 

sequences previously observed during NREM in networks of head direction cells21 and 

place cells31,32. Nevertheless, the general relationship between NREM spike-time 

correlations and spatial rate map correlations was qualitatively the same as that seen 

during waking and REM, as is particularly apparent for NREM correlations shown on a 

magnified time scale (Figure 2a-c, right column).   

 

To quantify the qualitative trends seen in the patterns of pairwise cross-correlograms, 

we summed the spike time cross-correlograms within +/-5 ms time lags to obtain a 

single short-time cross-correlation estimate for each grid cell pair. We then compared 

these estimates to their associated rate map correlations to determine the extent to 

which temporal correlations between grid cells’ spike trains were predicted by overlap 

between their rate maps across the three behavioral states (Figure 3a). Not surprisingly, 

grid cells’ spike train cross-correlation estimates were significantly related to their rate 

map correlation values during active exploration (significant regression for RUN: 

F(1,209) = 235.25, p < 0.0001, R2 = 0.53), with higher spike train cross-correlation 

values associated with higher rate map correlations.  Remarkably though, rate map 

correlation values from active behaviors also significantly predicted temporal 

correlations between grid cells during sleep states (significant regressions for REM: 

F(1,209) = 52.53, p < 0.0001, R2 = 0.20; and NREM: F(1,209) = 93.81, p < 0.0001, R2 = 

0.31) . Therefore, despite a lack of sensory input driving the system during sleep, the 

relationship between cell pairs’ spike-time cross correlations and rate-map cross-

correlations observed during active behaviors persisted during sleep. This finding 
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strongly suggests that temporal correlations during both waking and sleep states result 

from connectivity in the grid cell network.  

 

Preserved correlation structure in grid cells during sleep was not explained by 

hippocampal place cell correlation structure during sleep 

With the goal of evaluating the possibility that preserved grid cell correlation 

relationships across awake spatial exploration and sleep were driven by place cells33, 

we next tested whether place cells’ spike time correlations during sleep were related to 

the overlap of their spatial fields during awake exploration. For recordings obtained 

during active running on a circular track (i.e., RUN), temporal correlations between 78 

place cell pairs’ spike trains were significantly related to the correlation of their firing rate 

maps (Figure 3b (left); significant regression for RUN:  F(1,76) = 160.55, p < 0.0001, R2 

= 0.68), with temporal correlations between place cells increasing as a function of their 

rate map correlations. However, this relationship was not preserved in REM and NREM 

overnight recordings of the same place cell ensembles (Figure 3b (right panels); non-

significant regressions for REM: F(1,76) = 0.04, p = 0.84, R2 = 0.001; and NREM: 

F(1,76) = 1.78, p = 0.19, R2 = 0.023). Accordingly, there was a significant interaction 

between brain region (CA1 or MEC) and behavioral state (RUN, REM, or NREM) on 

spike time cross-correlation values (significant multiple regression model: F(4,862) = 

94.91, p < 0.001; significant interaction term: β = 0.42, p < 0.001), indicating that CA1 

place cell pairs’ temporal correlations were not related to field overlap across behavioral 

states in the same manner as was observed for MEC grid cells. That is, the degree of 

place field overlap during track running only predicted the strength of place cell pairs’ 
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temporal correlations during active waking behaviors, but not during REM or NREM 

sleep. Differences in relationships between MEC and CA1 field overlap and spiking co-

activity across behavioral states were not explained by qualitative differences in firing 

rates across behavioral states. That is, CA1 firing rates between active waking 

behaviors and sleep followed a roughly similar pattern as MEC grid cell firing rates, with 

significantly lower firing rates in CA1 during REM and NREM than during active 

wakefulness (41 place cells; RUN: 1.61 +/- 0.25 Hz, REM: 0.85 +/- 0.14 Hz; NREM: 

0.88 +/- 0.13 Hz; F(2, 120)=5.434, p = 0.006; 1-way ANOVA; p = 0.012 for RUN vs 

REM, p = 0.016 for RUN vs NREM, no significant difference between REM and NREM, 

post hoc Tukey’s HSD tests). 

 

The relationship between grid cells’ relative spatial phases and spike time 

correlations was maintained across active and sleep states 

The results shown in Figures 2 and 3 suggest that spatial map correlations are 

reflected, putatively through recurrent connectivity, in spike-time correlations across 

states. However, spike time correlations computed per cell pair are noisy, and spatial 

map correlations are not a perfect measure of spatial tuning relationships between pairs 

of grid cells. We therefore used a more detailed measure of spatial tuning relationships 

between cells and, to reduce noise, combined spike time cross-correlation estimates for 

cell pairs with similar spatial tuning offsets (see Methods). Briefly, we obtained the 

relative spatial phase for a given pair of cells by estimating the offset from the origin of 

the central peak in their spatial cross-correlogram, similar to a previous study34 (Figure 

4a) (see Methods).  This value was then used to sort cell pairs into (ΔφX, ΔφY) relative 
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phase bins. For each cell pair, we summed the temporal cross-correlogram in a +/- 5 ms 

window about zero time-lag, as in Figure 3. We then averaged this value across all pairs 

in a bin and plotted average spike-time cross-correlations against relative spatial phase 

(Figure 4b, left column). This process was repeated using a broader time window of +/- 

50 ms about zero in the temporal cross-correlogram to obtain a temporally coarser 

spike-rate cross-correlation estimate across relative spatial phases (Figure 4b, right 

column). We then performed the same cross-correlation computations for REM and 

NREM periods. To account for differing firing rates across states, we scaled each 

surface according to its maximum average cross-correlation value. Comparing the left 

and right columns of Figure 4b reveals the same general pattern at both short (spike-

time) or long (spike-rate) timescales. That is, there was a strong relationship between 

relative spatial phase values and temporal correlations, with low relative spatial phases 

associated with high temporal correlations. This relationship persisted across all states 

regardless of whether the behavior was spatial (RUN) or not (REM and NREM).  

 

We further compressed and reduced noise in the results by collapsing the x and y 

components of relative spatial phase into a one-dimensional relative spatial phase 

magnitude (Figure 5a for normalized cross-correlation coefficients; see Supplementary 

Figure 1 for non-normalized version). This transformation to one-dimensional relative 

spatial phase was also done to compare grid cell relative spatial phase plots to 

analogous metrics for CA1 place cell pairs recorded on a circular track (Figures 5b and 

Supplementary Figure 1). Across all three behavioral states, grid cells’ spike time 

correlations decreased as their relative spatial phase magnitudes increased. Temporal 
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correlations during REM exhibited a qualitatively similar, but quantitatively weaker, 

functional dependence on the magnitude of relative spatial phase compared to waking 

and NREM states (Supplementary Figure 1 shows non-normalized plots for comparison 

of magnitudes). Higher noise in REM states (as is visible in Figure 2, second column) 

may explain this quantitative difference.  

 

In contrast to grid cells, CA1 place cell pairs’ cross-correlation coefficients during 

waking behaviors decreased with increasing distance between place fields, but cross-

correlations during REM and NREM states did not reflect place field overlaps from the 

preceding spatial exploration session (Figures 5b and Supplementary Figure 1). Taken 

together with the results shown in Figure 3b, these results suggest that stable 

relationships between grid field overlap and grid cell co-activity patterns across waking 

and sleep states are not caused by inputs from place cells.   

 

Observed grid cell correlation patterns were not explained by theta coordination  

The preserved relationship between grid field overlap and spike time correlations during 

NREM periods is noteworthy because, unlike during active wakefulness and REM 

sleep, theta oscillations are not present during NREM. In other words, the preserved 

relationship between spatial tuning and NREM coactivity patterns cannot be attributed 

to coordinated theta phase relationships between grid cells35. Moreover, spike-time 

correlations were higher for cell pairs with overlapping fields than pairs with largely non-

overlapping fields across both theta-associated states (i.e., RUN and REM) when theta 

phase effects were present and when they were removed (N = 26, overlapping fields 
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group, N = 12, non-overlapping fields; F(1,36) = 7.6, p = 0.009, repeated measures 

ANOVA; Supplementary Figure 2). Thus, the preservation of relationships between 

relative spatial phase of grid fields and spike time cross-correlations across sleep states 

does not appear to be explained by a shared theta modulation of cell pairs’ spikes.  

 

Grid cell pairs with different relative spatial phase magnitudes exhibited different 

distributions of spike time correlations 

In addition to looking at average relationships between relative spatial phase magnitude 

and temporal correlations across all grid cell pairs, we categorized individual grid cell 

pairs according to their relative spatial phase magnitudes and plotted the associated 

distributions of spike time cross-correlations. We expected that the distribution of spike 

time correlations for cell pairs with a low relative spatial phase magnitude (i.e., high grid 

field overlap, example in Figure 6a) would have more mass at higher values compared 

to the spike time cross-correlation distribution for high relative spatial phase magnitude 

pairs (i.e., low grid field overlap, example in Figure 6b). Indeed, this pattern was 

observed when we sorted grid cell pairs into three categories according to the degree of 

overlap in their grid fields. Across all three behavioral conditions, the spike time 

correlation distributions for the low relative spatial phase magnitude group (i.e., high grid 

field overlap) exhibited tails containing relatively high correlation values (Figure 6c, left 

column). In contrast, the correlation distributions for the high relative spatial phase 

magnitude group (i.e., low grid field overlap; Figure 6c, right column) were more sharply 

peaked at lower values, across all three behavioral states. Grid cell pairs with 

intermediate grid field overlap showed distributions of spike time cross-correlations 
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across all states that were intermediate between the corresponding distributions 

observed for high and low overlap groups (Figure 6c, middle column). Taken together 

with results described above, these results show that correlated grid cell activity 

patterns across waking and sleep reflect the degree of grid field overlap during active 

exploratory behaviors.   

 

DISCUSSION 

We examined whether the spatial tuning relationships of grid cells influence their spike-

time correlations during non-spatial sleep states. We found that cells with strong spike-

time correlations have similar spatial tuning, whereas cells with minimal spatial tuning 

overlap exhibit weaker or negative spike-time correlations. Further, these patterns of 

spatial-tuning based correlation are preserved across REM and NREM sleep states 

during which there is no spatial behavior. These results could not be accounted for by 

theta modulation, since the pattern of correlations in NREM, when theta was absent, 

matched that found during REM sleep and waking exploration, when theta was strong. 

The across-state preserved pattern of correlations as a function of spatial tuning was 

also not explained by hippocampal place cell inputs from CA1, since these cells did not 

exhibit unchanged patterns of correlation across states. Thus, the pattern of correlations 

is likely to originate within the entorhinal cortex rather than being inherited, through 

feedforward projections, from circuitry in the hippocampus. Taken together, our results 

suggest that recurrent connectivity is likely a major determinant of grid cell activity 

across awake navigation and non-spatial sleep states, consistent with continuous 

attractor network models of grid cells9,11,15. In grid cell models, the recurrent connectivity 
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may involve both excitatory and inhibitory connections9 or inhibitory connections 

alone9,36. While we have seen some evidence for short-latency positive spike-time 

correlations between cells with high spatial overlap, with the correlation peaks 

preserved across states (suggesting the possibility of direct excitatory coupling between 

grid cells of similar phase), our evidence is not sufficient to clarify which types of 

connections underlie the present results, given that anatomical studies have shown both 

patterns of connectivity exist within the MEC superficial layers36,37,38,39 .  

 

It is notable that MEC grid cell correlation patterns from waking appear to be better 

preserved in sleep than are CA1 place cell correlations patterns. This result may seem 

surprising at first glance, considering that CA1 place cells replay activity patterns during 

sleep that resemble activity patterns from earlier waking behaviors17,19,31,32,40. However, 

our results examined correlation structure across an entire night’s sleep, while 

correlations between CA1 place cell spiking during active waking behaviors and 

subsequent NREM sleep notably decay within the first hour of sleep17,19. Moreover, the 

relationship between place cells’ field overlap and spike time correlations is stronger 

during awake rest than during sleep16. It should also be noted that different correlated 

spiking patterns in CA1 associated with different environments can reactivate within the 

same sleep episode17, suggesting that place cells exhibit multiple patterns of 

coactivation during sleep that reflect different experiences. Thus, the lack of preserved 

correlated activity between CA1 place cells across sleep states is consistent with 

higher-dimensional dynamics in the hippocampus during waking, which allow for 

globally remapped representations of different environments41. It is possible that 
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hippocampal sleep states explore this higher-dimensional space, activating multiple 

representations that reflect waking trajectories from a variety of different environments. 

By contrast, the states in one grid module maintain the same low-dimensional dynamics 

across non-active and sleep states that they exhibit during awake exploratory behaviors 

in novel and familiar environments of different shapes and configurations23,34,42. This 

rigid confinement of the dynamics of grid cells in a module, across behaviors and states, 

implies and predicts that the grid cells will likely exhibit the same preserved cell-cell 

relationships during other modes of behavior, such as during navigation through non-

spatial and other conceptual spaces29,30,43. This prediction is readily testable, using 

simultaneously recorded co-modular grid cells. Indeed, all models of grid cells that are 

based on integrating a velocity signal to generate an updated estimate of grid phase 

(these include continuous attractor models and oscillatory interference models10,12,13,28) 

are applicable to navigation through non-physical continuous spaces, so long as the 

velocity input to the grid cells reflects the time-derivative of the corresponding 

continuous variable. However, the predictions of preserved low-dimensional structure 

through conserved cell-cell relationships during non-spatial navigation follow specifically 

from low-dimensional attractor models9,28,34,44.    

 

Within the class of continuous attractor models are networks with different types of 

recurrent connectivity and topology. One possibility is that the grid cell network supports 

the activation of one local group of interacting neurons (an activity bump) in the neural 

sheet and that connectivity is global (single-bump networks45). Another is that the 

connectivity is local (according to some proper rearrangement of neurons) and that 

activity consists of multiple activity bumps on the cortical sheet9,28. In the former 
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network, co-active neurons are recurrently coupled and should always show high 

correlations. In the latter, co-active neurons in different bumps may share no direct 

coupling, and thus the distribution of correlations given the same tuning phase should 

be bimodal. The slight hint of bimodality in the correlations of cells with high spatial 

tuning overlap (far left column in Figure 6c, particularly during RUN) may be suggestive 

of a multi-bump network. However, additional experimentation with circuit perturbation 

techniques will be required to determine which connectivity pattern most accurately 

describes the system46. 

 

The finding that grid cell co-activity during sleep resembles co-activity during waking 

behaviors raises the possibility that superficial-layer MEC grid cells play a role in offline 

memory processing. This hypothesis is consistent with reports involving recordings from 

other cortical areas. For example, neuronal activity in primary visual cortex47, auditory 

cortex48, and medial prefrontal cortex49, as well as grid cell activity in deep layers of 

MEC50, has been reported to correlate with hippocampal place cell activity during replay 

events, which are hypothesized to play a role in memory consolidation. However, the 

present results only involve grid cells recorded from MEC superficial layers. An initial 

study of grid cell replay in MEC superficial layers reported that grid cells rarely show 

coordinated reactivation with hippocampal place cells26, a result that seems inconsistent 

with the hypothesis that superficial layer grid cells drive consolidation of hippocampal 

memory representations during sleep. 

 

The present results emphasize a need for caution when searching for evidence of 

replay in superficial-layer grid cells during sleep. That is, the extent to which replay 
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occurs in the superficial layer grid cell network may be overestimated due to the 

structured nature of instantaneous activity patterns that reflect stable, long term network 

connections rather than plasticity induced by earlier experiences. Investigations of 

replay in superficial layer grid cells would therefore be strengthened by the inclusion of 

additional behavioral controls, such as comparisons of co-activity patterns during sleep 

to co-activity patterns during subsequent exploration of a novel environment. Grid cell 

simulations would also be helpful to determine the extent to which it is possible to 

distinguish between co-activity due to long-term network connections versus more 

recent experience-dependent reactivation. Such simulations would likely provide useful 

information about the number of simultaneously recorded superficial layer grid cells 

necessary to reliably detect experience-dependent reactivation. Future experiments, 

designed to determine whether sleep-associated reactivation of correlated firing 

patterns in ensembles of superficial layer MEC grid cells is experience-dependent, are 

key to achieving a deeper understanding of neural and network mechanisms of memory 

consolidation in the entorhinal-hippocampal network during sleep.   

 

 

ONLINE METHODS 

 

Subjects 

MEC and CA1 data were collected from six male Long-Evans rats weighing ~450 g to 

~650 g (mean +/- std = 549 +/- 87 g) and four male Long-Evans rats weighing ~400g to 

~530g (482 +/- 55 g), respectively. After surgery, animals were individually housed with 

several items for enrichment (e.g., cardboard tubes, wooden cubes, plastic toys). Rats 
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were housed in custom-built acrylic cages (40 cm x 40 cm x 40 cm) on a reverse light 

cycle (Light: 8pm to 8am). Active waking behavior recordings were performed during the 

dark phase of the cycle. 

 

Rats recovered from surgery for at least one week, with free access to food, before 

behavioral training resumed. During the training and data collection period, rats were 

food-deprived to no less than 90% of their free-feeding weight. During periods of food 

deprivation, food was provided ad libitum for one day per week. All experiments were 

conducted according to the guidelines of the United States National Institutes of Health 

Guide for the Care and Use of Laboratory Animals under a protocol approved by the 

University of Texas at Austin Institutional Animal Care and Use Committee.  

 

Recording drive 

For animals receiving MEC recording implants, chronic “hyperdrives”51 (5 animals) or a 

Harlan Drive (Neuralynx, Bozeman, Montana, 1 animal) with 12 tetrodes and two 

reference electrodes or 16 tetrodes, respectively, were implanted over MEC in the right 

hemisphere each animal. CA1 animals were implanted with hyperdrives above the 

hippocampus in the right hemisphere. Tetrodes were constructed from 17 μm polyimide-

coated platinum-iridium (90/10%) wire (California Fine Wire, Grover Beach, California). 

Electrode tips of tetrodes designated for single unit recording were plated with platinum 

to reduce single channel impedances to ~150 to 300 kOhm at 1 kHz.  

 

Surgery 
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Anesthesia was induced by placing an animal in an induction box filled with isoflurane 

(5%) mixed with oxygen (1.5 liters per minute). The animal was then moved to a 

stereotaxic frame, and isoflurane anesthesia (~1.5-3%), mixed with oxygen as above, 

was administered throughout surgery. Buprenorphine (0.04 mg/kg) was administered 

subcutaneously prior to the initial incision. Subjects also received 0.04 ml of atropine 

(0.54 mg/ml) injected subcutaneously prior to surgery and an additional 0.02 ml of the 

atropine solution after four hours of anesthesia to prevent fluid accumulation in the 

lungs. Sterile saline (1.00 ml, 0.90%) was administered subcutaneously prior to surgery 

and each hour thereafter for hydration. Subjects were checked for breathing rate and 

responsiveness every 15 minutes during surgery to monitor anesthesia levels.  

 

Seven to eight bone screws were placed in the lateral, anterior, and posterior edges of 

rats’ skulls, serving as anchors for the recording drives. Two additional screws in the 

anterior portion of the skull, ipsilateral to the recording drive, were used as the electrical 

ground reference for recording. For MEC implants, drives were positioned 4.5 mm 

lateral from the midline and approximately 0.2 mm anterior to the transverse sinus. The 

most posterior tetrode was used to position the drive according to these coordinates. 

For CA1 implants, drives were centered at 3.0 mm lateral to the midline and 3.8 mm 

posterior to bregma. Silicon adhesive (Kwik-Sil; WPI, Sarasota, Florida) was used to fill 

in the exposed portion of the craniotomy, and dental cement was applied to anchor the 

drive to the skull and to the bone screws. At the end of surgery, subjects were given a 

subcutaneous injection of Rimadyl (5 mg/kg), mixed with ~1 ml of sterile saline (0.9%), 

for pain management. 
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Data collection 

Data were recorded using a Digital Lynx system and Cheetah 5.0 recording software 

(Neuralynx, Bozeman, Montana). Local field potentials (LFPs) from one channel within 

each tetrode were continuously recorded at 2 Khz, using the built in high-pass (DC-

offset filter at 0.10 Hz with 0 taps) and low pass (FIR filter at 500 Hz using 64 taps) 

filters. Input amplitude ranges were adjusted before each recording session to maximize 

resolution without signal saturation. Input ranges generally fell within +/-1600 to +/-2600 

μV. Spikes were detected and recorded in the following manner. All four channels within 

each tetrode were filtered from 600-6000 Hz using a high pass (FIR filter at 600 Hz 

using 64 taps) and low pass (FIR filter at 6000 Hz using 32 taps) filter. Spikes were 

detected when the filtered continuous signal crossed a threshold set daily by the 

experimenter, which ranged from 40-75 μV. Detected events were acquired with a 32 

KHz sampling rate. Signals were recorded differentially against a dedicated reference 

channel (see “Tetrode Positioning” section below).  

 

Video was recorded through the Neuralynx system with a resolution of 720 x 480 pixels 

and a frame-rate of 29.97 frames per second. Animal position and head direction were 

tracked via an array of red and green LEDs on an HS-54 headstage (Neuralynx, 

Bozeman, Montana) attached to a hyperdrive, or red and green LEDs connected to EIB-

36-24TT headstages (Neuralynx) attached to a Harlan Drive. 

 

Tetrode positioning 
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All tetrodes were initially lowered ~900 μm on the day of surgery. Thereafter, tetrodes 

were lowered gradually over the course of several weeks to the superficial layers of 

MEC or dorsal CA1 guided by the estimated depth and known electrophysiological 

hallmarks of MEC (e.g., prominent theta oscillations)35,52 and CA1 (e.g., sharp-wave 

ripples)53. In the CA1 implanted rats and all but one of the MEC implanted rats, the most 

anterior tetrode was designated as the reference for differential recording and was 

targeted toward the angular bundle (MEC animals) or a quiet region of overlying cortex 

(CA1 animals). Due to prominent noise on the most anterior channels in one MEC rat, 

the most posterior tetrode was chosen as a reference instead. Tetrode positions were 

verified histologically after experiments were completed (see Histology section below). 

Reference tetrodes were continuously recorded against ground to ensure that they 

remained in electrically quiet locations across all days of recording. Experimental 

sessions and data recording began when the presence of at least four simultaneously 

recorded grid cells was detected (see Grid Cell Detection section below) or, in the case 

of CA1 recordings, when most of the tetrodes were estimated to be in the CA1 cell body 

layer.  

 

Behavioral training of MEC rats  

The MEC implanted rats were pre-trained, prior to surgery, to run in multiple 

environments, including a 1 m x 1 m open field, for randomly scattered small pieces of 

sweet cereal or cookie rewards. Once rats explored the open field relatively uniformly 

with few pauses, chronic recording drives were surgically implanted (see Surgery 

section above). After recovery from surgery (i.e., approximately one week after 
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implantation), rats were familiarized over the course of three days with an open field 

arena (1 m x 1 m with 0.5 m wall height) in a recording room, in which they again 

foraged for small pieces of cereal or cookie. Open field familiarization days consisted of 

alternating periods of three open field sessions (20 min each), with rest sessions (10 

min each) preceding and following each active session. During each rest session, rats 

were placed in a towel-lined, elevated flower pot. Following these familiarization days, 

open field foraging behavior was maintained with daily training consisting of two to three 

20-minute open field foraging sessions, each preceded and followed by 10-minute rest 

sessions. When prominent saw-toothed theta oscillations (6-10 Hz) were detected on 

the recording tetrodes, suggesting that tetrodes had reached MEC, open field foraging 

continued to be maintained as described above, except with 30-minute, rather than 10-

minute, intervening rest sessions.  

 

On days when sufficient numbers of simultaneously recorded putative grid cells were 

observed, data collection began. On these days, rats also ran on a linear track after 

their open field recordings were completed and approximately 1-2 hours before their 

overnight sleep recordings began.  These linear track data were not included in the 

present study but have been used in other studies54,55.  At the beginning of their light 

cycle (~8 pm), rats were placed in a relatively small open field arena (60 cm x 60 cm) for 

overnight sleep recordings. In this small arena, rats were provided with cloth bedding 

and toys for enrichment, as well as access to their food and water. At approximately 8 

am the following morning, rats were returned to their home cages. Following ~2-3 hours 

of rest in their home cages, rats were returned to the larger (i.e., 1 m x 1 m) open-field 
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arena for an abbreviated recording session (two 20-minute bouts of open field foraging, 

with three intervening 10-minute rest bouts). This second open field recording was 

performed to confirm the stability of overnight grid cell recordings (see Grid Cell 

Detection section below).  

 

Behavioral training of CA1 rats  

Rats implanted with drives in CA1 were initially part of a different study, and thus 

different behavioral training protocols were used. Prior to surgery, CA1 implanted rats 

were trained to run on a circular track with a diameter of 100 cm and a track width of 10 

cm. Small pieces of sweet cereal were placed on opposite ends of the circular track as 

food reward. Once the rats reliably ran at least ten laps on the track in a 10-minute 

session, hyperdrive recording devices were implanted. Following one week of recovery, 

rats were re-trained to run on the circular track. Each training day consisted of three 10-

minute running sessions interleaved with four 10-minute rest sessions. All CA1 

implanted rats received a minimum of three days of training on the circular track before 

data collection began. 

 

On each recording day, CA1 implanted rats ran on the circular track for four 10-minute 

running sessions with intervening 10-minute rest sessions. Upon completion of the 

circular track task (~8pm), rats were placed in a 60 cm x 60 cm open field enclosure, 

with water and food provided along with cloth bedding and enrichment items, for 

overnight sleep recordings.  
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Histology 

Histological sections were prepared in the following manner to allow for verification of 

tetrode positions after completion of recordings. Rats were given a lethal i.p. injection of 

Euthanasia III solution. This was followed by transcardial perfusion, first with 

physiological saline to clear blood and then with 4% formaldehyde solution to fix brain 

tissue. Brains from MEC-implanted rats were cut sagittally at 30 μm, and each section 

through the relevant portion of MEC was collected. Brains from CA1 implanted rats 

were cut coronally at 30 μm, and each section through the relevant portion of CA1 was 

collected. Sections were mounted on slides and stained with cresyl violet. Tetrode tips 

and tracks were localized by comparing across successive sections. 

 

Spike sorting 

MCLUST cluster-cutting software (version 3.5; A.D. Redish, University of Minnesota, 

Minneapolis) run in MATLAB 2014a (The MathWorks, Inc., Natick, Massachusetts) was 

used to sort spikes into putative single units. Spike waveforms were sorted based on 

peak height, waveform energy, and peak-valley difference. The valley depth of spike 

waveform was used as an additional feature to sort MEC units. A putative single-unit 

was accepted for further analysis if the associated cluster had a minimum 1 ms 

refractory period and shared less than 1% of its total number of spikes with any other 

accepted cluster. 

 

Identification of active waking and quiescent sleep states 
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For the initial identification of sleep epochs, videos of rats’ overnight behavior were 

manually scored by two independent researchers trained to discriminate between sleep, 

stationary alertness, and consummatory behaviors. Only epochs that both researchers 

classified as sleep were accepted for further analysis. REM and NREM epochs were 

then classified during identified sleep epochs based on oscillatory activity in the LFP 

using the following criteria. A recording period was classified as NREM if the moving 

window average (5.0 s window, 0.5 s step) of the theta (6-10 Hz) power to delta (2-5 

Hz) power ratio remained below 1.0 for at least 15 seconds (modified from a previous 

study56). Instantaneous theta and delta power were calculated via Morlet wavelet 

transform57,58 calculated with a width parameter (σ) of 5 and a frequency resolution of 1 

Hz. Recording periods were classified as REM if the moving window average of the 

theta-delta power ratio remained above 1.5 for at least 60 seconds (modified from 

previous studies40,56).  

 

Recordings of active waking behaviors on the circular track (CA1 data) and in the open 

field (MEC data) were used to define periods of active ambulation (i.e., RUN). RUN 

epochs were defined as periods in which the theta-delta power ratio was above 2.0 and 

a rat’s running speed, smoothed with a Gaussian window (radius of 133 ms or 4 video 

frames, standard deviation of 1), was greater than 5 cm/sec (modified from a previous 

study56). Thresholds were confirmed by manual examination of the power spectra and 

randomly chosen segments of LFP to confirm the presence or absence of theta 

oscillations. 
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Grid cell detection 

Recordings of single unit activity in the open field environment were used to detect grid 

cells. First, rate maps were calculated using 3 cm spatial bins and smoothed with a 

Gaussian window1. A gridness score3 was then calculated for each putative grid cell and 

compared to a bootstrapped distribution of gridness scores. The bootstrapped 

distribution consisted of 2000 shuffles in which spike trains were shifted in time by a 

random amount while the inter-spike intervals remained fixed. Rate maps and gridness 

scores were recalculated for each shuffle to create a bootstrap distribution for each 

putative grid cell. Units were classified as grid cells when the original gridness score 

met or surpassed the 95th percentile of the corresponding bootstrapped distribution. 

Additionally, a grid cell was only included if the same unit was identified and remained 

stable in an open field recording session the next day. Grid cell stability was assessed 

by visual inspection of unit cluster position, inter-spike intervals, and grid field similarity. 

 

Grid cell firing rate estimation 

Grid cell firing rates during each RUN, REM, and NREM period were calculated by 

dividing the total number of spikes by the duration of the detected behavioral period, 

averaged across periods for each behavioral state (Figure 1c, histograms), and then 

averaged across units (Figure 1b).  

 

Place cell firing rate map calculation  

Given that CA1 place cells were recorded while rats performed laps around an elevated 

circular track, rather than ambulating throughout an open field environment as with grid 
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cell recordings, the procedure for rate map calculation was different for place cells than 

for grid cells. For CA1 recordings on the circular track, rats' positions were first 

converted from two-dimensional Cartesian coordinates to a one-dimensional measure 

of angular position along the track. The sequence of angular coordinates corresponding 

to a rats’ position at each video frame time were then sorted into 5-degree bins 

spanning from 0 to 360. Rate maps were calculated by dividing the total number of 

spikes occurring while the rat was actively ambulating within each radial bin by the total 

amount of time that the rat spent actively moving within that bin.  They were then 

smoothed with a Gaussian kernel 25 degrees wide.  

 

Statistics 

Unless otherwise noted, all analyses were performed in MATLAB 2017a (The 

MathWorks, Inc., Natick, Massachusetts) using custom-written software. However, 

standard built-in MATLAB functions were used (e.g. “xcorr,” “corrcoeff,” etc.) whenever 

possible. 

 

The SPSS Statistics Subscription (build 1.0.0.781, IBM) software package was used for 

the statistical analyses in this paper. This includes the statistics describing firing rate 

differences across behaviors (as shown in Figure 1 for MEC), the statistics comparing 

the relationships between rate map correlation coefficients and the spike time 

correlation values (calculated from the sum of the correlations within the +/- 5 ms lag 

window) for data in Figure 3, as well as the statistics used to analyze the effects of 

removing theta phase influences (Supplementary Figure 2). 
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Spike time correlations 

Spike time cross-correlations were calculated in MATLAB using the "xcorr" function 

(MATLAB 2017a Signal Processing Toolbox, The MathWorks, Inc., Natick, 

Massachusetts). Unless otherwise stated, cross-correlations were normalized such that 

auto-correlations at zero lag were identically 1.0 (i.e., “coeff” normalization option in 

MATLAB), and correlograms were averaged across bouts of the same behavior. The 

exception to this is Figure 2, in which each of the un-normalized cross-correlograms, 

which were summed across bouts of the same behavior, were scaled by their average 

value (Gardner et al., SfN Abstracts 2016). This analysis was done to compare the 

present results with those of Gardner and colleagues, who introduced this analysis 

previously. Cross-correlations were calculated using spike counts in 2 ms (Figures 3-6, 

Supplementary Figure 1), or 5 ms, 10 ms, and 50 ms bins (Figure 2a, b, and c, 

respectively) to ensure that the observed results were not an artifact of the chosen bin 

size. All cross-correlations were calculated over +/-5000 ms lags. MEC and CA1 cell 

pairs that did not have a peak of at least 5 spikes in the (summed un-normalized) cross-

correlation for each behavioral state were not considered. MEC cell pairs recorded 

simultaneously on the same tetrode were excluded if spike time correlations at zero lag 

were greater than the average of the correlation vector to prevent double counting of the 

same spikes. MEC cell pairs in which the spatial period of one cell was not within 30% 

of the other were also excluded to restrict comparisons to cells within the same putative 

module34.  
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Rate map correlation coefficients 

Correlation coefficients for pairs of grid cell rate maps, which were used to sort grid cell 

pairs in Figure 2 and are shown across the x-axes in Figure 3a, were calculated by the 

off-diagonal value returned by the “corrcoef” function in MATLAB (MATLAB 2017a, The 

MathWorks, Inc., Natick, Massachusetts). The values presented are the medians across 

the three open-field sessions. For CA1 place cells (Figure 3b), the rate map correlation 

coefficient was calculated using the ‘corrcoef’ function, using rate maps that were 

constructed from angular positions on the circular track. 

 

Grid cell rate map cross-correlations 

Rate map autocorrelations (for grid cell detection) and cross-correlations (Figures 4, 5a, 

6; Supplementary Figure 1) were performed following procedures outlined previously1. 

Briefly, the two-dimensional cross (or auto) correlation was calculated from the 

smoothed rate maps via: 

𝑅(𝑖, 𝑗)

=  
∑ (𝑁 ∗ 𝒎𝒂𝒑𝟏(𝑚, 𝑛) ∗ 𝒎𝒂𝒑𝟐(𝑚 − 𝑖, 𝑛 − 𝑗))𝑚,𝑛 − ∑ (𝒎𝒂𝒑𝟏(𝑚, 𝑛))𝑚,𝑛 ∗  ∑ (𝒎𝒂𝒑𝟐(𝑚 − 𝑖, 𝑛 − 𝑗))𝑚,𝑛

√𝑁 ∗ ∑ (𝒎𝒂𝒑𝟏(𝑚, 𝑛)2 − ∑ (𝒎𝒂𝒑𝟏(𝑚, 𝑛)2)𝑚,𝑛 )𝑚,𝑛 ∗ √𝑁 ∗ ∑ (𝒎𝒂𝒑𝟐(𝑚 − 𝑖, 𝑛 − 𝑗)2 − ∑ (𝒎𝒂𝒑𝟐(𝑚 − 𝑖, 𝑛 − 𝑗)2)𝑚,𝑛 )𝑚,𝑛  
 

 

Where map1 and map2 are the smoothed firing rate maps and N is the total number of 

spatial bins. 

  

Relative spatial phase between pairs of grid cells 

Relative spatial phase was calculated using the rate map cross-correlation between the 

rate maps of two grid cells (Figures 4, 5a, 6; Supplementary Figure 1; see Figure 4a for 
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a schematic explanation of the method) (similar to a previous study34). The peak of the 

cross-correlation map closest to the plot origin was identified, and spatial phase was 

calculated using the x and y distances from the origin to that peak. The x and y 

distances were then each normalized by the spatial period, calculated as the distance 

between the two peaks closest to the origin. Because the distance of least overlap is at 

one half the spatial period, phases greater than 0.5 were subtracted from 1.0 (e.g., 0.62 

becomes 1.00 - 0.62 = 0.38). The phase was then divided by 0.5, giving a final relative 

spatial phase value that ranged from [0, 1] where [0, 0] indicated maximal overlap 

between grid fields and [1, 1] indicated minimal overlap between grid fields. The 

medians of the relative phase values calculated across the three open field sessions 

were used as the final relative spatial phase values shown in Figure 4. A one-

dimensional measure of the relative spatial phase magnitude was also created by taking 

the Euclidian distance of the x and y relative phases, which spanned the range [0, √2] 

(Figures 5a, 6; Supplementary Figure 1, Supplementary Figure 2). 

 

Cell pairs in Figure 6 were categorized as “High Overlap” (i.e., low relative spatial 

phase), “Low Overlap” (i.e., high relative spatial phase), or “Mid Overlap” (i.e., 

intermediate relative spatial phase) by comparing each cell pair’s relative spatial phase 

magnitude to the maximum observed relative spatial phase magnitude (which could 

range in value from 0 to √2). Cell pairs with a relative spatial phase magnitude that fell 

below 30% of the maximum relative spatial phase magnitude were labeled as High 

Overlap. Cell pairs with a relative spatial phase magnitude that fell above 70% of the 

maximum relative spatial phase magnitude were classified as Low Overlap. Cell pairs 
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were assigned to the Mid Overlap group if their relative spatial phase magnitude fell 

between 40% and 60% of the maximum relative spatial phase magnitude. Cell pairs not 

assigned to one of these three groups were excluded from results shown in Figure 6. 

Supplementary Figure 2 used the same criteria for the High Overlap and Low Overlap 

groups, but did not include a Mid Overlap group. 

 

Relative distance between pairs of place cells 

The relative angular distance between the firing locations of two CA1 cells on the 

circular track was defined as the length of the minor arc between their fields. Only place 

cells with peak firing rates exceeding 1 Hz were included in this analysis. Each cell pair 

was sorted into one of five bins based on the relative angular distance (each bin 

spanned a range of 36 degrees), and the average spike time correlation across all pairs 

within a group was calculated (Supplementary Figure 1). Similar to Figure 5a, spike time 

correlations for each behavioral state were then normalized by the maximum average 

spike time cross-correlation coefficient for that behavioral state (Figure 5b).  

 

Removal of theta contribution to spike time cross-correlations 

One possible explanation for the relatively high spike time cross-correlations observed 

for some grid cell pairs, aside from network connectivity, is that spikes from those grid 

cells tended to occur at the same theta phase. To address this possibility, the observed 

spike time cross-correlations in each behavioral period (RUN or REM) were compared 

to distributions containing 200 spike-time cross-correlations computed from shuffled 

spike train pairs, based on a method reported previously59. In these shuffled spike 
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trains, the times of each spike for each grid cell were shuffled independently. Each 

spike was moved randomly to a new time that satisfied two conditions: the new time fell 

within a +/- 500ms window around its original spike time and was associated with a 

theta phase within 5 degrees of the original spike time’s associated theta phase. Thus, 

theta-induced correlations and other correlations on a time-scale slower than 500 ms in 

the shuffled data were preserved, while short-latency correlations were eliminated. 

Examples of individual cross-correlations for shuffled spike trains are shown in 

Supplementary Figure 2 together with the corresponding original cross-correlation. The 

average of the cross-correlations for all shuffled spike trains was presumed to represent 

the portion of the cross-correlation explained by theta phase co-modulation alone 

(Supplementary Figure 2). To visualize the temporal correlations of spikes that were not 

attributable to theta phase modulation of spike times, the magnitude of the observed 

cross-correlation that fell within the 98% confidence interval of shuffled distribution was 

reduced by the amount attributable to theta or other slow correlations (Supplementary 

Figure 2).  To do so, first, any lag bins of the original correlogram with values that fell 

within the confidence interval were set equal to zero. Next, in any time lag bins in which 

the correlogram was greater than the upper bound of the confidence interval, the 

correlogram was reduced by the value of the upper confidence interval bound in that bin 

(e.g. if the correlogram in a bin was equal to 0.1 and the upper confidence interval 

bound was 0.06, the new correlogram value would be 0.04).  Values of the correlogram 

which fell below the lower bound of the confidence interval were reduced by the value of 

the lower bound (e.g. if the correlogram bin was equal to 0.02 and the lower confidence 

interval bound was 0.03, the new correlogram value would be -0.01).   
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For each cell pair, the average theta-removed cross-correlation across all sessions of a 

given behavior was calculated by taking the theta-removed cross correlation for each 

individual behavioral session and then averaging across sessions. The area of the 

cross-correlogram between +/- 5 ms lag was calculated (“summed correlation”, as in 

Figures 3, 4B left, 5 and 6C and Supplementary Figure 1) and used as a measure of 

short-latency correlation in Supplementary Figure 2.  The population average of the 

summed correlation was used in Supplementary Figure 2 to look at differences between 

low and high relative spatial phase groups, calculated as in Figure 6.  The relationship 

between relative spatial phase and the summed correlation or the summed, theta-

subtracted correlation (Supplementary Figure 2) was tested using repeated measure 

ANOVA.  

 

Data availability 

The data used in this experiment is available upon request from the authors. 

 

Code availability 

The custom MATLAB scripts used in this paper are available upon request from the 

authors. 
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FIGURE LEGENDS 

 

Figure 1. Grid cell firing rates varied across active and sleep states 

(a) An example histological section shows a tetrode track in the superficial layers of the medial 

entorhinal cortex. Scale bar is 1 mm. 

(b) Grid cell firing rates differed significantly across behavioral states. Firing rates (mean +/- 

SEM) were highest during active ambulation and lowest during NREM sleep.  

(c) Histograms show the distributions of firing rates across grid cells segregated by behavioral 

state.  

(d) Representative examples of LFP epochs are presented with simultaneous spike rasters from 

an example ensemble of grid cells plotted above each trace. Each row of the raster plots 

corresponds to a single grid cell. Activity from the same ensemble of grid cells is shown in each 

behavioral state. Vertical scale bar is 500 µv, horizontal scale bar is 1 s. 

 

Figure 2. Cross-correlations between grid cell spike times were related to the degree of 

overlap in grid cell rate maps across active waking behaviors and sleep. 

(a-c) Each panel shows color-coded spike time cross-correlations (divided by their average; see 

Methods) for all pairs of grid cells sorted from highest rate map correlation coefficient (highest 

Cell Pair ID) to lowest rate map correlation coefficient (lowest Cell Pair ID) (See Methods). The 

leftmost three columns show results for RUN, REM, and NREM and are plotted across time lags 

of +/- 5 s. The rightmost column shows results for NREM plotted across time lags of +/- 1 s. 

Note that similar qualitative relationships between spike time cross-correlations and grid cell 

rate map correlations are maintained across all three behavioral states and for spike trains 

binned with varying degrees of temporal resolution (i.e., 5 ms bins in a, 10 ms in b, and 50 ms in 

c).  
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Figure 3. The relationship between spatial overlap and spike-time cross correlations was 

preserved across waking and sleep states for grid cell pairs but not CA1 place cell pairs 

Spike time cross-correlation coefficients were summed across a +/- 5 ms time lag.  Each dot in 

a scatterplot represents a grid cell pair’s rate map correlation coefficient and summed spike train 

cross-correlation coefficient.  Each plot also shows the best-fit line in black and the associated 

correlation coefficient, r. 

(a) For all grid cell pairs and across all three behavioral states, positive correlations were 

observed between spike time cross-correlations and grid cell rate map correlation coefficients.  

(b) Pairs of CA1 place cells exhibited a significant positive correlation between summed spike 

time cross-correlation coefficients and place cell rate map correlation coefficients during active 

waking behaviors, but that relationship was not maintained during REM or NREM sleep.  

 

Figure 4. Grid cell spike time correlations during waking behaviors and sleep were 

predicted by spatial phase offsets between grid fields 

(a) The method used to calculate the relative spatial phase between grid cells is demonstrated 

with this illustrative example. Color-coded rate maps for a pair of grid cells are shown in the left 

two panels. The third panel shows the rate map cross-correlation for the grid cell pair. The grid 

cell rate map cross-correlation peak nearest to the plot origin was used to estimate ΔφX and ΔφY 

offsets (see right panel). Each offset was then normalized by the spatial period (R), which was 

assumed to be the same between all peaks in the rate map cross-correlation.  

(b) The relationship between grid cell pairs’ relative spatial phases and their spike time cross-

correlations is shown.  Spike time cross correlation values were summed across time lags of +/- 

5 ms (left column) or +/- 50 ms (right column) and averaged within each (ΔφX, ΔφY) bin. Data 

from RUN (top), REM (middle), and NREM (bottom) states show maximal spike train cross-

correlation values at low relative spatial phases (i.e., high overlap of grid fields) and weaker 

spike train cross-correlation values at high relative spatial phases (i.e., low overlap of grid 
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fields). The plots were scaled by their peak value to compare across behaviors with different 

spike rates.  Normalized cross-correlation coefficient values are plotted in color scale for ease of 

plot interpretation. 

 

Figure 5. Grid cell spike time correlations decreased with relative spatial phase 

magnitude across behavioral states, while CA1 spike time correlations were related to 

distance between place fields only during active running 

In this figure, spike time cross-correlation coefficients for each behavioral state were normalized 

by dividing by the bin with the greatest average spike time cross-correlation coefficient (see 

Supplementary Figure 1 for non-normalized versions). 

(a) In these plots, the two-dimensional relative spatial phase values depicted in Figure 4B were 

collapsed to a single dimension (magnitude) by calculating the Euclidean distance of ΔφX and 

ΔφY. In all three behavioral conditions, spike time cross-correlations summed over +/- 5 ms (left) 

and +/- 50 ms time lags (right) decreased as the magnitude of relative spatial phase increased.  

(b) In this plot, we calculated the relative angular distance between place field centers on the 

circular track and compared that distance to spike time cross-correlations summed over +/- 5 

ms (left) and +/- 50 ms time lags (right). Place cells’ spike time cross-correlations decreased as 

distance between place fields increased during active waking behavior (i.e., RUN) but not during 

sleep states (i.e., REM and NREM).  

 

Figure 6. Grid cell pairs with overlapping grid fields exhibited a greater proportion of high 

spike time cross-correlations across active and sleep states. 

(a) Color-coded rate maps (left two columns) and rate map cross-correlation (right column) for 

an example grid cell pair with low relative spatial phase (i.e., high grid field overlap).  

(b) Same as A but for an example grid pair with high relative spatial phase (i.e., low grid field 

overlap).  
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(c) Probability density functions for normalized spike time cross-correlation coefficients summed 

over +/- 5 ms time lags. Grid cell pairs were sorted into High Overlap (left column), Mid Overlap 

(center column), or Low Overlap (right column) categories, corresponding to low, moderate, and 

high relative spatial phase magnitude values, respectively. For all three behavioral conditions, 

grid cell pairs in the High Overlap category were more likely to exhibit relatively high spike time 

cross-correlations, and grid cell pairs in the Low Overlap category were more likely to exhibit 

low spike time cross-correlations.  

 

TABLE 

 

Table 1. Grid cell counts per animal. 

Animal Number of Grid 
Cells 

Number of Grid Cell 
Pairs Used 

Number of 
Recording Days 

Rat 20 33 57 5 

Rat 26 24 52 4 

Rat 29 5 9 1 

Rat 74 20 10 7 

Rat 78 24 78 5 

Rat 109 52 75 7 
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Supplementary Figure 1. Related to Figure 5; Across all behavioral states, grid cell pairs’ 

cross-correlation coefficients decreased with increasing relative spatial phase. Place cell 

pairs’ cross-correlation coefficients decreased with increasing distance between place 

fields during RUN, but a similar relationship was not observed during NREM or REM. 

These plots are the same as those in Figure 5 except that spike time cross-correlation coefficients 

were not normalized according to maximum values within each behavioral state.   

 

Supplementary Figure 2. Related to Figure 5; Short-time spike time correlation patterns 

of grid cell pairs with overlapping grid fields maintained across behavioral states when 

the effect of theta phase modulation of spiking and other slow influences was removed. 

To determine the extent to which spike time cross-correlation results were explained by shared 

theta phase preferences of spike times and other slow modulations in spike rate, spikes were 

temporally shuffled two hundred times within 500 ms moving windows, while keeping the theta 

phase of each spike time fixed. Spike time cross-correlations were then re-calculated using 

shuffled trains (See Methods). This analysis was only done for RUN and REM spike trains, 

given that NREM is characterized by an absence of theta. 

(a) Shown are original spike time cross-correlations (black) overlaid on 10 (out of 200) randomly 

selected examples of shuffled cross-correlations (gray) for an example grid cell pair. Cross-

correlograms for an example grid cell pair with highly overlapping fields (i.e., low relative spatial 

phase magnitude) are shown for RUN (first column) and REM (second column). Also shown are 

RUN (third column) and REM (fourth column) cross-correlograms for an example grid cell pair 

with largely non-overlapping grid fields (i.e., high relative spatial phase magnitude). 

(b) The average theta-determined component of the correlation (gray, solid) with 98% 

confidence intervals (gray, dotted) and associated original spike time cross-correlogram (black). 

Columns are as in A. 
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(c) The correlogram remaining after removal of the theta-modulated components.  Note that 

substantial peaks around zero lag were still present in the low relative spatial phase plots (left 

two columns) but not in the high relative spatial phase plots (right two columns). 

(d) Cell pairs were split into low and high relative spatial phase groups as in Figure 6, and their 

correlation was summed over the +/- 5 ms lag window.  The average correlation sum was 

calculated across each subpopulation for both RUN (first column) and REM (second column).  

The same calculation was done on the theta-removed correlations in the two columns to the 

right. 

(e) The same as in D, but with values normalized by the Euclidean norm of the population of 

summed correlations before sorting into near or far groups. This was done to aid visual 

comparison between RUN and REM conditions, and between original and theta-removed 

groups. 
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