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Abstract 
Although it is widely recognised as involving two stages (poor placentation followed by oxidative 
stress/inflammation), the precise originating causes of pre-eclampsia (PE) remain elusive. We 
have previously brought together some of the considerable evidence that a (dormant) microbial 
component is commonly a significant part of its aetiology. However, apart from recognising, 
consistent with this view, that the many inflammatory markers of PE are also increased in infection, 
we had little to say about immunity, whether innate or adaptive. In addition, we focussed on the 
gut, oral and female urinary tract microbiomes as the main sources of the infection. We here 
marshall further evidence for an infectious component in PE, focussing on the immunological 
tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the 
father’s semen assists this immunological tolerance. As well as these benefits, however, semen is 
not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that 
semen may be responsible for inoculating the developing conceptus with microbes, not all of which 
are benign. It is suggested that when they are not, this may be a significant cause of pre-
eclampsia. A variety of epidemiological and other evidence is entirely consistent with this, not least 
correlations between semen infection, infertility and PE. Our view also leads to a series of other, 
testable predictions. Overall, we argue for a significant paternal role in the development of PE 
through microbial infection of the mother via insemination. 
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“In one of the last articles which he wrote, the late Professor F J Browne (1958) expressed the 
opinion that all the essential facts about pregnancy toxaemia are now available and that all that is 

required to solve the problem is to fit them together in the right order, like the pieces of a jigsaw 
puzzle” [1] 

“It appears astonishing how little attention has been given in reproductive medicine to the maternal 
immune system over the last few decades.” [2]  

Introduction 
Pre-eclampsia (PE) is a multifactorial disease of pregnancy, in which the chief manifestations are 
hypertension and proteinuria [3-11]. It affects some 3-5% of nulliparous pregnancies worldwide [10; 
12; 13], and is associated (if untreated) with high morbidity and mortality [14-18]. There is much 
literature on accompanying features, and, notwithstanding possible disease subdivisions [19; 20], 
the development of PE is typically seen as a ‘two-stage’ process (e.g. [21-27]), in which in a first 
stage incomplete remodelling of spiral arteries leads to poor placentation. In a second stage, the 
resulting stress, especially hypoxia-induced oxidative stress [28] (and possibly hypoxia-reperfusion 
injury), then leads to the symptoms typical of later-pregnancy pre-eclampsia.  However, the various 
actual originating causes of either of these two stages remain obscure. Many theories have been 
proposed (albeit a unitary explanation is unlikely [19]), and indeed, PE has been referred to as a 
‘disease of theories’ [1; 29; 30]. The only effective ‘cure’ is delivery [31], which often occurs 
significantly pre-term, with its attendant complications for both the neonate and in later life. 
Consequently, it would be highly desirable to improve our understanding of the ultimate causes of 
PE, so that better prevention or treatments might be possible. 

The ‘two-stage’ theory is well established, and nothing we have to say changes it. However, none 
of this serves to explain what ‘initiating’ or ‘external’ factors are typically responsible for the poor 
placentation, inflammation, and other observable features of PE [32]. 

Microbes are ubiquitous in the environment, and one potential external or initiating factor is low-
level microbial infection. In a recent review [32], we developed the idea (and summarised extensive 
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evidence for it) that a significant contributor to pre-eclampsia might be a (largely dormant [33-36] 
and non-replicating) microbiome within the placenta and related tissues, also detectable in blood 
and urine. Others (e.g. [37-44]) have drawn similar conclusions. Interestingly, recent analyses [19; 
45] of placental gene expression in PE implicate changes in the expression of TREM1 (triggering 
receptor on myeloid cells-1) and the metalloprotease INHA, and in one case [19] also LTF 
(lactotransferrin), that also occur during infection [46-49]. Although we highlighted the role of 
antibiotics as potentially preventative of PE [32], and summarised the significant evidence for that, 
we had relatively little to say about immunology, and ignored another well-known antidote to 
infectious organisms in the form of vaccines. There is certainly also an immune component to pre-
eclampsia (e.g. [24; 50-58] and below). One of the main theories of (at least part of the explanation 
of) PE is that of ‘immune maladaptation’ [50-52; 59]. Thus, the main focus of the present analysis 
is to assess the extent to which there is any immunological evidence for a role of infectious agents 
(and the utility of immunotolerance to or immunosuppression of them) in PE. Figure 1 summarises 
our review in the form of a ‘mind map’ [60]. We begin with the broad question of immunotolerance, 
before turning to an epidemiological analysis. 

Figure 1. A ‘mind map’ [60] of the review. Start at ‘midnight’ and read clockwise. 

Immune tolerance in pregnancy 
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Much of the original thinking on this dates back to Sir Peter Medawar [61-66], who recognised that 
the paternal origin of potentially half the antigens of the fetus [67] created an immunological 
conundrum: it should normally be expected that the fetus’s alloantigens would cause it to be 
attacked by the maternal immune system as ‘foreign’. There would therefore have to be an 
‘immune tolerance’ [65; 68-70]. Historically it was believed that the fetus is largely ‘walled off’ from 
the mother [71]; however, we now appreciate [72; 73] that significant trafficking of fetal material 
across the placenta into the maternal circulation and vice versa occurs throughout pregnancy. 
Indeed, this is the basis for the development of non-invasive prenatal testing (NIPT). In line with 
this, grams of trophoblast alloantigens are secreted daily into the maternal circulation during the 
third trimester (Figure 2), and this is related to the prevalence of PE [74-80]. Consequently, both 
the concept and the issue of immune tolerance are certainly both real and important. At all events, 
the immunobiology of the fetus has been treated in theory largely in the way that a transplanted 
graft is treated, and uteroplacental dysfunction (leading to PET and IUGR) is largely regarded as a 
graft rejection (e.g. [53; 81-87]). Clearly there are relationships between the immunogenicity of the 
foreign agent and the responsiveness of the host; to this end, Zelante and colleagues [88] 
recognise the interesting similarities between tolerance to paternal alloantigens (as in pregnancy) 

and the tolerance observed in chronic fungal infections.  

Figure 2. Effective suppression of response to fetal cell trafficking leads to a normal pregnancy, 
while its failure can lead to pre-eclampsia 

The clinical course of automimmune disease during pregnancy: an inconsistent effect 
 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/198796doi: bioRxiv preprint 

https://doi.org/10.1101/198796
http://creativecommons.org/licenses/by/4.0/


7 
 

The seminal observation by Philip Hench that the symptoms of the rheumatoid arthritis (RA) were 
frequently and dramatically ameliorated by several conditions, including pregnancy [89], led to the 
discovery of cortisone [90] and gave unique insights into the complex interaction between the 
maternal immune system and the developing fetal/placental unit. Contemporary data suggests that 
the improvement in RA is not ubiquitous as first thought. Amongst all pregnant women about 25% 
of women have no improvement in their symptoms at any stage in pregnancy and in a small 
number of cases the disease may actually worsen [91]. The process by which pregnancy affects 
disease activity in RA is not completely understood and several putative mechanisms have been 
proposed. Of interest, although plasma cortisol rises during pregnancy and was initially thought to 
be key in the amelioration of symptoms, there is actually no correlation between cortisol 
concentrations and disease state [92].  It has also been reported that  the degree of maternal and 
paternal MHC mismatch has been shown to correlate with the effect of the RA remission during 
pregnancy [93], leading to the hypothesis that the early immunological events in pregnancy that 
establish tolerance to the fetal allograft contribute to RA remission. Clearly, this may also account 
for the disparity in response to pregnancy. RA is not unique in being the only autoimmune disease 
to be profoundly altered by pregnancy. Although less well studied, non-infectious uveitis tends to 
improve during pregnancy from the second trimester onwards, with the third trimester being 
associated with the lowest disease activity [94]. Again, the mechanism underlying this 
phenomenon is not completely elucidated.  
It is now generally accepted [95] that, notwithstanding the sweeping generalisation, autoimmune 
diseases with a strong cellular (innate) pathophysiology (RA, Multiple Sclerosis (MS)) improve, 
whereas diseases characterised by autoantibody production such as systemic lupus erythematous 
(SLE) and Grave’s disease tend towards increased severity in pregnancy.  

We have previously reported an association between pregnancy and the risk of subsequent 
maternal autoimmune disease which was also related to the mode and gestation of delivery. There 
was an increased risk of autoimmune disease after Caesarean section may be explained by 
amplified fetal cell traffic at delivery, while decreased risks after abortion may be due to the transfer 
of more primitive fetal stem cells [96]. 

 

Mechanisms of immune tolerance during pregnancy 
Following the recognition of maternal immunotolerance, a chief discovery was the choice of HLA-
G, a gene with few alleles, for the antigens used at the placental interface. Thus, the idea that 
placental HLA-G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune 
responses to foreign (paternal) antigens via these actions on immune cells is now well established 
[97-102].  

It is also well established that Regulatory T cells (Tregs) play an indispensable role in maintaining 
immunological unresponsiveness to self-antigens and in suppressing excessive immune 
responses deleterious to the host [103]. Consequently, much of present thinking seems to involve 
a crucial role for regulatory Tregs in maintaining immunological tolerance during pregnancy [53; 64; 
104-114], with the result that effector T cells cannot accumulate within the decidua (the specialized 
stromal tissue encapsulating the fetus and placenta) [115]. 

In an excellent review, Williams and colleagues [116] remark “Regulatory T cells (Tregs) are a 
subset of inhibitory CD4+ helper T cells that function to curb the immune response  to infection, 
inflammation, and autoimmunity”. “There are two developmental pathways of Tregs: thymic (tTreg) 
and extrathymic or peripheral (pTreg). tTregs appear to suppress autoimmunity, whereas pTregs 
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may restrain immune responses to foreign antigens, such as those from diet, commensal bacteria, 
and allergens”. Their differential production is controlled by a transcription factor called Foxp3.  

Further, “a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but 
dispensable for tTreg cell generation, is present only in placental mammals. It is suggested that 
during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells 
emerged in placental animals to enforce maternal-fetal tolerance [117]”. 

Williams and colleagues conclude that “These findings indicate that maternal–fetal tolerance to 
paternal alloantigens is an active process in which pTregs specifically respond to paternal antigens 
to induce tolerance. Thus, therapies should aim not to suppress the maternal immune system but 
rather to enhance tolerance. These findings are consistent with an increase in the percentage of 
Tregs during pregnancy and with no such increase in women with recurrent pregnancy loss [118]” 
[116]. Thus maternal tolerance is based on exposure to the paternal alloantigens, although 
mechanisms such as the haem oxygenase detoxification of haem from degrading erythrocytes 
[119] are also important. Note too that pregnancy loss is often caused by automimmune activity 
[120] (and see later). 

Additionally, Treg cells have several important roles in the control of infection (e.g. [121-126]). 
These include moderating the otherwise potentially dangerous response to infection, and being 
exploited by certain parasites to induce immunotolerance.  

Finally, here, it is also recognised that the placenta does allow maternal IgG antibodies to pass to 
the fetus to protect it against infections. Also, foreign fetal cells persist in the maternal circulation 
[127] (as does fetal DNA, nowadays used in prenatal diagnosis). One cause of pre-eclampsia is 
clearly an abnormal immune response towards the placenta. There is substantial evidence for 
exposure to partner's semen as prevention for pre-eclampsia, largely due to the absorption of 
several immune modulating factors present in seminal fluid [128]. We discuss this in detail below. 

Innate and adaptive immunity 
Although they are not entirely independent [129; 130], and both respond to infection, it is usual to 
discriminate (the faster) innate and (the more leisurely) adaptive immune responses (e.g. [131-
135]). As is well known (reviewed recently [136]), the innate immune system is responsible for the 
recognition of foreign organisms such as microbes. It would be particularly convenient if something 
in the immune response did actually indicate an infection rather than simply any alloantigen, but 
unfortunately – especially because of the lengthy timescale over which PE develops – innate 
responses tend to morph into adaptive ones. This means (i) that there may be specific signals from 
early innate events that may be more or less specific to innate responses, and (ii) that it also does 
not exclude the use of particular patterns of immune responsive elements [137-139] to characterise 
disease states. 

A dysregulation of the immune system is widely recognised as an accompaniment to normal 
pregnancy [64; 111; 140-142], and especially in PE [51; 53; 54; 56-59; 143-150], and it is worth 
looking at it a little more closely. 

The innate immune system responds to microbial components such as LPS via cell membrane 
receptors. Innate immune cells express a series of evolutionarily conserved receptors known as 
pattern-recognition receptors (PRRs). PRRs recognise and bind conserved sequences known as 
pathogen-associated molecular patterns (PAMPs). Bacterial lipopolysaccharide (LPS) and  
peptidoglycan, and double stranded viral  RNA are unique to microbes and act as canonical 
PAMPs, while the main family of PRRs is represented by the Toll-like receptors (TLRs) [151; 152]. 
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Downstream events, as with many others [153; 154] converge on the NF-κB system and/or 
interferon, leading to the release of a series of inflammatory cytokines such as IL-2, IL-6, IL-8, 
TNF-α and especially IL-1β.  

Matzinger’s “danger model” [155-160] (and see [65] and Figure 3) suggested that activation of the 
immune system could be evoked by danger signals from endogenous molecules expelled from 
injured/ damaged tissues, rather than simply from the recognition of non-self (although of course in 
the case of pregnancy some of these antigens are paternal alloantigens). Such endogenous 
molecules are referred to as Damage-associated molecular patterns (DAMPs), but are not our 
focus here, albeit they likely have a role in at least some elements of PE [161]. We shall see later, 
however, that Matzinger’s theory is entirely consistent with the kinds of microbial (and disease) 
tolerance that do seem to be an important part of pregnancy and PE (and see [162]).  

The maternal innate immune system plays an important role both in normal pregnancy, and in 
particular in hypertensive disorders of pregnancy including preeclampsia (PE) [143; 163-169]. One 
persuasive and widely accepted view is that normal pregnancy is characterised by a low-grade 
systemic inflammatory response and specific metabolic changes, and that virtually all of the 
features of normal pregnancy are simply exaggerated in pre-eclampsia [32; 163; 170; 171]. 
Certainly it is long established that “Normal pregnancy and preeclampsia both produce 
inflammatory changes in peripheral blood leukocytes akin to those of sepsis” [163], and there are 
innate Immune defences in the uterus during pregnancy [140]. Normal pregnancy is considered to 
be a Th2 type immunological state that favours immune tolerance in order to prevent fetal rejection 
[119]. By contrast, preeclampsia (PE) has been classically described as a Th1/Th2 imbalance 
[106; 145; 172-174], but as mentioned above (and before [32]), recent studies have highlighted the 
role of regulatory T-cells as part of a Th1/Th2/Th17 paradigm [143; 144]. This leads to the question 
of whether there is some kind of trade-off between the responses to paternal alloantigens and 
those of microbes. 
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Figure 3. Matzinger’s ‘danger model’ vs the classical theory of self vs self-nonself. Based on and 
redrawn from [158]. 

 

A trade-off for mating and immune defence against infection 
Certainly there is some evidence for a trade-off between mating and immune defence against 
infection [175-177]. Consistent with this (albeit with much else) is the fact [178-180] that pregnancy 
is associated with an increased severity of at least some infectious diseases. There is evidence 
[181; 182] that “adaptive immune responses are weakened, potentially explaining reduced viral 
clearance. Evidence also suggests a boosted innate response, which may represent a 
compensatory immune mechanism to protect the pregnant mother and the fetus and which may 
imply decreased susceptibility to initial infection [179]”. 

The role(s) of complement in PE 
Complement, or more accurately the complement cascade, is an important part of the innate 
immune system that responds to infection. Later (downstream) elements also respond to the 
adaptive immune system. Our previous review [32] listed many proteins whose concentrations are 
changed in both infection and PE. Since we regard low-level infection as a major cause of the 
inflammation observed in PE, one would predict that the complement system is activated in PE, 
and this observation is amply borne out [183-198]. We give some of the details in Table 1.  
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Figure 4. The complement system (based on figures in [135; 188]). 

The complement cascade may be activated in three main ways Fig 4), known as classical, 
alternative or lectin pathways [130; 186; 188; 199; 200]. Complement activation by the classical, 
alternative or lectin pathway results in the generation of split products C3a, C4a and C5a with pro-
inflammatory properties.  

Because both innate and adaptive immunity can activate elements of the downstream complement 
system, it is hard to be definitive, but there is some evidence that elements such as Ba and Bb (the 
latter of known structure [201]) are selectively released during infection, very much upstream and 
in the alternative pathway [188; 199; 200; 202-204]. Most importantly (Table 1), while probably not 
a specific serum marker, there is considerable evidence that Bb levels are increased in PE, 
arguably providing further evidence for a role of infectious agents in the aetiology of PE. 

Table 1. Changes in the Complement system during PE and related pregnancy disorders 

Complement 
element 

Details Reference 

   
Bb Raised in PE, OR 2.1 (CI = 1.4–3.1, P < 0.0003) [185] 
Bb Adjustment for risk factors did not attenuate the 

association between an elevated Bb and preeclampsia 
(adjusted odds ratio OR 3.8, 95% CI, 1.6 to 9, P<0.002) 
in the cohort. After removing women with plasma 
obtained before 10 weeks, the adjusted OR of Bb in the 

[183] 
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top decile for preeclampsia was 6.1 (95% CI 2.2 to 17, 
P<0.0005) 

Bb Median Bb levels were higher in the maternal plasma of 
severe PE subjects (n = 24) than in controls (n = 20), 
1.45 ± 1.03 versus 0.65 ± 0.23 µg.mL-1, P < 0.001. 

[196] 

Bb Pre-term birth. Women with Bb in the top quartile were 
4.7 times more likely to have an SPTB less than 34 
weeks’ gestation as compared with women who had 
levels of Bb in the lower 3 quartiles (CI 1.5-14, 
P<0.003).  

[184] 

Bb Maternal Bb levels were significantly higher in the 
preeclamptic group than in the nonpreeclamptic group 
(P<0.003 in all studied, P<0.007 in African Americans). 

[205]  

Bb Pyelonephritis. Pregnant women with pyelonephritis 
had a higher median plasma concentration of fragment 
Bb than those with a normal pregnancy (1.3 mg/ml, 
IQR: 1.1–1.9 vs. 0.8 mg/ml, IQR: 0.7–0.9; P<0.001). No 
significant differences were observed in the median 
maternal plasma concentration of fragment Bb between 
pregnant women with pyelonephritis who had a positive 
blood culture and those with a negative blood culture 

[206] 

Bb Median amniotic fluid Bb levels were also significantly 
higher (𝑃𝑃 = 0.03) in preeclamptic women than in normal 
pregnant women (1127 ng/mL versus 749 ng/mL). The 
alternative complement pathway is principally involved 

[194] 

Bb, C3a, C5a, 
and MAC 

Increased significantly in EOSPE (all P<0.01) and 
LOSPE (P value: 0.027, <0.001, 0.001, and <0.001, 
respectively) compared with Early/Late control. 

[195]. See also [197] 

Bb or C3a Women who were obese with levels of Bb or C3a in the 
top quartile were 10.0 (95% confidence interval, 3.3–
30) and 8.8 (95% confidence interval, 3–24) times, 
respectively, more likely to develop preeclampsia 
compared with the referent group at 20 weeks gestation  

[207] 

C1q and C4d Increased significantly in LOSPE (P value: .003 and 
.014, respectively) compared with L-control 

[195]. See also [197]  

C3a Adjusted for parity and prepregnancy body mass index, 
women with levels of C3a in the upper quartile in early 
pregnancy were three times more likely to have an 
adverse outcome later in pregnancy compared with 
women in the lowest quartile (95% confidence interval, 
1.8–4.8; P<.001). This was especially the case for pre-
term birth (P<0004). Elevated C3a as early as the first 
trimester of pregnancy is an independent predictive 
factor for adverse pregnancy outcomes, suggesting that 
complement-related inflammatory events in pregnancy 
contribute to the subsequent development of poor 
outcomes at later stages of pregnancy  

[188] 

C3a Autoantibody-mediated complement C3a receptor 
activation contributes to the pathogenesis of 
preeclampsia  

[191] 

C3a Women who developed early-onset preeclampsia as 
compared with the term pregnant controls had 
significantly higher (𝑃𝑃 = 0.04) median amniotic fluid C3a 
levels (318.7 ng/mL versus 254.5 ng/mL) 

[194]  

C3a 751·6 (194·6–1660) vs 1358 (854·8–2142) ng.mL-1, 
P<0.05 pre-eclamptic vs healthy pregnant. 

[208] 
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C3a, 
C3a_desArg & 
C5a 

Elevated at term in PE but not earlier (P<0.05)  
 

[209; 210]  
 

C3a, C5a & 
AT1-AA 

Levels in serum from the severe pre-eclampsia group 
were significantly higher than in controls (p < 0.05).  
 

[211] 

C4 C4 was lowered (P<0.001) in serum of term pre-
eclamptics 

[212] 

C4d Placental immunochemistry showed that C4d was 
rarely present in placentas from healthy controls (3%), 
whereas it was observed in 50% of placentas obtained 
from preeclamptic women (P=0.001) 

[190] 

C5a The mean cord plasma C5a concentration was higher 
in patients with PET (8.3 ng/ml ± 1.71) than normal 
women (3.2 ng/ml ± 0.35) P < 0.01) 

[192] 

C5b-9 Severe preeclampsia was associated with marked 
elevations in urinary C5b-9 (median and interquartile 
range, 4.3 (1.2–15.1) ng/mL) relative to subjects with 
chronic hypertension and healthy controls (P<0.0001).  

[213] 

C6 Novel evidence that genetic variations in complement 
genes C6 and MASP1- were associated with 
preeclampsia risk 

[198] 

 

We might also note that C1q-/- mice shows features of PE [214], consistent with the view that 
lowering levels of anti-inection response elements of the complement system leads to PE, 
consistent again with an infectious component to PE.  

 

Induction of tolerance by exposure to antigens and our main hypothesis: roles of 
semen and seminal plasma 
A number of groups (e.g. [100; 128; 215-218]) have argued for a crucial role of semen in inducing 
maternal immunological protection, and this is an important part of our own hypothesis here. The 
second component, however, is a corollary of it. If it is accepted that semen can have beneficial 
effects, it may also be that in certain cases it can also have harmful effects. Specifically, we 
rehearse the fact that semen is not sterile, and that it can be a crucial source of the microbes that 
may, over time, be responsible for the development of PE (and indeed other disorders of 
pregnancy, some of which we rehearse). 

Semen consists essentially of the sperm cells suspended in a fluid known as seminal plasma [219]. 
Seminal plasma contains many components [220; 221], such as transforming growth factor β 
(TGF-β) [216; 222-224], and there is much evidence that a number of them are both protective and 
responsible for inducing the immune tolerance observed in pregnancy. Thus, in a key paper on the 
issue, Robertson and colleagues state, “TGFβ has potent immune-deviating effects and is likely to 
be the key agent in skewing the immune response against a Type-1 bias. Prior exposure to semen 
in the context of TGFβ can be shown to be associated with enhanced fetal/placental development 
late in gestation. In this paper, we review the experimental basis for these claims and propose the 
hypothesis that, in women, the partner-specific protective effect of insemination in pre-eclampsia 
might be explained by induction of immunological hyporesponsiveness conferring tolerance to 
histocompatibility antigens present in the ejaculate and shared by the conceptus” [128]. 
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TGFβ and prostaglandin E (also prevalent in seminal fluid [225]) are potent Treg cell-inducing 
agents, and coitus is one key factor involved in expanding the pool of inducible Treg cells that react 
with paternal alloantigens shared by conceptus tissues [226-229]. 

Both in humans and in agricultural practice, semen may be stored with our without the seminal fluid 
(in the latter cases, the sperm have been removed from it and they alone are used in the 
insemination). However, a number of papers have shown very clearly that it is the seminal fluid 
itself that contains many protective factors, not least in improving the likelihood of avoiding adverse 
pregnancy outcomes [128; 177; 230; 231]. Thus semen is the preferred substrate for inducing 
immunotolerance and hence protection against PE.  

Evidence from epidemiology – semen can be protective against PE 
As well as those (such as pre-existing diseases such as hypertension and diabetes [232; 233], that 
we covered previously [32]), there are several large-scale risk (or anti-risk) factors that correlate 
with the incidence of pre-eclampsia. They are consistent with the idea that a woman’s immune 
system adapts slowly to (semen) proteins from a specific male partner [128; 215; 216], and that the 
content of semen thus has major phenotypic effects well beyond its donation of (epi)genetic 
material. We believe that our hypothesis about the importance of semen in PE has the merit of 
being able to explain each of them in a simple and natural way: 

1. The first pregnancy with any given partner means an increased susceptibility to PE [5; 234; 
235] 

2. Conception early in a new relationship means an increased susceptibility to PE [236-238] 
3. Conception after using barrier contraceptives means an increased susceptibility to PE [237; 

239; 240] 
4. Conception after using non-barrier methods or after a long period of cohabitation means a 

decreased susceptibility to PET  [215; 237] 
5. Donor egg pregnancies have a hugely inflated chance of PET [235; 241-243] 
6. Pre-eclampsia in a first pregnancy increases its likelihood in subsequent pregnancies [244] 
7. Oral sex with the father is protective against PE in a subsequent pregnancy [245; 246] 
8. Age is a risk factor for PE [247-251]. 
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9. Donor sperm pregnancies (artificial insemination) are much more likely to lead to PE [246; 
252-255] 

Figure 5. Some epidemiological risk factors for pre-eclampsia 

 

We consider each in turn (Figure 5). 

The first pregnancy with any given partner means an increased susceptibility to PE 
This is extremely well established (e.g. [5; 54; 149; 232; 234; 235; 256-263]). Thus, Duckitt and 
Harrington [232] showed nulliparity to have a risk ratio (over pregnant women with previous 
pregnancies) of 2.91 (95% CI 1.28-6.61). Luo et al. [259] find an odds ratio of 2.42 (95% CI 2.16-
2.71) for PE in primiparous vs multiparous women, while Deis and colleagues found the OR to be 
2.06 (CI 1.63–2.60), p=0.0021. Dildy and colleagues [264] summarise several studies, including a 
very large one by Conde-Agudelo and Belizán [265] (RR 2·38; 95% CI 2·28-2·49), while the meta-
analysis of English and colleagues [262] gives a risk ratio for nulliparity of 2.91 (CI 1.28–6.61). The 
consistency of each of these studies allows one to state with considerable confidence that there is 
a 2-3-fold greater chance of PE with a first baby. 
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However, an additional and key clue here is not simply (and maybe even not mainly) that it is just 
being nulliparous (i.e. one’s first pregnancy) but that it is primipaternity – one’s first pregnancy with 
a given father – that leads to an increased susceptibility to PE [183; 266-277] (cf. [278]). Changing 
partners effectively ‘resets the clock’ such that the risk with a new father is essentially as for first 
pregnancies. Thus, Lie et al. [279] noted that if a woman becomes pregnant by a man who has 
already fathered a pre-eclamptic pregnancy in a different woman her increased risk of developing 
pre-eclampsia is 1.8-fold (CI 1.2-2.6). This is far greater than the typical incidence of PE, even for 
nulliparous women. The equivalent figure in the study of Lynch and colleagues [183] was RR = 5.1, 
95% CI, 1.6 to 15. The strong implication of all of this is that the father can have bad effects but 
that some kind of ‘familiarity’ with the partner is protective [275], the obvious version – and that 
more or less universally accepted – being an immunological familiarity (i.e. tolerance). Note, 
however, that this is when the pregnancy goes to term: a prior birth confers a strong protective 
effect against preeclampsia, whereas a prior abortion confers only a weaker protective effect [235].  

Conception early in a new relationship means an increased susceptibility to PE  
The idea that conception early in a new relationship means an increased susceptibility to PE 
follows immediately from the above. The landmark studies here are those of Robillard and 
colleagues [236], of Einarsson and colleagues [237], and of Saftlas and colleagues [238], 

Robillard et al.  [236] studied 1011 consecutive mothers in an obstetrics unit. The incidence of 
pregnancy-induced hypertension (PIH) was 11.9% among primigravidae, 4.7% among same-
paternity multigravidae, and 24.0% among new-paternity multigravidae. For both primigravidae and 
multigravidae, the length of (sexual) cohabitation before conception was inversely related to the 
incidence of PIH (P<0.0001). 

Einarsson and colleagues [237] studied both the use of barrier methods and the extent of 
cohabitation prior to pregnancy. For those (allegedly…) using barrier methods before insemination, 
the odds radio for PE when prior cohabitation was only 0-4 months versus the odds ratio for PE: 
normotensive was 17.1 (CI 2.9-150.6), versus 1.2 (CI 0.1-11.5) when the period of cohabitation 
was 8-12 months, and 1.0 for periods of cohabitation exceeding one year.   

Saftlas et al. [238] recognised that parous women who change partners before a subsequent 
pregnancy appear to lose the protective effect of a prior birth.  In a large study (mainly based 
around calcium supplementation), they noted that women with a history of abortion who conceived 
again with the same partner had nearly half the risk of preeclampsia (adjusted odds ratio = 0.54, 
95 percent confidence interval: 0.31, 0.97). In contrast, women with an abortion history who 
conceived with a new partner had the same risk of preeclampsia as women without a history of 
abortion (adjusted odds ratio = 1.03, 95 percent confidence interval: 0.72, 1.47). Thus, the 
protective effect of a prior abortion operated only among women who conceived again with the 
same partner 

Conception after using barrier contraceptives means an increased susceptibility to PE 
A prediction that follows immediately from the idea that paternal antigens in semen (or seminal 
fluid) are protective is that the regular use of barrier methods will lower maternal exposure to them, 
and hence increase the likelihood of PE. This too is borne out [237; 239; 240]. Thus Klonoff-Cohen 
and colleagues found a 2.37-fold (CI 1.01-5.58) increased risk of preeclampsia for users of 
contraceptives that prevent exposure to sperm. A dose-response gradient was observed, with 
increasing risk of preeclampsia for those with fewer episodes of sperm exposure. Similarly, 
Hernández-Valencia and colleagues [240] found that the odds ratio for preeclampsia indicated a 
2.52-fold (CI 1.17-5.44, P < 0.05), increased risk of preeclampsia for users of barrier 
contraceptives compared with women using nonbarrier contraceptive methods. 
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Conception after using non-barrier methods or after a long period of cohabitation means a 
decreased susceptibility to PE 
This is the flip side of the studies given above (e.g. [236-238]). It is clear that maternal–fetal HLA 
sharing is associated with the risk of preeclampsia, and the benefits of long-term exposure to the 
father’s semen, while complex [280], seem to be cumulative [281]. Thus, short duration of sexual 
relationship was more common in women with preeclampsia compared with uncomplicated 
pregnancies (≤6 months 14.5% versus 6.9%, adjusted odds ratio (aOR) 1.88, 95% CI 1.05–3.36; 
≤3 months 6.9% versus 2.5%, aOR 2.32, 95% CI 1.03–5.25 [282]. Oral contraceptives are 
somewhat confounding here, in that they may either be protective or a risk factor depending on the 
duration of their use and the mother’s physiological reaction to them [283].  

Donor egg pregnancies have a hugely inflated chance of PE 
If an immunological component is important to PE (as it evidently is), it is to be predicted that donor 
egg pregnancies are likely to be at much great risk of PE, and they are (e.g. [235; 241-243; 284-
288]) (and also of pre-term birth [289]). Thus, Letur and colleagues [241; 242] found that pre-
eclampsia was some fourfold more prevalent using donated eggs (11.2% vs. 2.8%, P<0.001), 
while Tandberg and colleagues [235] found that various ‘assisted reproductive technologies’ had 
risk ratios of 1.3 (1.1–1.6) and 1.8 (1.2–2.8) in second and third pregnancies, respectively. Pecks 
and colleagues studied pregnancy-induced hypertension (PIH, not just PE) and found that the 
calculated odds ratio for PIH after oocyte donation, compared to conventional reproductive 
therapy, was 2.57 (CI 1.91–3.47), while the calculated odds ratio for PIH after oocyte donation, 
compared to other women in the control group, was 6.60 (CI 4.55–9.57). Stoop and colleagues 
[290] found a Risk Ratio of 1.502 (CI 1.024-2.204) for PIH. In a study by Levron and colleagues 
[291], adjustment for maternal age, gravidity, parity, and chronic hypertension revealed that oocyte 
donation was independently associated with a higher rate of hypertensive diseases of pregnancy 
(P<0.01). In a twins study, Fox and colleagues [292] found, on adjusted analysis, that the egg 
donation independently associated with preeclampsia (aOR 2.409, CI 1.051-5.524). The meta-
anaysis of Thomopoulos and colleagues [293] gave a risk ratio for egg donation of 3.60 (CI 2.56–
5.05) over controls, a value similar to that of Blázquez  and colleagues [294]. Finally, a recent 
meta-analysis by Masoudian and colleagues [287]  found that that the risk of preeclampsia is 
considerably higher in oocyte-donation pregnancies compared to other methods of assisted 
reproductive technology (odds ratio, 2.54; CI 1.98-3.24; P<0.0001) or to natural conception (odds 
ratio, 4.34; CI 3.10-6.06; P<0.0001). The incidence of gestational hypertension and preeclampsia 
was significantly higher in ovum donor recipients compared with women undergoing autologous 
IVF (24.7% compared with 7.4%, P<0.01, and 16.9% compared with 4.9%, P<0.02 [295]. All of 
these are entirely consistent with an immune component being a significant contributor to PE. One 
obvious question pertains to whether the use of antibiotics assists the progression of IVF. 
Unfortunately this question has been little researched in humans [296]. 

PE in a first pregnancy increases its likelihood in subsequent pregnancies  
This too is well established: a woman who has had preeclampsia has an increased risk of 
preeclampsia in subsequent pregnancies [263; 297], especially if suffering from hypertension [298]. 
This may be seen as relatively unsurprising, and of course bears many explanations, and the 
increased risks can be very substantial [244]. In the overall analysis of English and colleagues 
[262], the risk ratio was 7.19 (CI 5.85–8.83). Other examples give the recurrence risk, overall, as 
some 15% to 18% [263]. The risk of recurrent preeclampsia is inversely related to gestational age 
at the first delivery, and in the study of Mostello and colleagues [299] was 38.6% for 28 weeks’ 
gestation or earlier, 29.1% for 29-32 weeks, 21.9% for 33-36 weeks, and 12.9% for 37 weeks or 
more. Low birthweight in the first pregnancy is an independent predictor of PE in the second: birth 
weight below the tenth percentile in the first delivery accounted for 10% of the total cases of 
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preeclampsia in the second pregnancy and 30% of recurrent cases [300]. From the perspective 
developed here, the suggestion is that whatever is responsible for PE in one pregnancy can ‘live 
on’ in the mother and afflict subsequent ones. One thing that can ‘live on’ is a dormant microbial 
community. 

Oral sex with the father is protective against pre-eclampsia in a subsequent pregnancy 
Oral sex (with the father of one's baby) protects against pre-eclampsia [245; 246] (p=0.0003), 
arguably because exposure to the paternal antigens in the seminal fluid have a greater exposure to 
the blood stream via the buccal mucosa than they would via the vagina. This is a particularly 
interesting (and probably unexpected) finding, that is relatively easily understood from an 
immunological point of view, and it is hard to conceive of alternative explanations. (Note, however, 
that in the index study [245], the correlation or otherwise of oral and vaginal sex was not reported, 
so it is not entirely excluded that more oral sex also meant more vaginal sex.)  

Age is a risk factor for PE 
Age is a well known risk factor for PE [247-251], and of course age is a risk factor for many other 
diseases, so we do not regard this as particularly strong evidence for our ideas. However, we have 
included it in order to note that age-associated microbial dysbiosis promotes intestinal permeability, 
systemic inflammation, and macrophage dysfunction [301]. 

Donor sperm pregnancies (artificial insemination) are much more likely to lead to PE  
Finally, here, turning again to the father, it has been recognised that certain fathers can simply be 
‘dangerous’ in terms of their ability to induce PE in those who they inseminate [277; 302]. By 
contrast, if immunotolerance to a father builds up slowly as a result of cohabitation and unprotected 
sex, a crucial prediction is that donor sperm pregnancies will not have this property, and should 
lead to a much greater incidence of PE. This is precisely what is observed [246; 252-255; 284]. 

In an early study [252], Need and colleagues observed that the overall incidence of PE was high 
(9.3%) in pregnancies involving artificial insemination by donor (AID) compared with the expected 
incidence of 0.5-5.0%. The expected protective effect of a previous pregnancy was not seen, with 
a 47-fold increase in PE (observed versus expected) in AID pregnancies after a previous full-term 
pregnancy. That is a truly massive risk ratio. 

Smith and colleagues [253] compared the frequency of PE when AI was via washed sperm from a 
partner or a donor, finding a relative risk for PE of 1.85 (95% CI 1.20 - 2.85) for the latter, and 
implying that the relevant factor was attached to (in or on) the sperm themselves.  

In a similar kind of study, Hoy and colleagues found [254], after adjusting for maternal age, multiple 
birth, parity and presentation, that ‘donor sperm’ pregnancies were more likely to develop pre-
eclampsia (OR 1.4, 95% CI 1.2–1.8). 

Salha and colleagues [284] found that the incidence of pre-eclampsia in pregnancies resulting from 
donated spermatozoa was 18.2% (6/33) compared with 0% in the age- and parity-matched partner 
insemination group (P <0.05). 

Wang et al. [303] found that the risk of pre-eclampsia tripled in those never exposed to their 
partner’s sperm, i.e, those treated with intracytoplasmatic sperm injection done with surgically 
obtained sperm.  

In a study of older women, Le Ray and colleagues [304] noted that the pre-eclampsia rate differed 
significantly between various groups using assisted reproductive technology (3.8% after no IVF, 
10.0% after IVF only and 19.2% after IVF with oocyte donation, P<0.001).  
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Davis and Gallup reviewed what was known in 2006 [255], particularly from an evolutionary point 
of view, concluding that one interpretation of PE was that it was the mother’s way of removing 
‘unsuitable’ fetuses. This does not sit easily with the considerable mortality and morbidity 
associated with PE pre-delivery, especially in the absence of treatment. However, Davis and 
Gallup [255] did recognise that “pregnancies and children that result from unfamiliar semen have a 
lower probability of receiving sufficient paternal investment than do pregnancies and children that 
result from familiar semen”, and that is fully consistent with our general thinking here. Bonney 
draws a similar view [162], based on the ‘danger’ model [156; 158], that takes a different view from 
that of the ‘allograft’ or ‘self-nonself discrimination’ model. In the ‘danger model’, the decision to 
initiate an immune response is based not on discrimination between self and non-self, but instead 
is based on the recognition of ‘danger’ (abnormal cell death, injury or stress). One such recognition 
is the well-established recognition of microbes as something likely to be causative of undesirable 
outcomes.  

In the study of González-Comadran and colleagues, [305], conception using donor sperm was 
again associated with an increased risk of preeclampsia (OR 1.63, 95% CI 1.36–1.95).  

Thomopoulos and colleagues carried out two detailed and systematic reviews [293; 306]; the latter 
[293] covered 7,038,029 pregnancies (203,375 following any invasive ART) and determined that 
the risk of PE was increased by 75% (95% CI, 50%–103%). 

Overall, these studies highlight very strongly indeed that the use of unfamiliar male sperm is highly 
conducive to PE relative to that of partner’s sperm, especially when exposure is over a long period. 
We next turn to the question of why, in spite of this, we also see PE even in partner-inseminated 
semen, as well as more generally. 

Evidence from epidemiology – semen can be harmful and can contribute 
strongly to PE 
In our previous review [32], we rehearsed the evidence for a considerable placental and vaginal 
microbiome, but did not discuss the semen microbiome at all. To repeat, therefore, the particular, 
and essentially novel, part of our hypothesis here is that if it is accepted that semen (and 
seminal plasma) can have beneficial effects, it should also be recognised that in certain 
cases it can also have harmful effects. In particular, we shall be focussing on its microbial 
content (we ignore any epigenetic effects [307]). We note that this idea would fit easily with the 
recognition that as well as inducing tolerance to paternal antigens, exposures to the father’s semen 
can build tolerance (immunity) to its microbes, thereby decreasing the risk of PE. However, 
microbes and their associated PAMPs are well known to be highly inflammatory, whether or not 
they are reproducing, and we consider that it is this that is likely the particular driver of the 
sequelae observable in PE. 

Microbes associated with pre-eclampsia 
The female’s urogenital microbiome is important in a number of pregnancy disorders [44; 308-310]. 
Specifically, we previously found many examples in which microbes are associated with PE, and 
we here update the CC-BY-licensed Table 2 thereof [32] as Table 2 here:  

Table 2. Many studies have identified a much greater prevalence of infectious agents in the blood 
or urine or gums of those exhibiting PE than in matched controls 

Microbes Comments Reference 
   
Chlamydia pneumoniae IgG seroprevalence and gDNA [311] 
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associated with PE (P<0.0001) 
 IgG (but not IgA or IgM) 

associated with PE, OR = 3.1. 
[312] 

 Significantly greater numbers 
with PE, and reversion under 
antichlamydial treatment 

[313] 

 Much greater incidence 
(P<0.006) 

[314] 

 OR 4.1; P <0.02 for association 
with PE (15/48 cases vs 3/30 
controls) 

[315] 

   
Chlamydia trachomatis Increased risk of PE, OR = 7.2 

or 1.6 based on serology 
[316; 317] 

   
Cytomegalovirus RR for PE 1.5 if infected with 

CMV 
[318] (see also [319]) 

   
Helicobacter pylori Seropositivity or DNA. OR=2.7, 

or 26 if CagA seropositivity  
[320] and editorial [321] 

 IgG seropositivity 54%PE vs 
21% controls 

[314] 

 Anti-CagA antibodies cross-
react with trophoblasts and 
could inhibit placentation 

[322] 

 2.8x greater seropositivity in 
PE group 

[323] 

 OR=2.86 for seropositivity in 
PE, correlated with high 
malondialdehyde levels 

[324] 

 Wide-ranging review of many 
studies showing PE more 
prevalent after Hp infection 

[325] 

 Seropositivity PE:control = 
84%:32% (P<0.001) 

[326] 

 OR for seropositivity 1.83 
(P<0.001) 

[327] 

 Seropositivity PE:control 
86%:43% (P<0.001) 

[328] 

 Massive increase in 
seropositivity in women with 
PE 

[329] 

 Seroprevalence (57%) > 
controls (33.%) (P<.001). 
Seropositivity for CagA-positive 
strains 45.2% in preeclamptic 
women vs 13.7% in controls 
(P<.001). Infection associated 
with abnormalities of uterine 
arteries 

[43] 

 Much greater incidence of 
antibodies to H. pylori 

P<0.0001 

   
Human immunodeficiency virus 
(HIV) 

OR 3.52, 95% CI 2.51–4.94, 
some ascribable to therapy 

[330] 
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Human papillomavirus (HPV) High-risk human papillomavirus 
(HR-HPV) presence implies an 
OR of 2.18 for PE.  

[331] 

   
Meta-analyses Incidence of PE 19% with 

asymptomatic bacteriuria, vs 
3% (primigravid) or 6% 
(multigravid) controls 
(P<0.005) 

[332] 

 UTI more than twice as likely in 
severe preeclamptics than in 
controls 

[333] 

 OR of 1.6 for PE if UTI present [334] 
 Increased risk of PE OR 1.57 

for UTI, 1.76 for periodontal 
disease 

[40] 

 Early application of antibiotics 
in infection reduced PE by 52% 

[37] 

 Any overt infection led to an 
RR of 2 for PE 

[42] 

 UTI has OR of 3.2 for PE; OR 
= 4.3 if in third trimester 

[335] 

 UTI has OR of 1.3 for 
mild/moderate and 1.8 for 
severe PE 

[336] 

 Increased risk of PE with UTI 
(OR 1.22) or antibiotic 
prescription (OR 1.28) 

[337] 

 OR of 6.8 for symptomatic 
bacteriuria in PE vs controls 

[338] 

 OR 1.3-1.8 of mild or severe 
PE if exposed to UTI 

[339] 

 OR 1.4 for PE following UTI [340] 
 OR 1.3 for PE after UTI [341] 
 Meta-analyses showing 

associations between PD and 
PE 

[41; 342; 343] 

 High frequency of neutropenia 
and sepsis in preeclamptic 
mothers 

[344] 

 OR 2.79, CI 2.01-3.01, 
P<0.0001 for periodontal 
disease associating with PE 

[345] 

 Periodontitis at enrolment (OR 
= 5.78, 95% CI 2.41–13.89) 
and within 48 hours of delivery 
(OR = 20.15, 95% CI 4.55–
89.29) is associated with an 
increased risk of preeclampsia 

[346] 

 Periodontitis associated with 
PE: OR 7.48 (CI 2.72–22.42) 

[347] 

   
Placental microbiome and PE Many organisms in 13% of PE 

placentas vs none in controls 
(P<0.006) 

[348] 
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Plasmodium falciparum 
(malaria) 

Indications that infection with 
malaria is associated with PE 

[349] 

 1.5 RR for PE if malarial [350] 
 Seasonality: 5.4-fold increase 

in eclampsia during malaria 
season 

[351] 

 Pre-eclampsia was significantly 
associated with malaria 
infection during pregnancy 
(P<0-03) and 69.7% of cases 
of pre-eclampsia with infected 
placenta might be 
attributable to malaria infection 

[352] 

 

Microbiology of semen 
Semen itself is very far from being sterile, even in normal individuals, with infection usually being 
defined as 103 organisms.mL-1 semen [353]. Of course the mere existence of sexually transmitted 
diseases implies strongly that there is a seminal fluid (or semen) microbiome that can vary 
substantially between individuals, and that can contribute to infection (e.g. [354-356]), fertility [354] 
(and see below), and any other aspect of pregnancy [357], or even health in later life [358].  
 
It is logical to start here with the observation that semen is a source of microbes from the fact that 
there are a great many sexually transmitted infectious diseases for which it is the vehicle. Table 3 
summarises some of these. 
 
Table 3. Organisms of well-known sexually transmitted diseases that have been associated with 
semen 
Organism (disease) Comments References 
   
Chlamydia trachomatis  Effects on fertility [359] 
 32% prevalence in infertile 

couples 
[360] 

   
Human Immunodeficiency 
Virus (AIDS) 
 
 
 
 

Many examples of seminal 
transmission via unprotected 
sex 

[361-366] 
 

   
Neissseria gonorrhoeae 
(gonorrhoea) 

Gonorrhea actually means 
‘flow of semen’ 

[367] 

 Survives being frozen in 
semen used for artificial 
insemination 

[368] 

 Many anti-gonococcal 
antibodies also present 

[369] 

 Same strains in urine and 
semen; likely origin in urethra 

[370] 

   
Treponema pallidum (syphilis) Infectivity of semen [371] 
 More than half (twelve out of 

twenty) of the women classified 
[372] 
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as proved and probably 
syphilitic had mild to moderate 
PE 

 Co-infection of syphilis and HIV 
in men having sex with men 

[373] 

 Both syphilis and preeclampsia 
contribute to stillbirths in sub-
Saharan Africa 

[374] 

 
Notwithstanding the difficulties of measurement [375], there is, in particular, a considerable 
literature on fertility [376], since infertile males tend to donate sperm for assay in fertility clinics, and 
infection is a common cause of infertility (e.g. [353] and Table 4). Note that ‘infertility’ is not always 
an absolute term: pregnancies result in 27% of cases of treated ‘infertile’ couples followed up after 
trying to conceive for 2y, and with oligozoospermia as the primary cause of infertility [377]. Most 
studies involve bacteria (bacteriospermia). Papers on this and other microbial properties of semen 
beyond STDs include those in Table 4.  
 
Table 4. Some examples of the semen microbiome and reproductive biology 
Study Organisms References 
   
Complementarity between 
partners 

Many. Garnerella vaginalis 
in female partners was 
significantly related to 
inflammation in male 
genital tracts 

[378] 

Fertility Many microbiological 
changes as a function of 
fertility (more microbes 
correlate with lower 
fertility) 

[353; 357; 377; 379-423] 

General microbiology 552 different microbes in 
182 samples out of 201 
tested, simply plating 10 
µL of semen 
 
Microbes in 36/37 samples 
 
Review 
 
35% of samples had 
microbes 

[424] 
 
 
 
 
[425] 
 
[426] 
 
[427] 

IVF No positive antibiotic effect [428] 
LPS and protection by 
probiotic lactobacilli 

(purified LPS) [429] 

Review Many microbes [415; 430; 431] 
Semen quality Ralstonia increased in 

low-quality sperm 
[432] 

Viral infection Ebola virus 
 
 
 
HIV 
 
Zika virus 
 

[433-436] 
 
[437] 
 
[438-440] 
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We deliberately avoid discussing mechanisms in any real detail here, since our purpose is merely 
to show that semen is commonly infected with microbes, whose presence might well lead to pre-
eclampsia. However, we were very struck by the ability of E. coli and other organisms [410; 420; 
441] actually to immobilise sperm (e.g. [442-445]). As with amyloidogenic blood clotting [446; 447], 
bacterial LPS [136] may be a chief culprit [429]. The Gram-positive equivalent, lipoteichoic acid 
(LTA), is just as potent in the fibrinogen-clotting amyloidogen assay [448], but while Gram-positives 
can also immobilise sperm [449; 450], the influence of purified LTA on sperm seems not to have 
been tested. 
 
Another prediction from this analysis is that since infection is a significant cause of both infertility 
and PE (and it may account for 15% of infertile cases [353; 443]), we might expect to see some 
correlations between them. Although one might argue that anything seen as imperfect 
‘background’ health or subfecundity might impinge on the incidence of PE, the risk ratio for PE in 
couples whose infertility had an unknown basis was 5.61 (CI 3.3-9.3) in one study in Aberdeen 
[451] and 1.29 (CI 1.05–1.60) in another in Norway [452]. Time to pregnancy in couples may be 
used (in part) as a surrogate for (in)fertility and is associated with a variety of poor pregnancy 
outcomes [453]; in this case, the risk ratio for PE for TTP exceeding 6 months was 2.47 (CI 1.3-
4.69) [454]. Given the prevalence of infection in infertile sperm (Table 4), and the frequency of 
infertility (10% in the Danish study [453], which defined it as couples taking a year or more to 
conceive), it seems reasonable to suggest that microbiological testing of semen should be done on 
a more routine basis. It would also help to light up any relationships between the microbiological 
properties of sperm and the potentially causal consequence of increased PE risk. 
 
More quantitatively, and importantly intellectually, if infection is seen as a major cause of PE, as we 
argue here, and it is known that infection is a cause of infertility, then one should suppose that 
infertility, and infertility caused by infection, should be at least as common, and probably more 
common than is PE, and this is the case, adding some considerable weight to the argument. 
Indeed, if PE was much more common than infertility or even infection, it would be much harder to 
argue that the latter was a major cause of the former. In European countries ~10–15% of couples 
are afflicted by infertility [353; 453], and in some 60% of cases infection or a male factor is 
implicated [353]. In some countries, the frequency of male infertility is 13-15%  
http://bionumbers.hms.harvard.edu/bionumber.aspx?id=113483&ver=0 or higher [455], and the 
percentage of females with impaired fecundity has been given as 12.3% 
https://www.cdc.gov/nchs/fastats/infertility.htm. These kinds of numbers would imply that 6-9% of 
couples experience infection- or male-based infertility, and this exceeds the 3-5% incidence of PE.  
 
In a similar vein, antibiotics, provided they can get through the relevant membranes [456-458], 
should also have benefits on sperm parameters or fertility if a lack of it is caused by infection, and 
this has indeed been observed (e.g. [407; 423; 459]).  
 

Roles of the prostate and testes 
In the previous review, we focussed on the gut, periodontitis, and the urinary tract of the mother as 
the main source of organisms that might lead to PE. Here we focus on the male, specifically the 
prostate and the testes, given the evidence for how common infection is in semen. The main 
function of the prostate gland is to secrete prostate fluid, one of the components of semen. Thus, 
although it is unlikely that measurement have regularly been done to assess any relationship 
between this and any adverse effects of pregnancy, it was of interest to establish whether it too is 
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likely to harbour microbes. Indeed, such ‘male accessory gland infection’ is common [460-464]. In 
some cases, the origin is probably periodontal [465]. Recent studies have implicated microbial 
pattern-recognition receptors, especially Toll-like receptors (TLRs), as well as inflammatory 
cytokines and their signalling pathways, in testicular function, implying an important link between 
infection/inflammation and testicular dysfunction [466]. The testes are a common and important 
site of infection in the male [467; 468], and even bacterial LPS can cause testitis [469]. Similarly, 
infection (especially urinary tract infection) is a common cause of prostatitis [470-480]. Finally, 
prostatitis is also a major cause of infertility [460; 461; 463]. Such data contribute strongly to the 
recognition that semen is not normally going to be sterile, consistent with the view that it is likely to 
be a major originating cause of the infections characteristic of PE. 

Microbial infections in spontaneous abortions, miscarriages and pre-term birth 
Our logic would also imply a role for (potentially male-derived) microbes in miscarriages and 
spontaneous abortions. A microbial component to these seems well established for both 
miscarriages [481-483] and spontaneous abortions [484-489]. Of course the ability of Brucella 
abortus to induce abortions in domesticated livestock, especially cattle (and occasionally in 
humans), is well known [490-492]; indeed, bacteriospermia is inimical to fertilisation success [493], 
and nowadays it is well controlled in livestock by the use of vaccines [494] or antimicrobials [493]. 
Indeed, stored semen is so widely used for the artificial insemination of livestock in modern 
agriculture that the recognition that semen is not sterile has led to the routine use of antibiotics in 
semen ‘extenders’ (e.g. [495-498]).  

The same general logic is true for infection as a common precursor to pre-term birth (PTB) in the 
absence of PE, where it is much better established (e.g. [499-533]). It arguably has the same basic 
origins in semen. 
 
Although recurrent pregnancy loss is usually treated separately from infertility (where the role of 
infection is reasonably well established) it is possible that in many cases it is, like PE, partly just a 
worsened form of an immune reaction, with both sharing similar causes (including the microbial 
infection of semen). There is in fact considerable evidence for this (e.g. [120; 413; 534-548]). Of 
course it is not unreasonable that poor sperm quality, that may be just sufficient to initiate a 
pregnancy, may ultimately contribute to its premature termination or other disorders of pregnancy, 
so this association might really be expected. It does, however, add considerable weight to the view 
that a more common screening of the male than presently done might be of value [549] in 
assessing a range of pregnancy disorders besides PE. In particular, it seems that infection affects 
motility (see above), and that this in turn is well correlated [541] with sperm DNA fragmentation and 
ultimate loss of reproductive quality. 
 
Amyloids in semen are known to enhance HIV infectivity [550]. According to our own recent 
experimental analyses, they may be caused by bacterial lipopolysaccharide (LPS) [446; 447] or 
lipoteichoic acid [448]. We note too that the sperm metabolome also influences offspring, e.g. from 
obese parents [551], and that many other variables are related to sperm quality, including oxidative 
stress [552-559]. Thus it is entirely reasonable to see semen as a cause of problems as well as 
benefits to an ensuing pregnancy. 
 

Microbial effects on immunotolerance 
If our thesis is sound, one may expect to find evidence for the effects of microbes on the loss of 
immunotolerance in other settings. One such is tolerance to dietary antigens, of which gluten, a 
cause of coeliac disease, is pre-eminent. Recently, evidence has come forward that shows a 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/198796doi: bioRxiv preprint 

https://doi.org/10.1101/198796
http://creativecommons.org/licenses/by/4.0/


26 
 

substantial effect of a reovirus in lowering the immunotolerance to gluten in a mouse model of 
coeliac disease, and thereby causing inflammation [560; 561]. Interestingly, pregnancies in women 
with coeliac disease were considerably more susceptible to pre-term birth and other complications 
than were controls [562-569], especially when mothers were not on a gluten-free diet. Similarly, 
pre-eclamptic pregnancies led to a much (4-fold) higher likelihood of allergic sensitisation in the 
offspring [570] The roles of hygiene, the microbiome and disease are a matter of considerable 
current interest (e.g. [571]). 

It was consequently logical to see if intolerance to peanut antigen was also predictive of PE, but we 
could find no evidence for this. Again, however, in a study [572] in which PE had roughly its normal 
prevalence, mothers experiencing it were significantly more likely to give birth to children with 
increased risk of asthma, eczema, and aeroallergen and food allergy.  

Effects of vaccination on pregnancy outcomes, including pre-eclampsia 
We noted above (and again below) that the evidence for a role of microbes in pre-term birth (PTB) 
is overwhelming (also reviewed in [32]). From an immunological point of view, there seems to be a 
hugely beneficial outcome of vaccination against influenza in terms of lowering pre-term birth [573-
578] (cf. [579]) or stillbirth [580]. (PE was not studied, save in [581] where the risk ratio of 
vaccination (0.484, CI 0.18–1.34) implied a marginal benefit. There do not seem to be any safety 
issues, either for influenza vaccine [580-601] or for other vaccines [593] such as those against 
pertussis [602-604] or HPV [605].   

As well as miscarriage and pre-term birth, other adverse pregnancy outcomes studied in relation to 
vaccine exposure [606] include intrauterine growth restriction (IUGR). IUGR frequently presents as 
the fetal phenotype of pre-eclampsia, sharing a common aetiology in terms of poor placentaton in 
early pregnancy [607]. These other adverse events have been scored more frequently than has 
been PE, and Table 5 summarises the evidence for a protective effect of vaccines, though it is 
recognised that there is the potential for considerable confounding effects (e.g. [600; 608]). 

Table 5. Protective events of vaccines against various adverse pregnancy outcomes 

Adverse event Risk or Odds ratio (95% 
Confidence interval) of 
vaccinated: unvaccinated  

Reference 

Pre-term birth [OR = 0.39 (0.18-0.83)   [574] 
   
 0.56 (0.45-0.70) [576] 
 0.60 0.38–0.94 

0.28 (0.11–0.74) during 
epidemic 

[573] 

   
 0.63 (0.47–0.84) [575] 
   
   
IUGR 0.15 (0.02-0.94) [574] 
   
 0.36 (0.17–0.78) [592] 
   
   
 0.31 (0.13–0.75) [573] 
   
 0.63 (0.4–1.0) [609] 
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Stillbirth 0.73 (0.55-0.96) [580] 
   
  

There are no apparent benefits of vaccine-based immunisation vs recurrent miscarriage [610; 611].  

Unrelated to the present question, but very interesting, is the fact that the risk of RA for men was 
higher among men who fathered their first child at a young age (p for trend <0.001) [612]. This is 
consistent with the fact that its prevalence in females is 3.5 times higher, and that it has a microbial 
origin [613-616]. 

General or specific? 
The fact that vaccination against organisms not usually associated with adverse pregnancy 
outcomes is protective can be interpreted in one (or both) of two ways, i.e. that the vaccine is 
unselective in terms of inhibiting the effects of its target organism, or the generally raised level of 
<some kind of> immune response is itself protective. Data to discriminate these are not yet to 
hand. 

In a similar vein, the survival of the host in any ‘battle’ between host and parasite (e.g. microbe) 
can be effected in one or both of two main ways: (i) the host invokes antimicrobial processes such 
as the immune systems described above, or produces antimicrobial compounds, or (ii) the host 
modifies itself in ways that allow it to become tolerant to the presence of a certain standing crop of 
microbes. We consider each in turn. 

Antimicrobial components of human semen, a part of resistance in the semen 
microbiome 
Antimicrobial peptides (AMPs) (http://aps.unmc.edu/AP/main.php [617]) are a well-known part of 
the defence systems of many animals (e.g. [618-627]) (and indeed plants [618; 628]), and are 
widely touted as potential anti-infectives (e.g. [629-631]). Their presence in the cells and tissues of 
the uterus, fetus and the neonate indicates an important role in immunity during pregnancy and in 
early life [625; 632-636]. Unsurprisingly, they have been proposed as agents for use in preventing 
the transmission of STDs [637; 638], and as antimicrobials for addition to stored semen for use in 
agriculture [639-643]. Our interest here, however, is around whether there are natural AMPs in 
human (or animal) semen, and the answer is in the affirmative. They include SLPI [627], SEVI 
[644], and in particular the semenogelins [645; 646]. HE2 is another antimicrobial peptide that 
resides in the epididymis [647; 648], while the human cathelicidin hCAP-18 in inactive in seminal 
plasma but is processed to the antimicrobial peptide LL-37 by the prostate-derived protease 
gastricsin [636; 649]. Thus it is clear that at least some of the reason that the semen microbiome is 
not completely unchecked is down to antimicrobial peptides. Stimulating their production, provided 
they are not also spermicidal, would seem like an excellent therapeutic option. 

Host tolerance to microbial pathogens 
It is a commonplace that – for any number of systems biology reasons based on biochemical 
individuality [650] – even highly virulent diseases do not kill everyone who is exposed to them at 
the same level. As indicated above, this could be because the host is resistant and simply clears 
the infections; this is certainly the more traditional view. However, an additional or alternative 
contribution is because while host do not clear all of them they can develop ‘tolerance’ to them. 
This latter view is gaining considerable ground, not least since the work of Schneider, Ayres and 
colleagues [651] showing that a variety of Drosophila mutants with known genetic defects could 
differentially tolerate infection by Listeria monocytogenes. This concept of tolerance [652-659] is 
very important to our considerations here, since it means that we do indeed have well-established 
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methods of putting up with microbes more generally, without killing them. It is consistent with 
clearly established evolutionary theory [660-662], and the relative importance of resistance and 
tolerance within a population affects host-microbe coevolution [663]. The concept of tolerance sits 
easily with the Matzinger model of danger/damage (e.g. [155; 157; 158; 160]), as well as the 
concept of a resident population of dormant microbes [33; 35; 36], and may indeed be seen in 
terms of a coevolution or mutualistic association [664; 665]. Some specific mechanisms are 
becoming established, e.g. the variation by microbes of their danger signal to promote host 
defence [666]. Others, such as the difference in the host metabolomes (that we reviewed [32]) as 
induced by resistance vs tolerance responses [658] may allow one to infer the relative importance 
of each. At all events, it is clear from the concept of dormancy that we do not kill all the intracellular 
microbes that our bodies harbour, and that almost by definition we must then tolerate them. As well 
as the established maternal immunotolerance of pregnancy, tolerance of microbes seems to be 
another hallmark of pregnancy.  

 

Sequelae of a role of infection in PE: microbes, molecules and processes 
The chief line taken in our previous review [32] and herein is that this should be detectable by 
various means. Those three chief means involve detecting the microbes themselves, detecting 
molecules whose concentration changes as a result of the microbes (and their inflammatory 
components) being present, and detecting host processes whose activities have been changed by 
the presence of the microbes. 

Previously [32], updated here (Table 2), we provided considerable evidence for the presence of 
microbes within the mother as part of PE. Here we have adduced the equally considerable 
evidence that in many cases semen is very far from being sterile, and that the source of the 
originating infection may actually be the father. Equally, we showed [32] that a long list of proteins 
that were raised (or less commonly lowered) in PE were equally changed by known infections, 
consistent with the view that PE also involved such infections, albeit at a lower level at which their 
overt presence could be kept in check. One protein we did not discuss was Placental Protein 13 or 
galectin 1, so we now discuss this briefly.  

Placental protein 13 (galectin 1) 
Galectins are glycan-binding proteins that regulate innate and adaptive immune responses. Three 
of the five human cluster galectins are solely expressed in the placenta [667]. One of these, 
encoded by the LGALS13 gene [668], is known as galectin-13 or Placental Protein 13 (PP13) 
[669]. Its β-sheet-rich ‘jelly-roll’ structure places it strongly as a galectin homologue [670]. It has a 
MW of ~16kDa (32kDa dimer [671]) and is expressed solely in the placenta [672] (and see 
http://www.proteinatlas.org/ENSG00000105198-LGALS13/tissue). A decreased placental 
expression of PP13 and its low concentrations in first trimester maternal sera are associated with 
elevated risk of preeclampsia [667; 673-675], plausibly reflecting poor placentation. By contrast, 
and consistent with the usual oxidative stress, there is increased trophoblastic shedding of PP13-
immunopositive microvesicles in PE, starting in the second trimester, which leads to high maternal 
blood PP13 concentrations [667; 676]. Certain alleles such as promoter variant 98A-C predispose 
strongly to PE [677]. (Galectin-1 is also highly overexpressed in PE [678].) However, as with all the 
other proteomic biomarkers surveyed previously [32], galectins (including galectin-13 [679] 
http://amp.pharm.mssm.edu/Harmonizome/gene/LGALS13) are clear biomarkers of infection [680]. 
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Toll-like receptors (TLRs) 
TLRs are among the best known receptors for ‘damage-associated molecular patterns’ such as 
LPS from Gram-negatives (TLR 4 [136; 681-683]), lipoteichoic acids (LTAs) from Gram-positives 
(TLR2 [684-695]) and viral DNA and its mimics (TLR3) [696]. 

As expected, they are intimately involved in disorders of pregnancy such as PE [165; 696-708]. 
Indeed the animal model for preeclampsia developed by Faas and colleagues [709] actually 
involves injecting an ultra-low dose of LPS into pregnant rat on day 14 of gestation. Overall, such 
data are fully consistent with the view that infection is a significant part of PE. In view of our 
suggestions surrounding the role of semen infection in PE it would be of interest to know if these 
markers were also raised in the semen of partners of women who later manifest PE. Sperm cells 
are well endowed with TLRs [466; 710-712]. However, we can find only one study showing that 
increased semen expression of TLRs is indeed observed during inflammation and oxidative stress 
such as occurs during infection and infertility [713]. A more wide-ranging assessment of TLR 
expression in sperm cells as a function of fertility seems warranted. 

Coagulopathies 
Although we discussed this in the previous review [32], some further brief rehearsal is warranted, 
since coagulopathies are such a common feature of PE (references in [32]). Specifically, our 
finding that very low concentrations of cell wall products can induce amyloid formation during blood 
clotting [446; 448] has been further extended to recognise the ubiquity of the phenomenon in 
chronic, inflammatory diseases [447; 448; 616; 714-716]. Often, an extreme example gives strong 
pointers, and the syndrome with the highest likelihood of developing PE is antiphospholipid 
syndrome [717-721], which is also caused by infection [722-727] where the coagulopathies are 
also especially noteworthy [728-732]. Consequently, the recognition of PE as a amyloidogenic 
coagulopathy [32; 733-735] is significant. 

Antiphospholipid syndrome and cardiolipin 
Antiphospholipid syndrome (APS) is an autoimmune disorder defined in particular by the presence 
high circulating titres of what are referred to as antiphospholipid antibodies (aPL) (e.g. [736]). 
Given that every human cell’s plasma membrane contains phospholipids, one might wonder how 
‘antiphospholipid antibodies’ do not simply attack every cell. The answer, most interestingly, is that, 
despite the name, anticardiolipin antibodies, anti- β2-glycoprotein-I, and lupus anticoagulant are 
the main autoantibodies found in antiphospholipid syndrome [737].  

In contrast to common phospholipids such as phosphatidylcholine, phosphatidylserine and 
phosphatidylethanolamine, cardiolipins (1,3-bis(sn-3’-phosphatidyl)-sn-glycerol derivatives) (see 
Figure 6 for some structures) are synthesised in [738-740] and essentially confined to 
mitochondria, and in particular the inner mitochondrial membrane, where they serve important 
functions in oxidative phosphorylation, apoptosis, and heart failure development [740-747] 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/198796doi: bioRxiv preprint 

https://doi.org/10.1101/198796
http://creativecommons.org/licenses/by/4.0/


30 
 

Overall, there seems to be little doubt that APS and aPL are the result of infection [722; 724-727; 
748-750], and that, as with rheumatoid arthritis (see [613-616; 751]), the auto-immune responses 

are essentially due to molecular mimicry.  

Figure 6. Some cardiolipin structures. 

 

Now, of course, from an evolutionary point of view, mitochondria are considered to have evolved 
from (α-Proteo)bacteria [752-758] that were engulfed by a proto-eukaryote [759], and bacteria 
might consequently be expected to possess cardiolipin. This is very much the case for both Gram-
negative and Gram-positive strains [760-764], with Gram-positive organisms typically having the 
greater content. Particularly significant, from our point of view, is that the relative content of 
cardiolipin among phospholipids increases enormously as (at least Gram-positive) bacterial cells 
become dormant [765]. 
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Thus, the cardiolipin can come from two main sources: (i) host cell death that liberates 
mitochondrial products or (ii) invading bacteria (especially those that lay dormant and awaken). 
Serum ferritin is a cell death marker [766], and some evidence for the former source [767] (and see 
[768]) is that hyperferritinemia was present in 9% vs. 0% of APS patients and controls, respectively 
(p<0.001), and that hyperferritinemia was present in 71% of catastrophic APS (cAPS) patients, and 
ferritin levels among this subgroup were significantly higher compared with APS-non-cAPS 
patients (816-847 ng/ml vs. 120-230 ng/ml, p<0.001). One easy hypothesis is that both are due to 
invading bacteria, but cAPS patients also exhibit comparatively large amounts of host cell death 
(Figure 7). 

 

 

Figure 7. Possible relationships between cardiolipin exposure and disease sequelae.  

 

Treatment options based on (or consistent with) the ideas presented here 
Although often unwritten or implicit, the purposes of much of fundamental biomedical science is to 
find better diagnostics and treatments for diseases (a combination sometimes referred to as 
theranostics). Consequently, our purposes here are to rehearse some of those areas where 
appropriate tests (in the form, ultimately, of randomised clinical trials, RCTs) may be performed. 
Clearly, as before [32], and recognising the issues of antimicrobial resistance, one avenue would 
exploit antibiotics much more commonly than now. We note that pharmaceutical drugs are 
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prescribed or taken during 50% or more of pregnancies [769-778]. Anti-infectives are the most 
common such drugs, and some 20-25% of women or more are prescribed one or more antibiotics 
during their pregnancies [770; 771; 774; 776; 777; 779-782].  

Given the role of male semen infection, we suggest that more common testing of semen for 
infection is warranted, especially using molecular tests. Our analyses suggest that antibiotics might 
also be of benefit to those males presenting with high microbial semen loads or poor fertility [783]. 
Another strategy might involve stimulating the production of antimicrobial peptides in semen.  

Of the list of bacteria given in Table 2 as being associated with PE, H. pylori stands out as the 
most frequent. One may wonder why a vaccine against it has not been developed, but it seems to 
be less straightforward than for other infections [784; 785], probably because – consistent with its 
ability to persist within its hosts – it elicits only a poor immune response [786; 787]. Our own 
experience [788] is that many small molecules can improve the ability of other agents to increase 
the primary mechanisms that are the target assay, while having no direct effects on them 
themselves. Although ‘combinatorial’ strategies often lead to quite unexpected beneficial effects 
(e.g. [789; 790]), this ‘binary weapon’ strategy is both novel and untried. 

As also rehearsed in more detail previously (e.g. [791; 792]) many polyphenolic antioxidants act 
through their ability to chelate unliganded iron, and thereby keep it from doing damage or acting as 
a source of iron for microbial proliferation. Such molecules may also be expected to be beneficial. 
Other strategies may be useful for inhibiting the downstream sequelae of latent infections, such as 
targeting inflammation or coagulopathies. 

Conclusions, summary and open questions 
We consider that our previous review [32] made a very convincing case for the role of (mostly 
dormant) microbes in the aetiology of PE. However, we there paid relatively scant attention to two 
elements, viz (i) the importance of the immune system [145], especially in maternal 
immunotolerance, and (ii) the idea that possibly the commonest cause of the microbes providing 
the initial infection was actually infected semen from the father. We also recognise that epigenetic 
information [358; 793-795] can be provided by the father and this can be hard to discriminate from 
infection (if not measured), at least in the F1 generation. This said, microbiological testing of semen 
sems to be a key discriminator if applied. The ‘danger model’ [155; 157-160], in which it is 
recognised that immune activation owes more to the detection of specific damage signals than to 
‘non-self’, thus seems to be highly relevant to PE [162].  

Overall, we think the most important ideas and facts that we have rehearsed here include the 
following: 

• Following Medawar’s recognition of the potential conundrum of paternal alloantigens in 
pregnancy, most thinking has focused on the role of maternal immunotolerance, and the 
role of regulatory T cells therein; 

• Many examples show that sexual familiarity with the father helps protect against PE; 
however, this does not explain why in many cases exposure to paternal antigens is actually 
protective (and not even merely neutral); 

• Semen contains many protective and immune-tolerance-inducing substances such as 
transforming growth factor β (TGF-β); 

• However, semen is rarely sterile, and contains many microbes, some of which are not at all 
benign, and can be transferred to the mother during copulation; 
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• If one accepts that there is often a microbial component to the development of pre-
eclampsia, and we and others have rehearsed the considerable evidence that it is so, then 
semen seems to a substantial, and previous largely unconsidered source of microbes; 

• Some determinands, such as complement factor Bb, seem to reflect microbial infection and 
not just general inflammation that can have many other causes, and may therefore be of 
value in untangling the mechanisms involved; 

• An improved understanding of the microbiology of semen, and the role of antibiotics and 
vaccination in the father, seems particularly worthwhile; 

• Coagulopathies are a somewhat under-appreciated accompaniment to PE, and may 
contribute to its aetiology; 

• The ‘danger model’ of immune response seems much better suited to describing events in 
pregnancy and PE than is the classical self/non-self analysis; 

• The features of PE are not at all well recapitulated in animal models [24], and certainly not 
in rodents. However, it seems likely that they still have much to contribute [796; 797].  

Open questions and further research agenda items include the following: 

• There is a need for improved molecular and culture-based methods of detecting microbes 
in blood and tissues in which they are normally considered to be absent, both in the mother 
and the father; 

• Notwithstanding the promise of metabolomics (see e.g. [798; 799]), there remains a need 
for better diagnostics, especially early in pregnancy; 

• Issues of antimicrobial resistance are well known (e.g. [800-802]), and most antibiotics work 
only on growing cells, so there is a significant role for those that work on persisters and 
other non-replicating forms [803-805]; 

• The increasing online availability of patient information will permit greater exploitation to 
assess these ideas from an epidemiological point of view; 
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Legends to Figures 
Figure 1. A ‘mind map’ [60] of the review. Start at ‘midnight’ and read clockwise. 

Figure 2. Effective suppression of response to fetal cell trafficking leads to a normal pregnancy, 
while its failure can lead to pre-eclampsia 

Figure 3. Matzinger’s ‘danger model’ vs the classical theory of self vs self-nonself. Based on and 
redrawn from [158]. 

Figure 4. The complement system (based on figures in [135; 188]). 

Figure 5. Some epidemiological risk factors for pre-eclampsia 

Figure 6. Some cardiolipin structures. 

Figure 7. Possible relationships between cardiolipin exposure and disease sequelae.  
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