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Abstract

Although it is widely recognised as involving two stages (poor placentation followed by oxidative
stress/inflammation), the precise originating causes of pre-eclampsia (PE) remain elusive. We
have previously brought together some of the considerable evidence that a (dormant) microbial
component is commonly a significant part of its aetiology. However, apart from recognising,
consistent with this view, that the many inflammatory markers of PE are also increased in infection,
we had little to say about immunity, whether innate or adaptive. In addition, we focussed on the
gut, oral and female urinary tract microbiomes as the main sources of the infection. We here
marshall further evidence for an infectious component in PE, focussing on the immunological
tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the
father's semen assists this immunological tolerance. As well as these benefits, however, semen is
not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that
semen may be responsible for inoculating the developing conceptus with microbes, not all of which
are benign. It is suggested that when they are not, this may be a significant cause of pre-
eclampsia. A variety of epidemiological and other evidence is entirely consistent with this, not least
correlations between semen infection, infertility and PE. Our view also leads to a series of other,
testable predictions. Overall, we argue for a significant paternal role in the development of PE
through microbial infection of the mother via insemination.
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“In one of the last articles which he wrote, the late Professor F J Browne (1958) expressed the
opinion that all the essential facts about pregnancy toxaemia are now available and that all that is
required to solve the problem is to fit them together in the right order, like the pieces of a jigsaw
puzzle” [1]

“It appears astonishing how little attention has been given in reproductive medicine to the maternal
immune system over the last few decades.” [2]

Introduction

Pre-eclampsia (PE) is a multifactorial disease of pregnancy, in which the chief manifestations are
hypertension and proteinuria [3-11]. It affects some 3-5% of nulliparous pregnancies worldwide [10;
12; 13], and is associated (if untreated) with high morbidity and mortality [14-18]. There is much
literature on accompanying features, and, notwithstanding possible disease subdivisions [19; 20],
the development of PE is typically seen as a ‘two-stage’ process (e.g. [21-27]), in which in a first
stage incomplete remodelling of spiral arteries leads to poor placentation. In a second stage, the
resulting stress, especially hypoxia-induced oxidative stress [28] (and possibly hypoxia-reperfusion
injury), then leads to the symptoms typical of later-pregnancy pre-eclampsia. However, the various
actual originating causes of either of these two stages remain obscure. Many theories have been
proposed (albeit a unitary explanation is unlikely [19]), and indeed, PE has been referred to as a
‘disease of theories’ [1; 29; 30]. The only effective ‘cure’ is delivery [31], which often occurs
significantly pre-term, with its attendant complications for both the neonate and in later life.
Consequently, it would be highly desirable to improve our understanding of the ultimate causes of
PE, so that better prevention or treatments might be possible.

The ‘two-stage’ theory is well established, and nothing we have to say changes it. However, none
of this serves to explain what ‘initiating’ or ‘external’ factors are typically responsible for the poor
placentation, inflammation, and other observable features of PE [32].

Microbes are ubiquitous in the environment, and one potential external or initiating factor is low-
level microbial infection. In a recent review [32], we developed the idea (and summarised extensive
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evidence for it) that a significant contributor to pre-eclampsia might be a (largely dormant [33-36]
and non-replicating) microbiome within the placenta and related tissues, also detectable in blood
and urine. Others (e.g. [37-44]) have drawn similar conclusions. Interestingly, recent analyses [19;
45] of placental gene expression in PE implicate changes in the expression of TREM1 (triggering
receptor on myeloid cells-1) and the metalloprotease INHA, and in one case [19] also LTF
(lactotransferrin), that also occur during infection [46-49]. Although we highlighted the role of
antibiotics as potentially preventative of PE [32], and summarised the significant evidence for that,
we had relatively little to say about immunology, and ignored another well-known antidote to
infectious organisms in the form of vaccines. There is certainly also an immune component to pre-
eclampsia (e.g. [24; 50-58] and below). One of the main theories of (at least part of the explanation
of) PE is that of ‘immune maladaptation’ [50-52; 59]. Thus, the main focus of the present analysis
is to assess the extent to which there is any immunological evidence for a role of infectious agents
(and the utility of immunotolerance to or immunosuppression of them) in PE. Figure 1 summarises
our review in the form of a ‘mind map’ [60]. We begin with the broad question of immunotolerance,
before turning to an epidemiological analysis.

Figure 1. A ‘mind map’ [60] of the review. Start at ‘midnight’ and read clockwise.

Immune tolerance in pregnancy
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Much of the original thinking on this dates back to Sir Peter Medawar [61-66], who recognised that
the paternal origin of potentially half the antigens of the fetus [67] created an immunological
conundrum: it should normally be expected that the fetus’s alloantigens would cause it to be
attacked by the maternal immune system as ‘foreign’. There would therefore have to be an
‘immune tolerance’ [65; 68-70]. Historically it was believed that the fetus is largely ‘walled off’ from
the mother [71]; however, we now appreciate [72; 73] that significant trafficking of fetal material
across the placenta into the maternal circulation and vice versa occurs throughout pregnancy.
Indeed, this is the basis for the development of non-invasive prenatal testing (NIPT). In line with
this, grams of trophoblast alloantigens are secreted daily into the maternal circulation during the
third trimester (Figure 2), and this is related to the prevalence of PE [74-80]. Consequently, both
the concept and the issue of immune tolerance are certainly both real and important. At all events,
the immunobiology of the fetus has been treated in theory largely in the way that a transplanted
graft is treated, and uteroplacental dysfunction (leading to PET and IUGR) is largely regarded as a
graft rejection (e.g. [53; 81-87]). Clearly there are relationships between the immunogenicity of the
foreign agent and the responsiveness of the host; to this end, Zelante and colleagues [88]
recognise the interesting similarities between tolerance to paternal alloantigens (as in pregnancy)

@ Immune tolerance
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Treg A\
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and the tolerance observed in chronic fungal infections.

Figure 2. Effective suppression of response to fetal cell trafficking leads to a normal pregnancy,
while its failure can lead to pre-eclampsia

The clinical course of automimmune disease during pregnancy: an inconsistent effect
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The seminal observation by Philip Hench that the symptoms of the rheumatoid arthritis (RA) were
frequently and dramatically ameliorated by several conditions, including pregnancy [89], led to the
discovery of cortisone [90] and gave unique insights into the complex interaction between the
maternal immune system and the developing fetal/placental unit. Contemporary data suggests that
the improvement in RA is not ubiquitous as first thought. Amongst all pregnant women about 25%
of women have no improvement in their symptoms at any stage in pregnancy and in a small
number of cases the disease may actually worsen [91]. The process by which pregnancy affects
disease activity in RA is not completely understood and several putative mechanisms have been
proposed. Of interest, although plasma cortisol rises during pregnancy and was initially thought to
be key in the amelioration of symptoms, there is actually no correlation between cortisol
concentrations and disease state [92]. It has also been reported that the degree of maternal and
paternal MHC mismatch has been shown to correlate with the effect of the RA remission during
pregnancy [93], leading to the hypothesis that the early immunological events in pregnancy that
establish tolerance to the fetal allograft contribute to RA remission. Clearly, this may also account
for the disparity in response to pregnancy. RA is not unique in being the only autoimmune disease
to be profoundly altered by pregnancy. Although less well studied, non-infectious uveitis tends to
improve during pregnancy from the second trimester onwards, with the third trimester being
associated with the lowest disease activity [94]. Again, the mechanism underlying this
phenomenon is not completely elucidated.

It is now generally accepted [95] that, notwithstanding the sweeping generalisation, autoimmune
diseases with a strong cellular (innate) pathophysiology (RA, Multiple Sclerosis (MS)) improve,
whereas diseases characterised by autoantibody production such as systemic lupus erythematous
(SLE) and Grave's disease tend towards increased severity in pregnancy.

We have previously reported an association between pregnancy and the risk of subsequent
maternal autoimmune disease which was also related to the mode and gestation of delivery. There
was an increased risk of autoimmune disease after Caesarean section may be explained by
amplified fetal cell traffic at delivery, while decreased risks after abortion may be due to the transfer
of more primitive fetal stem cells [96].

Mechanisms of immune tolerance during pregnancy

Following the recognition of maternal immunotolerance, a chief discovery was the choice of HLA-
G, a gene with few alleles, for the antigens used at the placental interface. Thus, the idea that
placental HLA-G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune
responses to foreign (paternal) antigens via these actions on immune cells is how well established
[97-102].

It is also well established that Regulatory T cells (Tregs) play an indispensable role in maintaining
immunological unresponsiveness to self-antigens and in suppressing excessive immune
responses deleterious to the host [103]. Consequently, much of present thinking seems to involve
a crucial role for regulatory Tregs in maintaining immunological tolerance during pregnancy [53; 64;
104-114], with the result that effector T cells cannot accumulate within the decidua (the specialized
stromal tissue encapsulating the fetus and placenta) [115].

In an excellent review, Williams and colleagues [116] remark “Regulatory T cells (Tregs) are a
subset of inhibitory CD4+ helper T cells that function to curb the immune response to infection,
inflammation, and autoimmunity”. “There are two developmental pathways of Tregs: thymic (tTreg)
and extrathymic or peripheral (pTreg). tTregs appear to suppress autoimmunity, whereas pTregs
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may restrain immune responses to foreign antigens, such as those from diet, commensal bacteria,
and allergens”. Their differential production is controlled by a transcription factor called Foxp3.

Further, “a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but
dispensable for tTreg cell generation, is present only in placental mammals. It is suggested that
during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells
emerged in placental animals to enforce maternal-fetal tolerance [117]".

Williams and colleagues conclude that “These findings indicate that maternal—fetal tolerance to
paternal alloantigens is an active process in which pTregs specifically respond to paternal antigens
to induce tolerance. Thus, therapies should aim not to suppress the maternal immune system but
rather to enhance tolerance. These findings are consistent with an increase in the percentage of
Tregs during pregnancy and with no such increase in women with recurrent pregnancy loss [118]"
[116]. Thus maternal tolerance is based on exposure to the paternal alloantigens, although
mechanisms such as the haem oxygenase detoxification of haem from degrading erythrocytes
[119] are also important. Note too that pregnancy loss is often caused by automimmune activity
[120] (and see later).

Additionally, Treg cells have several important roles in the control of infection (e.g. [121-126]).
These include moderating the otherwise potentially dangerous response to infection, and being
exploited by certain parasites to induce immunotolerance.

Finally, here, it is also recognised that the placenta does allow maternal IgG antibodies to pass to
the fetus to protect it against infections. Also, foreign fetal cells persist in the maternal circulation
[127] (as does fetal DNA, nowadays used in prenatal diagnosis). One cause of pre-eclampsia is
clearly an abnormal immune response towards the placenta. There is substantial evidence for
exposure to partner's semen as prevention for pre-eclampsia, largely due to the absorption of
several immune modulating factors present in seminal fluid [128]. We discuss this in detail below.

Innate and adaptive immunity

Although they are not entirely independent [129; 130], and both respond to infection, it is usual to
discriminate (the faster) innate and (the more leisurely) adaptive immune responses (e.g. [131-
135]). As is well known (reviewed recently [136]), the innate immune system is responsible for the
recognition of foreign organisms such as microbes. It would be particularly convenient if something
in the immune response did actually indicate an infection rather than simply any alloantigen, but
unfortunately — especially because of the lengthy timescale over which PE develops - innate
responses tend to morph into adaptive ones. This means (i) that there may be specific signals from
early innate events that may be more or less specific to innate responses, and (ii) that it also does
not exclude the use of particular patterns of immune responsive elements [137-139] to characterise
disease states.

A dysregulation of the immune system is widely recognised as an accompaniment to normal
pregnancy [64; 111; 140-142], and especially in PE [51; 53; 54; 56-59; 143-150], and it is worth
looking at it a little more closely.

The innate immune system responds to microbial components such as LPS via cell membrane
receptors. Innate immune cells express a series of evolutionarily conserved receptors known as
pattern-recognition receptors (PRRs). PRRs recognise and bind conserved sequences known as
pathogen-associated molecular patterns (PAMPSs). Bacterial lipopolysaccharide (LPS) and
peptidoglycan, and double stranded viral RNA are unique to microbes and act as canonical
PAMPs, while the main family of PRRs is represented by the Toll-like receptors (TLRs) [151; 152].
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Downstream events, as with many others [153; 154] converge on the NF-«xB system and/or
interferon, leading to the release of a series of inflammatory cytokines such as IL-2, IL-6, IL-8,
TNF-a and especially IL-1p.

Matzinger’s “danger model” [155-160] (and see [65] and Figure 3) suggested that activation of the
immune system could be evoked by danger signals from endogenous molecules expelled from
injured/ damaged tissues, rather than simply from the recognition of non-self (although of course in
the case of pregnancy some of these antigens are paternal alloantigens). Such endogenous
molecules are referred to as Damage-associated molecular patterns (DAMPS), but are not our
focus here, albeit they likely have a role in at least some elements of PE [161]. We shall see later,
however, that Matzinger's theory is entirely consistent with the kinds of microbial (and disease)
tolerance that do seem to be an important part of pregnancy and PE (and see [162]).

The maternal innate immune system plays an important role both in normal pregnancy, and in
particular in hypertensive disorders of pregnancy including preeclampsia (PE) [143; 163-169]. One
persuasive and widely accepted view is that normal pregnancy is characterised by a low-grade
systemic inflammatory response and specific metabolic changes, and that virtually all of the
features of normal pregnancy are simply exaggerated in pre-eclampsia [32; 163; 170; 171].
Certainly it is long established that “Normal pregnancy and preeclampsia both produce
inflammatory changes in peripheral blood leukocytes akin to those of sepsis” [163], and there are
innate Immune defences in the uterus during pregnancy [140]. Normal pregnancy is considered to
be a Th2 type immunological state that favours immune tolerance in order to prevent fetal rejection
[119]. By contrast, preeclampsia (PE) has been classically described as a Thl/Th2 imbalance
[106; 145; 172-174], but as mentioned above (and before [32]), recent studies have highlighted the
role of regulatory T-cells as part of a Th1/Th2/Th17 paradigm [143; 144]. This leads to the question
of whether there is some kind of trade-off between the responses to paternal alloantigens and
those of microbes.
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Figure 3. Matzinger’s ‘danger model’ vs the classical theory of self vs self-nonself. Based on and
redrawn from [158].

A trade-off for mating and immune defence against infection

Certainly there is some evidence for a trade-off between mating and immune defence against
infection [175-177]. Consistent with this (albeit with much else) is the fact [178-180] that pregnancy
is associated with an increased severity of at least some infectious diseases. There is evidence
[181; 182] that “adaptive immune responses are weakened, potentially explaining reduced viral
clearance. Evidence also suggests a boosted innate response, which may represent a
compensatory immune mechanism to protect the pregnant mother and the fetus and which may
imply decreased susceptibility to initial infection [179]".

The role(s) of complement in PE

Complement, or more accurately the complement cascade, is an important part of the innate
immune system that responds to infection. Later (downstream) elements also respond to the
adaptive immune system. Our previous review [32] listed many proteins whose concentrations are
changed in both infection and PE. Since we regard low-level infection as a major cause of the
inflammation observed in PE, one would predict that the complement system is activated in PE,
and this observation is amply borne out [183-198]. We give some of the details in Table 1.
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Figure 4. The complement system (based on figures in [135; 188]).

The complement cascade may be activated in three main ways Fig 4), known as classical,
alternative or lectin pathways [130; 186; 188; 199; 200]. Complement activation by the classical,
alternative or lectin pathway results in the generation of split products C3a, C4a and C5a with pro-
inflammatory properties.

Because both innate and adaptive immunity can activate elements of the downstream complement
system, it is hard to be definitive, but there is some evidence that elements such as Ba and Bb (the
latter of known structure [201]) are selectively released during infection, very much upstream and
in the alternative pathway [188; 199; 200; 202-204]. Most importantly (Table 1), while probably not
a specific serum marker, there is considerable evidence that Bb levels are increased in PE,
arguably providing further evidence for a role of infectious agents in the aetiology of PE.

Table 1. Changes in the Complement system during PE and related pregnancy disorders

Complement | Details Reference
element

Bb Raised in PE, OR 2.1 (Cl =1.4-3.1, P < 0.0003) [185]

Bb Adjustment for risk factors did not attenuate the | [183]

association between an elevated Bb and preeclampsia
(adjusted odds ratio OR 3.8, 95% ClI, 1.6 to 9, P<0.002)
in the cohort. After removing women with plasma
obtained before 10 weeks, the adjusted OR of Bb in the

11



https://doi.org/10.1101/198796
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/198796; this version posted October 5, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

top decile for preeclampsia was 6.1 (95% CI 2.2 to 17,
P<0.0005)

Bb Median Bb levels were higher in the maternal plasma of | [196]
severe PE subjects (n = 24) than in controls (n = 20),
1.45 + 1.03 versus 0.65 + 0.23 ug.mL™, P < 0.001.

Bb Pre-term birth. Women with Bb in the top quartile were | [184]
4.7 times more likely to have an SPTB less than 34
weeks’ gestation as compared with women who had
levels of Bb in the lower 3 quartiles (ClI 1.5-14,
P<0.003).

Bb Maternal Bb levels were significantly higher in the | [205]
preeclamptic group than in the nonpreeclamptic group
(P<0.003 in all studied, P<0.007 in African Americans).

Bb Pyelonephritis. Pregnant women with pyelonephritis | [206]
had a higher median plasma concentration of fragment
Bb than those with a normal pregnancy (1.3 mg/ml,
IQR: 1.1-1.9 vs. 0.8 mg/ml, IQR: 0.7-0.9; P<0.001). No
significant differences were observed in the median
maternal plasma concentration of fragment Bb between
pregnant women with pyelonephritis who had a positive
blood culture and those with a negative blood culture

Bb Median amniotic fluid Bb levels were also significantly | [194]
higher (P = 0.03) in preeclamptic women than in normal
pregnant women (1127 ng/mL versus 749 ng/mL). The
alternative complement pathway is principally involved

Bb, C3a, C5a, | Increased significantly in EOSPE (all P<0.01) and | [195]. See also [197]

and MAC LOSPE (P value: 0.027, <0.001, 0.001, and <0.001,
respectively) compared with Early/Late control.
Bb or C3a Women who were obese with levels of Bb or C3a in the | [207]

top quartile were 10.0 (95% confidence interval, 3.3—
30) and 8.8 (95% confidence interval, 3-24) times,
respectively, more likely to develop preeclampsia
compared with the referent group at 20 weeks gestation

Clgand C4d | Increased significantly in LOSPE (P value: .003 and | [195]. See also [197]
.014, respectively) compared with L-control

C3a Adjusted for parity and prepregnancy body mass index, | [188]
women with levels of C3a in the upper quartile in early
pregnancy were three times more likely to have an
adverse outcome later in pregnancy compared with
women in the lowest quartile (95% confidence interval,
1.8-4.8; P<.001). This was especially the case for pre-
term birth (P<0004). Elevated C3a as early as the first
trimester of preghancy is an independent predictive
factor for adverse pregnancy outcomes, suggesting that
complement-related inflammatory events in preghancy
contribute to the subsequent development of poor
outcomes at later stages of pregnancy

C3a Autoantibody-mediated complement C3a receptor | [191]
activation contributes to the pathogenesis of
preeclampsia

C3a Women who developed early-onset preeclampsia as | [194]
compared with the term pregnant controls had
significantly higher (P = 0.04) median amniotic fluid C3a
levels (318.7 ng/mL versus 254.5 ng/mL)

C3a 751-6 (194-6-1660) vs 1358 (854-8-2142) ng.mL™, | [208]
P<0.05 pre-eclamptic vs healthy pregnant.
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C3a, Elevated at term in PE but not earlier (P<0.05) [209; 210]

C3a_desArg &

C5a

C3a, Cba & | Levels in serum from the severe pre-eclampsia group | [211]

AT1-AA were significantly higher than in controls (p < 0.05).

C4 C4 was lowered (P<0.001) in serum of term pre- | [212]
eclamptics

C4ad Placental immunochemistry showed that C4d was | [190]

rarely present in placentas from healthy controls (3%),
whereas it was observed in 50% of placentas obtained
from preeclamptic women (P=0.001)

Cbha The mean cord plasma C5a concentration was higher | [192]
in patients with PET (8.3 ng/ml = 1.71) than normal
women (3.2 ng/ml = 0.35) P < 0.01)

C5b-9 Severe preeclampsia was associated with marked | [213]
elevations in urinary C5b-9 (median and interquartile
range, 4.3 (1.2-15.1) ng/mL) relative to subjects with
chronic hypertension and healthy controls (P<0.0001).

C6 Novel evidence that genetic variations in complement | [198]
genes C6 and MASP1l- were associated with
preeclampsia risk

We might also note that C1q” mice shows features of PE [214], consistent with the view that
lowering levels of anti-inection response elements of the complement system leads to PE,
consistent again with an infectious component to PE.

Induction of tolerance by exposure to antigens and our main hypothesis: roles of
semen and seminal plasma

A number of groups (e.g. [100; 128; 215-218]) have argued for a crucial role of semen in inducing
maternal immunological protection, and this is an important part of our own hypothesis here. The
second component, however, is a corollary of it. If it is accepted that semen can have beneficial
effects, it may also be that in_certain cases it can also have harmful effects. Specifically, we
rehearse the fact that semen is not sterile, and that it can be a crucial source of the microbes that
may, over time, be responsible for the development of PE (and indeed other disorders of
pregnancy, some of which we rehearse).

Semen consists essentially of the sperm cells suspended in a fluid known as seminal plasma [219].
Seminal plasma contains many components [220; 221], such as transforming growth factor 3
(TGF-B) [216; 222-224], and there is much evidence that a number of them are both protective and
responsible for inducing the immune tolerance observed in pregnancy. Thus, in a key paper on the
issue, Robertson and colleagues state, “TGFB has potent immune-deviating effects and is likely to
be the key agent in skewing the immune response against a Type-1 bias. Prior exposure to semen
in the context of TGFP can be shown to be associated with enhanced fetal/placental development
late in gestation. In this paper, we review the experimental basis for these claims and propose the
hypothesis that, in women, the partner-specific protective effect of insemination in pre-eclampsia
might be explained by induction of immunological hyporesponsiveness conferring tolerance to
histocompatibility antigens present in the ejaculate and shared by the conceptus” [128].
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TGFp and prostaglandin E (also prevalent in seminal fluid [225]) are potent Treg cell-inducing
agents, and coitus is one key factor involved in expanding the pool of inducible Treg cells that react
with paternal alloantigens shared by conceptus tissues [226-229].

Both in humans and in agricultural practice, semen may be stored with our without the seminal fluid
(in the latter cases, the sperm have been removed from it and they alone are used in the
insemination). However, a number of papers have shown very clearly that it is the seminal fluid
itself that contains many protective factors, not least in improving the likelihood of avoiding adverse
pregnancy outcomes [128; 177; 230; 231]. Thus semen is the preferred substrate for inducing
immunotolerance and hence protection against PE.

Evidence from epidemiology - semen can be protective against PE

As well as those (such as pre-existing diseases such as hypertension and diabetes [232; 233], that
we covered previously [32]), there are several large-scale risk (or anti-risk) factors that correlate
with the incidence of pre-eclampsia. They are consistent with the idea that a woman’s immune
system adapts slowly to (semen) proteins from a specific male partner [128; 215; 216], and that the
content of semen thus has major phenotypic effects well beyond its donation of (epi)genetic
material. We believe that our hypothesis about the importance of semen in PE has the merit of
being able to explain each of them in a simple and natural way:

1. The first pregnancy with any given partner means an increased susceptibility to PE [5; 234;

235]

Conception early in a new relationship means an increased susceptibility to PE [236-238]

3. Conception after using barrier contraceptives means an increased susceptibility to PE [237;
239; 240]

4. Conception after using non-barrier methods or after a long period of cohabitation means a

decreased susceptibility to PET [215; 237]

Donor egg pregnancies have a hugely inflated chance of PET [235; 241-243]

Pre-eclampsia in a first pregnancy increases its likelihood in subsequent pregnancies [244]

Oral sex with the father is protective against PE in a subsequent pregnancy [245; 246]

Age is a risk factor for PE [247-251].

n

© N O
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9. Donor sperm pregnancies (artificial insemination) are much more likely to lead to PE [246;

252-255]
Decreased Risk Increased Risk
Prolonged Exposure First Pregnancy
-~ N —
Increased exposure /f’ B \\\ Changing / New Partner
(e.g. via buccal membrane //,_o"? \
during oral sex) f \I' Donor gametes
|I||III ) . Ilr
Second & subsequent lr;." Pre ECIamPSIa l Conceiving early
pregnancies / in anew relationship
if no previous preeclampsia \ f..f//
Non-Barrier Methods = ™. Barrier Methods of
of Contraception Contraception

Figure 5. Some epidemiological risk factors for pre-eclampsia

We consider each in turn (Figure 5).

The first pregnancy with any given partner means an increased susceptibility to PE

This is extremely well established (e.g. [5; 54; 149; 232; 234; 235; 256-263]). Thus, Duckitt and
Harrington [232] showed nulliparity to have a risk ratio (over pregnant women with previous
pregnancies) of 2.91 (95% CI 1.28-6.61). Luo et al. [259] find an odds ratio of 2.42 (95% CI 2.16-
2.71) for PE in primiparous vs multiparous women, while Deis and colleagues found the OR to be
2.06 (Cl 1.63-2.60), p=0.0021. Dildy and colleagues [264] summarise several studies, including a
very large one by Conde-Agudelo and Belizan [265] (RR 2-38; 95% CI 2-28-2-49), while the meta-
analysis of English and colleagues [262] gives a risk ratio for nulliparity of 2.91 (Cl 1.28-6.61). The
consistency of each of these studies allows one to state with considerable confidence that there is
a 2-3-fold greater chance of PE with a first baby.

15


https://doi.org/10.1101/198796
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/198796; this version posted October 5, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

However, an additional and key clue here is not simply (and maybe even not mainly) that it is just
being nulliparous (i.e. one’s first pregnancy) but that it is primipaternity — one’s first pregnancy with
a given father — that leads to an increased susceptibility to PE [183; 266-277] (cf. [278]). Changing
partners effectively ‘resets the clock’ such that the risk with a new father is essentially as for first
pregnancies. Thus, Lie et al. [279] noted that if a woman becomes pregnant by a man who has
already fathered a pre-eclamptic pregnancy in a different woman her increased risk of developing
pre-eclampsia is 1.8-fold (ClI 1.2-2.6). This is far greater than the typical incidence of PE, even for
nulliparous women. The equivalent figure in the study of Lynch and colleagues [183] was RR = 5.1,
95% ClI, 1.6 to 15. The strong implication of all of this is that the father can have bad effects but
that some kind of ‘familiarity’ with the partner is protective [275], the obvious version — and that
more or less universally accepted — being an immunological familiarity (i.e. tolerance). Note,
however, that this is when the pregnancy goes to term: a prior birth confers a strong protective
effect against preeclampsia, whereas a prior abortion confers only a weaker protective effect [235].

Conception early in a new relationship means an increased susceptibility to PE

The idea that conception early in a new relationship means an increased susceptibility to PE
follows immediately from the above. The landmark studies here are those of Robillard and
colleagues [236], of Einarsson and colleagues [237], and of Saftlas and colleagues [238],

Robillard et al. [236] studied 1011 consecutive mothers in an obstetrics unit. The incidence of
pregnancy-induced hypertension (PIH) was 11.9% among primigravidae, 4.7% among same-
paternity multigravidae, and 24.0% among new-paternity multigravidae. For both primigravidae and
multigravidae, the length of (sexual) cohabitation before conception was inversely related to the
incidence of PIH (P<0.0001).

Einarsson and colleagues [237] studied both the use of barrier methods and the extent of
cohabitation prior to pregnancy. For those (allegedly...) using barrier methods before insemination,
the odds radio for PE when prior cohabitation was only 0-4 months versus the odds ratio for PE:
normotensive was 17.1 (Cl 2.9-150.6), versus 1.2 (Cl 0.1-11.5) when the period of cohabitation
was 8-12 months, and 1.0 for periods of cohabitation exceeding one year.

Saftlas et al. [238] recognised that parous women who change partners before a subsequent
pregnancy appear to lose the protective effect of a prior birth. In a large study (mainly based
around calcium supplementation), they noted that women with a history of abortion who conceived
again with the same partner had nearly half the risk of preeclampsia (adjusted odds ratio = 0.54,
95 percent confidence interval: 0.31, 0.97). In contrast, women with an abortion history who
conceived with a new partner had the same risk of preeclampsia as women without a history of
abortion (adjusted odds ratio = 1.03, 95 percent confidence interval: 0.72, 1.47). Thus, the
protective effect of a prior abortion operated only among women who conceived again with the
same partner

Conception after using barrier contraceptives means an increased susceptibility to PE

A prediction that follows immediately from the idea that paternal antigens in semen (or seminal
fluid) are protective is that the regular use of barrier methods will lower maternal exposure to them,
and hence increase the likelihood of PE. This too is borne out [237; 239; 240]. Thus Klonoff-Cohen
and colleagues found a 2.37-fold (Cl 1.01-5.58) increased risk of preeclampsia for users of
contraceptives that prevent exposure to sperm. A dose-response gradient was observed, with
increasing risk of preeclampsia for those with fewer episodes of sperm exposure. Similarly,
Hernandez-Valencia and colleagues [240] found that the odds ratio for preeclampsia indicated a
2.52-fold (Cl 1.17-5.44, P < 0.05), increased risk of preeclampsia for users of barrier
contraceptives compared with women using nonbarrier contraceptive methods.
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Conception after using non-barrier methods or after a long period of cohabitation means a
decreased susceptibility to PE

This is the flip side of the studies given above (e.g. [236-238)). It is clear that maternal—fetal HLA
sharing is associated with the risk of preeclampsia, and the benefits of long-term exposure to the
father's semen, while complex [280], seem to be cumulative [281]. Thus, short duration of sexual
relationship was more common in women with preeclampsia compared with uncomplicated
pregnancies (€6 months 14.5% versus 6.9%, adjusted odds ratio (aOR) 1.88, 95% CI 1.05-3.36;
<3 months 6.9% versus 2.5%, aOR 2.32, 95% Cl 1.03-5.25 [282]. Oral contraceptives are
somewhat confounding here, in that they may either be protective or a risk factor depending on the
duration of their use and the mother’s physiological reaction to them [283].

Donor egg pregnancies have a hugely inflated chance of PE

If an immunological component is important to PE (as it evidently is), it is to be predicted that donor
egg pregnancies are likely to be at much great risk of PE, and they are (e.g. [235; 241-243; 284-
288]) (and also of pre-term birth [289]). Thus, Letur and colleagues [241; 242] found that pre-
eclampsia was some fourfold more prevalent using donated eggs (11.2% vs. 2.8%, P<0.001),
while Tandberg and colleagues [235] found that various ‘assisted reproductive technologies’ had
risk ratios of 1.3 (1.1-1.6) and 1.8 (1.2-2.8) in second and third pregnancies, respectively. Pecks
and colleagues studied pregnancy-induced hypertension (PIH, not just PE) and found that the
calculated odds ratio for PIH after oocyte donation, compared to conventional reproductive
therapy, was 2.57 (Cl 1.91-3.47), while the calculated odds ratio for PIH after oocyte donation,
compared to other women in the control group, was 6.60 (Cl 4.55-9.57). Stoop and colleagues
[290] found a Risk Ratio of 1.502 (Cl 1.024-2.204) for PIH. In a study by Levron and colleagues
[291], adjustment for maternal age, gravidity, parity, and chronic hypertension revealed that oocyte
donation was independently associated with a higher rate of hypertensive diseases of pregnancy
(P<0.01). In a twins study, Fox and colleagues [292] found, on adjusted analysis, that the egg
donation independently associated with preeclampsia (aOR 2.409, ClI 1.051-5.524). The meta-
anaysis of Thomopoulos and colleagues [293] gave a risk ratio for egg donation of 3.60 (Cl 2.56-
5.05) over controls, a value similar to that of Blazquez and colleagues [294]. Finally, a recent
meta-analysis by Masoudian and colleagues [287] found that that the risk of preeclampsia is
considerably higher in oocyte-donation pregnancies compared to other methods of assisted
reproductive technology (odds ratio, 2.54; Cl 1.98-3.24; P<0.0001) or to natural conception (odds
ratio, 4.34; Cl 3.10-6.06; P<0.0001). The incidence of gestational hypertension and preeclampsia
was significantly higher in ovum donor recipients compared with women undergoing autologous
IVF (24.7% compared with 7.4%, P<0.01, and 16.9% compared with 4.9%, P<0.02 [295]. All of
these are entirely consistent with an immune component being a significant contributor to PE. One
obvious question pertains to whether the use of antibiotics assists the progression of IVF.
Unfortunately this question has been little researched in humans [296].

PE in a first pregnancy increases its likelihood in subsequent pregnancies

This too is well established: a woman who has had preeclampsia has an increased risk of
preeclampsia in subsequent pregnancies [263; 297], especially if suffering from hypertension [298].
This may be seen as relatively unsurprising, and of course bears many explanations, and the
increased risks can be very substantial [244]. In the overall analysis of English and colleagues
[262], the risk ratio was 7.19 (CI 5.85-8.83). Other examples give the recurrence risk, overall, as
some 15% to 18% [263]. The risk of recurrent preeclampsia is inversely related to gestational age
at the first delivery, and in the study of Mostello and colleagues [299] was 38.6% for 28 weeks’
gestation or earlier, 29.1% for 29-32 weeks, 21.9% for 33-36 weeks, and 12.9% for 37 weeks or
more. Low birthweight in the first pregnancy is an independent predictor of PE in the second: birth
weight below the tenth percentile in the first delivery accounted for 10% of the total cases of
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preeclampsia in the second pregnancy and 30% of recurrent cases [300]. From the perspective
developed here, the suggestion is that whatever is responsible for PE in one pregnancy can ‘live
on’ in the mother and afflict subsequent ones. One thing that can ‘live on’ is a dormant microbial
community.

Oral sex with the father is protective against pre-eclampsia in a subsequent pregnancy

Oral sex (with the father of one's baby) protects against pre-eclampsia [245; 246] (p=0.0003),
arguably because exposure to the paternal antigens in the seminal fluid have a greater exposure to
the blood stream via the buccal mucosa than they would via the vagina. This is a particularly
interesting (and probably unexpected) finding, that is relatively easily understood from an
immunological point of view, and it is hard to conceive of alternative explanations. (Note, however,
that in the index study [245], the correlation or otherwise of oral and vaginal sex was not reported,
so it is not entirely excluded that more oral sex also meant more vaginal sex.)

Age is arisk factor for PE

Age is a well known risk factor for PE [247-251], and of course age is a risk factor for many other
diseases, so we do not regard this as particularly strong evidence for our ideas. However, we have
included it in order to note that age-associated microbial dysbiosis promotes intestinal permeability,
systemic inflammation, and macrophage dysfunction [301].

Donor sperm pregnancies (artificial insemination) are much more likely to lead to PE

Finally, here, turning again to the father, it has been recognised that certain fathers can simply be
‘dangerous’ in terms of their ability to induce PE in those who they inseminate [277; 302]. By
contrast, if immunotolerance to a father builds up slowly as a result of cohabitation and unprotected
sex, a crucial prediction is that donor sperm pregnancies will not have this property, and should
lead to a much greater incidence of PE. This is precisely what is observed [246; 252-255; 284].

In an early study [252], Need and colleagues observed that the overall incidence of PE was high
(9.3%) in pregnancies involving artificial insemination by donor (AID) compared with the expected
incidence of 0.5-5.0%. The expected protective effect of a previous pregnancy was not seen, with
a 47-fold increase in PE (observed versus expected) in AID pregnancies after a previous full-term
pregnancy. That is a truly massive risk ratio.

Smith and colleagues [253] compared the frequency of PE when Al was via washed sperm from a
partner or a donor, finding a relative risk for PE of 1.85 (95% CI 1.20 - 2.85) for the latter, and
implying that the relevant factor was attached to (in or on) the sperm themselves.

In a similar kind of study, Hoy and colleagues found [254], after adjusting for maternal age, multiple
birth, parity and presentation, that ‘donor sperm’ pregnancies were more likely to develop pre-
eclampsia (OR 1.4, 95% CI 1.2-1.8).

Salha and colleagues [284] found that the incidence of pre-eclampsia in pregnancies resulting from
donated spermatozoa was 18.2% (6/33) compared with 0% in the age- and parity-matched partner
insemination group (P <0.05).

Wang et al. [303] found that the risk of pre-eclampsia tripled in those never exposed to their
partner's sperm, i.e, those treated with intracytoplasmatic sperm injection done with surgically
obtained sperm.

In a study of older women, Le Ray and colleagues [304] noted that the pre-eclampsia rate differed
significantly between various groups using assisted reproductive technology (3.8% after no IVF,
10.0% after IVF only and 19.2% after IVF with oocyte donation, P<0.001).
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Davis and Gallup reviewed what was known in 2006 [255], particularly from an evolutionary point
of view, concluding that one interpretation of PE was that it was the mother’s way of removing
‘unsuitable’ fetuses. This does not sit easily with the considerable mortality and morbidity
associated with PE pre-delivery, especially in the absence of treatment. However, Davis and
Gallup [255] did recognise that “pregnancies and children that result from unfamiliar semen have a
lower probability of receiving sufficient paternal investment than do pregnancies and children that
result from familiar semen”, and that is fully consistent with our general thinking here. Bonney
draws a similar view [162], based on the ‘danger’ model [156; 158], that takes a different view from
that of the ‘allograft’ or ‘self-nonself discrimination’ model. In the ‘danger model’, the decision to
initiate an immune response is based not on discrimination between self and non-self, but instead
is based on the recognition of ‘danger’ (abnormal cell death, injury or stress). One such recognition
is the well-established recognition of microbes as something likely to be causative of undesirable
outcomes.

In the study of Gonzalez-Comadran and colleagues, [305], conception using donor sperm was
again associated with an increased risk of preeclampsia (OR 1.63, 95% CIl 1.36-1.95).

Thomopoulos and colleagues carried out two detailed and systematic reviews [293; 306]; the latter
[293] covered 7,038,029 pregnancies (203,375 following any invasive ART) and determined that
the risk of PE was increased by 75% (95% CI, 50%-103%).

Overall, these studies highlight very strongly indeed that the use of unfamiliar male sperm is highly
conducive to PE relative to that of partner's sperm, especially when exposure is over a long period.
We next turn to the question of why, in spite of this, we also see PE even in partner-inseminated
semen, as well as more generally.

Evidence from epidemiology - semen can be harmful and can contribute

strongly to PE

In our previous review [32], we rehearsed the evidence for a considerable placental and vaginal
microbiome, but did not discuss the semen microbiome at all. To repeat, therefore, the particular,
and essentially novel, part of our hypothesis here is that if it is accepted that semen (and
seminal plasma) can have beneficial effects, it should also be recognised that in certain
cases it can also have harmful effects. In particular, we shall be focussing on its microbial
content (we ignore any epigenetic effects [307]). We note that this idea would fit easily with the
recognition that as well as inducing tolerance to paternal antigens, exposures to the father’'s semen
can build tolerance (immunity) to its microbes, thereby decreasing the risk of PE. However,
microbes and their associated PAMPs are well known to be highly inflammatory, whether or not
they are reproducing, and we consider that it is this that is likely the particular driver of the
sequelae observable in PE.

Microbes associated with pre-eclampsia

The female’s urogenital microbiome is important in a number of pregnancy disorders [44; 308-310].
Specifically, we previously found many examples in which microbes are associated with PE, and
we here update the CC-BY-licensed Table 2 thereof [32] as Table 2 here:

Table 2. Many studies have identified a much greater prevalence of infectious agents in the blood
or urine or gums of those exhibiting PE than in matched controls

Microbes Comments Reference

Chlamydia pneumoniae IgG seroprevalence and gDNA | [311]
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associated with PE (P<0.0001)

IgG (but not IgA or IgM) | [312]
associated with PE, OR = 3.1.

Significantly greater numbers | [313]
with PE, and reversion under
antichlamydial treatment

Much greater incidence | [314]
(P<0.006)

OR 4.1; P <0.02 for association | [315]
with PE (15/48 cases vs 3/30

controls)

Chlamydia trachomatis Increased risk of PE, OR = 7.2 | [316; 317]
or 1.6 based on serology

Cytomegalovirus RR for PE 1.5 if infected with | [318] (see also [319])
CMmVv

Helicobacter pylori Seropositivity or DNA. OR=2.7, | [320] and editorial [321]

or 26 if CagA seropositivity

IgG seropositivity 54%PE vs | [314]
21% controls

Anti-CagA antibodies cross- | [322]
react with trophoblasts and
could inhibit placentation

2.8x greater seropositivity in | [323]
PE group

OR=2.86 for seropositivity in | [324]
PE, correlated with high
malondialdehyde levels

Wide-ranging review of many | [325]
studies showing PE more
prevalent after Hp infection

Seropositivity  PE:control = | [326]
84%:32% (P<0.001)

OR for seropositivity 1.83 | [327]

(P<0.001)

Seropositivity PE:control | [328]
86%0:43% (P<0.001)

Massive increase in | [329]
seropositivity in women with

PE

Seroprevalence (57%) > | [43]
controls  (33.%) (P<.001).
Seropositivity for CagA-positive
strains 45.2% in preeclamptic
women vs 13.7% in controls
(P<.001). Infection associated
with abnormalities of uterine
arteries

Much greater incidence of | P<0.0001
antibodies to H. pylori

Human immunodeficiency virus | OR 3.52, 95% CI 2.51-4.94, | [330]
(HIV) some ascribable to therapy
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Human papillomavirus (HPV) High-risk human papillomavirus | [331]
(HR-HPV) presence implies an
OR of 2.18 for PE.

Meta-analyses Incidence of PE 19% with | [332]
asymptomatic bacteriuria, vs
3%  (primigravid) or 6%
(multigravid) controls
(P<0.005)

UTI more than twice as likely in | [333]
severe preeclamptics than in
controls

OR of 1.6 for PE if UTI present | [334]

Increased risk of PE OR 1.57 | [40]
for UTI, 1.76 for periodontal
disease

Early application of antibiotics | [37]
in infection reduced PE by 52%

Any overt infection led to an | [42]
RR of 2 for PE

UTI has OR of 3.2 for PE; OR | [335]
= 4.3 if in third trimester

UTI has OR of 1.3 for| [336]
mild/moderate and 1.8 for
severe PE

Increased risk of PE with UTI | [337]
(OR 1.22) or antibiotic
prescription (OR 1.28)

OR of 6.8 for symptomatic | [338]
bacteriuria in PE vs controls

OR 1.3-1.8 of mild or severe | [339]
PE if exposed to UTI

OR 1.4 for PE following UTI [340]

OR 1.3 for PE after UTI [341]

Meta-analyses showing | [41; 342; 343]
associations between PD and
PE

High frequency of neutropenia | [344]
and sepsis in preeclamptic
mothers

OR 279, ClI 2.01-3.01, | [345]
P<0.0001 for  periodontal
disease associating with PE

Periodontitis at enrolment (OR | [346]
= 5.78, 95% CIl 2.41-13.89)
and within 48 hours of delivery
(OR = 20.15, 95% CI 4.55-
89.29) is associated with an
increased risk of preeclampsia

Periodontitis associated with | [347]
PE: OR 7.48 (Cl 2.72-22.42)

Placental microbiome and PE Many organisms in 13% of PE | [348]
placentas vs none in controls
(P<0.006)
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Plasmodium
(malaria)

falciparum

Indications that infection with
malaria is associated with PE

[349]

1.5 RR for PE if malarial

[350]

Seasonality: 5.4-fold increase
in eclampsia during malaria
season

[351]

Pre-eclampsia was significantly
associated with malaria
infection during pregnancy
(P<0-03) and 69.7% of cases
of pre-eclampsia with infected
placenta might be

attributable to malaria infection

[352]

Microbiology of semen

Semen itself is very far from being sterile, even in normal individuals, with infection usually being
defined as 10° organisms.mL™ semen [353]. Of course the mere existence of sexually transmitted
diseases implies strongly that there is a seminal fluid (or semen) microbiome that can vary
substantially between individuals, and that can contribute to infection (e.g. [354-356]), fertility [354]
(and see below), and any other aspect of pregnancy [357], or even health in later life [358].

It is logical to start here with the observation that semen is a source of microbes from the fact that
there are a great many sexually transmitted infectious diseases for which it is the vehicle. Table 3

summarises some of these.

Table 3. Organisms of well-known sexually transmitted diseases that have been associated with

semen
Organism (disease) Comments References
Chlamydia trachomatis Effects on fertility [359]
32% prevalence in infertile | [360]
couples
Human Immunodeficiency Many examples of seminal | [361-366]
Virus (AIDS) transmission via unprotected
sex
Neissseria gonorrhoeae Gonorrhea actually means | [367]
(gonorrhoea) ‘flow of semen’
Survives being frozen in | [368]
semen used for artificial
insemination
Many anti-gonococcal | [369]
antibodies also present
Same strains in urine and | [370]
semen; likely origin in urethra
Treponema pallidum (syphilis) | Infectivity of semen [371]
More than half (twelve out of | [372]

twenty) of the women classified
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as proved and probably
syphilitic had mild to moderate
PE

Co-infection of syphilis and HIV | [373]
in men having sex with men

Both syphilis and preeclampsia | [374]
contribute to stillbirths in sub-
Saharan Africa

Notwithstanding the difficulties of measurement [375], there is, in particular, a considerable
literature on fertility [376], since infertile males tend to donate sperm for assay in fertility clinics, and
infection is a common cause of infertility (e.g. [353] and Table 4). Note that ‘infertility’ is not always
an absolute term: pregnancies result in 27% of cases of treated ‘infertile’ couples followed up after
trying to conceive for 2y, and with oligozoospermia as the primary cause of infertility [377]. Most
studies involve bacteria (bacteriospermia). Papers on this and other microbial properties of semen
beyond STDs include those in Table 4.

Table 4. Some examples of the semen microbiome and reproductive biology

Study Organisms References

Complementarity between | Many. Garnerella vaginalis | [378]
partners in female partners was
significantly related to
inflammation in male
genital tracts

Fertility Many microbiological [353; 357; 377; 379-423]
changes as a function of
fertility (more microbes
correlate with lower
fertility)

General microbiology 552 different microbes in [424]
182 samples out of 201
tested, simply plating 10
uL of semen

Microbes in 36/37 samples | [425]

Review [426]
35% of samples had [427]
microbes
IVF No positive antibiotic effect | [428]
LPS and protection by (purified LPS) [429]
probiotic lactobacilli
Review Many microbes [415; 430, 431]
Semen quality Ralstonia increased in [432]
low-quality sperm
Viral infection Ebola virus [433-436]
[437]
HIV [438-440]
Zika virus
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We deliberately avoid discussing mechanisms in any real detail here, since our purpose is merely
to show that semen is commonly infected with microbes, whose presence might well lead to pre-
eclampsia. However, we were very struck by the ability of E. coli and other organisms [410; 420;
441] actually to immobilise sperm (e.g. [442-445]). As with amyloidogenic blood clotting [446; 447],
bacterial LPS [136] may be a chief culprit [429]. The Gram-positive equivalent, lipoteichoic acid
(LTA), is just as potent in the fibrinogen-clotting amyloidogen assay [448], but while Gram-positives
can also immobilise sperm [449; 450], the influence of purified LTA on sperm seems not to have
been tested.

Another prediction from this analysis is that since infection is a significant cause of both infertility
and PE (and it may account for 15% of infertile cases [353; 443]), we might expect to see some
correlations between them. Although one might argue that anything seen as imperfect
‘background’ health or subfecundity might impinge on the incidence of PE, the risk ratio for PE in
couples whose infertility had an unknown basis was 5.61 (Cl 3.3-9.3) in one study in Aberdeen
[451] and 1.29 (CI 1.05-1.60) in another in Norway [452]. Time to pregnancy in couples may be
used (in part) as a surrogate for (in)fertility and is associated with a variety of poor preghancy
outcomes [453]; in this case, the risk ratio for PE for TTP exceeding 6 months was 2.47 (Cl 1.3-
4.69) [454]. Given the prevalence of infection in infertile sperm (Table 4), and the frequency of
infertility (10% in the Danish study [453], which defined it as couples taking a year or more to
conceive), it seems reasonable to suggest that microbiological testing of semen should be done on
a more routine basis. It would also help to light up any relationships between the microbiological
properties of sperm and the potentially causal consequence of increased PE risk.

More quantitatively, and importantly intellectually, if infection is seen as a major cause of PE, as we
argue here, and it is known that infection is a cause of infertility, then one should suppose that
infertility, and infertility caused by infection, should be at least as common, and probably more
common than is PE, and this is the case, adding some considerable weight to the argument.
Indeed, if PE was much more common than infertility or even infection, it would be much harder to
argue that the latter was a major cause of the former. In European countries ~10-15% of couples
are afflicted by infertility [353; 453], and in some 60% of cases infection or a male factor is
implicated [353]. In some countries, the frequency of male infertility is 13-15%
http://bionumbers.hms.harvard.edu/bionumber.aspx?id=113483&ver=0 or higher [455], and the
percentage of females with impaired fecundity has been given as 12.3%
https://www.cdc.gov/nchs/fastats/infertility.htm. These kinds of numbers would imply that 6-9% of
couples experience infection- or male-based infertility, and this exceeds the 3-5% incidence of PE.

In a similar vein, antibiotics, provided they can get through the relevant membranes [456-458],
should also have benefits on sperm parameters or fertility if a lack of it is caused by infection, and
this has indeed been observed (e.g. [407; 423; 459]).

Roles of the prostate and testes

In the previous review, we focussed on the gut, periodontitis, and the urinary tract of the mother as
the main source of organisms that might lead to PE. Here we focus on the male, specifically the
prostate and the testes, given the evidence for how common infection is in semen. The main
function of the prostate gland is to secrete prostate fluid, one of the components of semen. Thus,
although it is unlikely that measurement have regularly been done to assess any relationship

between this and any adverse effects of pregnancy, it was of interest to establish whether it too is
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likely to harbour microbes. Indeed, such ‘male accessory gland infection’ is common [460-464]. In
some cases, the origin is probably periodontal [465]. Recent studies have implicated microbial
pattern-recognition receptors, especially Toll-like receptors (TLRs), as well as inflammatory
cytokines and their signalling pathways, in testicular function, implying an important link between
infection/inflammation and testicular dysfunction [466]. The testes are a common and important
site of infection in the male [467; 468], and even bacterial LPS can cause testitis [469]. Similarly,
infection (especially urinary tract infection) is a common cause of prostatitis [470-480]. Finally,
prostatitis is also a major cause of infertility [460; 461; 463]. Such data contribute strongly to the
recognition that semen is not normally going to be sterile, consistent with the view that it is likely to
be a major originating cause of the infections characteristic of PE.

Microbial infections in spontaneous abortions, miscarriages and pre-term birth
Our logic would also imply a role for (potentially male-derived) microbes in miscarriages and
spontaneous abortions. A microbial component to these seems well established for both
miscarriages [481-483] and spontaneous abortions [484-489]. Of course the ability of Brucella
abortus to induce abortions in domesticated livestock, especially cattle (and occasionally in
humans), is well known [490-492]; indeed, bacteriospermia is inimical to fertilisation success [4973],
and nowadays it is well controlled in livestock by the use of vaccines [494] or antimicrobials [493].
Indeed, stored semen is so widely used for the artificial insemination of livestock in modern
agriculture that the recognition that semen is not sterile has led to the routine use of antibiotics in
semen ‘extenders’ (e.g. [495-498])).

The same general logic is true for infection as a common precursor to pre-term birth (PTB) in the
absence of PE, where it is much better established (e.g. [499-533]). It arguably has the same basic
origins in semen.

Although recurrent pregnancy loss is usually treated separately from infertility (where the role of
infection is reasonably well established) it is possible that in many cases it is, like PE, partly just a
worsened form of an immune reaction, with both sharing similar causes (including the microbial
infection of semen). There is in fact considerable evidence for this (e.g. [120; 413; 534-548]). Of
course it is not unreasonable that poor sperm quality, that may be just sufficient to initiate a
pregnancy, may ultimately contribute to its premature termination or other disorders of pregnancy,
so this association might really be expected. It does, however, add considerable weight to the view
that a more common screening of the male than presently done might be of value [549] in
assessing a range of pregnancy disorders besides PE. In particular, it seems that infection affects
motility (see above), and that this in turn is well correlated [541] with sperm DNA fragmentation and
ultimate loss of reproductive quality.

Amyloids in semen are known to enhance HIV infectivity [550]. According to our own recent
experimental analyses, they may be caused by bacterial lipopolysaccharide (LPS) [446; 447] or
lipoteichoic acid [448]. We note too that the sperm metabolome also influences offspring, e.g. from
obese parents [551], and that many other variables are related to sperm quality, including oxidative
stress [552-559]. Thus it is entirely reasonable to see semen as a cause of problems as well as
benefits to an ensuing pregnancy.

Microbial effects on immunotolerance

If our thesis is sound, one may expect to find evidence for the effects of microbes on the loss of
immunotolerance in other settings. One such is tolerance to dietary antigens, of which gluten, a
cause of coeliac disease, is pre-eminent. Recently, evidence has come forward that shows a
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