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Abstract
Genetic variants in genome-wide association studies (GWAS) are tested for disease association
mostly using simple regression, one variant at a time. Multiple regression can improve power
by aggregating evidence from multiple nearby variants. It can also distinguish disease-coupled
variants from variants merely correlated with a coupled variant. However, it requires individual
genotype data, limiting its applicability when combining several GWAS. Moreover, multiple
logistic regression to model binary phenotypes in case-control GWAS requires inefficient
sampling schemes to integrate over the variant effect sizes. Our sparse Bayesian multiple LOgistic
REgression (B-LORE) method overcomes these two drawbacks. We propose a quasi-Laplace
approximation to analytically integrate over variant effect sizes. The resulting marginal likelihood
functions of individual GWAS are approximated bymultivariate normal distributions. Theirmeans
and covariance matrices serve as summary statistics for combining several GWAS. Additionally,
B-LORE can integrate functional genomics tracks as priors for each variant’s causality. To
test our method, we simulated synthetic phenotypes for real genotypes. B-LORE improved the
prediction of loci harboring causal variants and the variant fine mapping. We also used B-LORE
for a metanalysis of five small GWAS for coronary artery disease (CAD). We pre-selected the
top 50 loci with SNPTEST / META, which included 11 loci discovered by a 14-fold larger
meta-analysis (CARDIoGRAMplusC4D). While simple regression discovered only 3 of them
with genome-wide significance, B-LORE discovered all of them with causal probability > 95%.
Of the 12 other loci discovered by B-LORE, 3 are known from other CAD GWAS and 6 are
associated with well-known CAD risk-related blood metabolic phenotypes. Software availability:
https://github.com/soedinglab/b-lore.

Introduction 1

Common, noninfectious diseases are responsible for over 2/3 of the deaths worldwide. These 2

diseases are usually polygenic, with many variants each contributing only a small fraction of 3

the disease risk. This made them very difficult to investigate using family studies. Genome 4

wide association studies (GWAS) have opened up a fundamentally new approach to explore and 5

understand the causality of disease development. The knowledge about the underlying biological 6

mechanisms is crucial to devise prophylactic and therapeutic treatments. 7

In the most common GWAS design, patients with diagnosed diseases (“cases”) and healthy 8

people (“controls”) are genotyped at several hundred thousand positions where single nucleotide 9

polymorphisms (SNPs) are relatively frequent in the population. The data is then statistically 10

analyzed to detect SNPs which have significant associations with the disease. Thousands of 11

GWAS with millions of patients have been conducted in the past decade [1] with which thousands 12

of genetic variants associated with many diseases and complex traits have been identified [2]. 13

The statistical analyses commonly involve hypothesis tests for one SNP at a time, yielding 14

p -values for each SNP independent of all others. Given the enormous volume of genotype data, 15

the computational speed of this simple regression is a major advantage. However, this model only 16

detects association, not statistical coupling. A SNP can show association with the disease simply 17
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by being correlated to an actually causal SNP. This situation is the rule rather than the exception, 18

because SNPs are usually stronlgy correlated to dozens of nearby SNPs, up to distances of 100 19

kbp. This non-random correlation between nearby SNPs is referred to as linkage disequilibrium 20

(LD) and occurs due to the common descent of humankind from a relatively small ancestral 21

population. 22

The distinction between association (i.e. correlation) and coupling is therefore very important 23

for the prediction of causal SNPs. SNPs which are highly correlated with a causal SNP obtain 24

similarly significant p -values, making it difficult to decide which of these SNPs is really causal.

Figure 1. Effect of linkage disequi-
librium (LD) with multiple causal
variants. A noncausal SNP in LD
with multiple causal SNPs may ex-
hibit more significant effect size for
disease association than the actu-
ally causal SNPs, possibly leading to
wrong interpretations of what genes
are involved in the disease mecha-
nism.

25

Fig. 1 illustrates the importance of this 26

distinction with another example, where 27

two causal SNPs are highly correlated 28

with a noncausal SNP between them. 29

The noncausal SNP may exhibit a more 30

significant p -value for disease associa- 31

tion than the two causal SNPs, possibly 32

leading to wrong interpretations of what 33

genes are involved in the disease mech- 34

anisms. 35

The low effect sizes of single SNPs 36

in complex polygenic diseases studied 37

in GWAS limits the power of simple re- 38

gression to detect statistically significant 39

associations. Advances in GWAS have 40

focused on two aspects to improve the 41

power of detecting associations: (1) using multiple regression models for joint analysis of many 42

SNPs (multiple-SNP analyses, or polygenic modelling), and (2) using meta-analysis of multiple 43

independent studies to combine evidence from more and more patients. 44

Multiple regression models use many SNPs at a genetic region or locus as explanatory 45

variables. This improves the power of GWAS by distinguishing between correlation and coupling 46

as discussed above, as well as by aggregating evidence from many SNPs in the locus with 47

low effect size, each of which would not be detected by single-SNP tests. Bayesian multiple 48

regression models, particularly Bayesian variable selection regression (BVSR) [3, 4], have been 49

shown to perform significantly better than simple regression methods, e.g. SNPTEST [5–7], 50

when individual-level genotype data are available. However, it is cumbersome to combine studies 51

using multiple regression analyses due to the requirement of individual genotype data and the 52

associated logistical, technical, and ethical restrictions for sharing genetic data from patients. 53

On the other hand, existing meta-analysis methods efficiently combine the single-SNP 54

summary statistics from many studies and increase the power for detecting associations by 55

collecting evidence from a larger pool of samples. The power gained from increased sample sizes 56

in meta-analyses usually outweighs the power of multiple regression models applied on a more 57

modest number of samples in an individual study. 58

Approaches that allow to combine multiple regression with meta analysis on many GWAS 59

should lead to more power for detecting associations. Cichonska et al. recently made a pioneering 60

contribution in this regard. Their tool metaCCA [8] performs canonical correlation analysis 61

(CCA) of multiple SNPs against multiple traits, based on standard SNPTEST summary statistics 62

and a genotype covariance matrix estimated from individual-level genotype data from the same or 63

a similar population. CCA is used to identify and quantify the linear association between the two 64

sets of variables, but model/variable selection is not included in the model. Therefore, metaCCA 65

requires a pre-selection of SNPs. The authors proposed to select a roughly uncorrelated set of 66

SNPs that together explain the maximum variance in a given genetic locus. 67

In this work, we present B-LORE, a Bayesian method using multiple logistic regression of 68

the case-control binary variable and a prior distribution for the effect size of SNPs modeled by a 69

two-component Gaussian mixture. The Gaussian mixture prior is motivated by BVSR [3], which 70

has been successfully applied to many GWAS [4]. 71

The weights, means and variances of the two-component Gaussian mixture prior are the model 72

hyperparameters. B-LORE learns the hyperparameters from the data using the empirical Bayes 73

approach of maximizing the marginal likelihood, which is obtained from the total likelihood 74
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by integrating out the unknown effect sizes of all SNPs. The total likelihood is the product over 75

the regularized likelihoods of each individual study (Eq. (14)). The regularized likelihood of 76

each study is approximated by a multivariate normal distribution, whose mean and covariance 77

matrix is obtained by L2-regularized multiple logistic regression. Thus the mean and covariance 78

matrices of each study serve as summary statistics that can be shared between research groups 79

for downstream meta-analysis. 80

Through simulations and application to real GWAS data, we show that B-LORE combines the 81

advantages of multiple logistic regression and meta-analysis, successfully incorporates functional 82

information of the SNPs, and outperforms state-of-the-art methods in the prediction of causal 83

loci and in finemapping of causal SNPs. 84

Materials and Methods 85

Model likelihood and priors 86

GWAS data consists of phenotypes φn ∈ {0, 1} (healthy or diseased) and of genotypes wni ∈ 87

{0, 1, 2}, where 0, 1, or 2 signify the number of minor alleles of patient n ∈ {1, . . . , N} at SNP 88

i ∈ {1, . . . , I}. The genotype is centered and normalized as xni = (wni − 2 fi)/
√

2 fi(1 − fi), 89

where fi is the minor allele frequency of the i th SNP. Henceforth, we will denote the vector of 90

normalized genotypes for the n th sample as xn, and the N × I matrix of genotypes as X. We 91

model the effect strength, i.e. the log-odds ratio of diseased to healthy, by a linear function in 92

which each minor allele contributes independently with additive effect, 93

log
p (φn = 1 | xn, v)
p (φn = 0 | xn, v)

= v0 +

I∑
i=1

vi xni . (1)

The offset v0 determines the odds ratio for a patient without any minor allele SNPs, and vi is the 94

effect size of the i th SNP. For notational convenience we define the (I + 1) th component of each 95

vector xn to be 1 in order to absorb the offset term into the scalar product. We can then write the 96

right-hand side in vector notation, vTxn. Abbreviating pn := p (φn = 1 | xn, v), we note that the 97

above equation can be transformed to pn = 1/(1 + exp
(
vTxn

)
), the standard model of logistic 98

regression. The likelihood for N patients with genotypes X = (x1, . . . , xN )) is therefore 99

L(v) = p (φ | X, v) =
N∏
n=1

pφn
n (1 − pn)(1−φn) =

N∏
n=1

exp
(
φnvTxn

)
1 + exp

(
vTxn

) . (2)

Usually the number of parameters p = I + 1 is much larger than the number of samples N 100

(p � N). Hence, a standard logistic regression approach in which we maximize the likelihood 101

with respect to the effect sizes will lead to gross overtraining on the training data and poor 102

prediction performance on unseen test data. 103

When learning themodel parameters using amaximum likelihood approach in the limit p � N , 104

one common solution is to add a regularization term to the log likelihood that will push most of 105

the components of v to zero, or near zero (such as an L1 regularizer −λ | |v| |1 or an L2 regularizer 106

−λ | |v| |22 , respectively). From the viewpoint of Bayesian statistics, this approach can be motivated 107

by noting that it is equivalent to maximizing the posterior distribution p(v | X, λ) because 108

according to Bayes’ theorem it is proportional to p(X | v) p(v). Maximizing the logarithm of the 109

posterior distribution is therefore equivalent to maximizing the log likelihood plus a regularization 110

term log p(v). Obviously, the L1 and L2 regularizers correspond to a Laplace and a normal prior 111

distribution, respectively. Because our prior expectation is that the overwhelming majority of 112

SNPs will have a negligible effect on disease risk, the prior p(v) should have most of its weight 113

narrowly distributed around zero. 114

We choose to model the prior probability of effect sizes with a more descriptive and realistic 115

two-component Gaussian mixture distribution, in which one component representing the effect 116

sizes of the non-causal SNPs is sharply peaked around vi = 0 and and the second much wider 117
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component describes SNPs coupled to the phenotype: 118

p (vi | θ) = (1 − πi) N
(
vi | 0, σ2

bg

)
+ πi N

(
vi | µ, σ

2
)
. (3)

This prior is similar to various other two-component mixture priors (see [9] for an overview), e.g. 119

the one in BVSR [3], which used a delta function at vi = 0 for the non-causal SNPs and a Students 120

t-distribution for the causal ones. In our prior, θ = (βπ, µ, σ) are the model hyperparameters 121

with βπ defined below. The parameters πi , as in BVSR, control the sparsity of the model. We set 122

σ2
bg to 0, corresponding to a delta function at vi = 0. This reduces our prior to a point-normal 123

distribution. The parameter σ2 describes the variance of the effect size of the causal variants. We 124

assume that all causal SNPs will have the same variance, for which we assume a uniform prior, 125

p(σ2) = const. 126

We further define zi ∈ {0, 1} as the hidden indicator variables defining the underlying causality 127

of the SNPs. Here, zi = 1 indicates that SNP i is causal and zi = 0 indicates that it is not. To 128

simplify notations, we define the vectors µz and σ2
z , whose i th components are µz,i = ziµ and 129

σ2
z,i = σ

2
bg + zi(σ2 − σ2

bg) respectively. This allows us to reformulate Eq. (3) as: 130

p (v | θ) =
∑

z

(
I∏

i=1
πzii (1 − πi)

(1−zi )

)
N

(
v | µz, diag(σ2

z )
)

with the sum running over all 2I possible causality configurations z ∈ {0, 1}I . Using 131

p (z | θ) =
I∏

i=1
πzii (1 − πi)

(1−zi ) (4)

we can write the prior on the effect sizes as, 132

p (v | θ) =
∑

z
p (z | θ) N

(
v | µz, diag

(
σ2

z

))
. (5)

The above formulation also helps us to realize that πi = p (zi = 1 | θ), which gives the probability 133

of i th SNP being causal before observing the data. 134

In the simplest case the prior probability of all SNPs are same, i.e. πi = π = const. Here, we 135

consider a more flexible model in which the πi can depend on possibly informative local genomic 136

features or annotations of genetic variants by functional consequences. These could potentially 137

help causal inference for the SNPs because they bring independent sources of underlying biological 138

information about each SNP. Data tracks with informative features are becoming available for ever 139

more cell types, e.g. ENCODE data on histone modifications, chromatin accessibility enhancer, 140

promoter and coding region annotation [10], summary features from DeepSEA [11], etc. We 141

lump together these additional features into vectors ξi (i ∈ {1, . . . , I}), each with K elements or 142

features. We model the dependency of πi on these functional features as, 143

πi =
1

1 + exp
(
−ξT

i βπ
) (6)

We also add a (K + 1) th “baseline” annotation of ξi,0 = 1 for all SNPs whose corresponding 144

coefficient βπ,0 can be interpreted as the prior odds for causality of any SNP. Only a few 145

of these K + 1 features contribute to determine the weights, and we enforce this sparsity by 146

introducing a Laplace hyperprior p (βπ) =
∏

f exp(−α |βπ, f |) with α = 0.75, and f runs over 147

all the K + 1 feature tracks. The dependency of πi on βπ (Eq. (6)) can be easily modified, and 148

similar dependencies can be introduced for the mean and variance of the effect size prior. 149

Inference 150

Statistical finemapping of causal variants in each locus. The posterior probability for SNP 151

i to be coupled to the disease is obtained by summing the posterior probability over all causality 152
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configurations z for which SNP i is causal (i.e. zi = 1): 153

p (zi = 1 | φ,X, θ) =
∑

z : zi=1
p (z | φ,X, θ) (7)

Prediction of causality of each locus. Similarly, the probability for a locus to be coupled with 154

the disease phenotype is equal to the probability of the locus harboring at least one causally 155

associated SNP. This is equal to 1 minus the probability of not containing a single causal SNP: 156

Prcausal = p (locus is causal | φ,X, θ) = 1 − p (z = 0 | φ,X, θ) (8)

Both tasks require computing 157

p (z | φ,X, θ) =
p (φ, z | X, θ)
p (φ | X, θ)

=
p (φ, z | X, θ)∑

z′
p (φ, z′ | X, θ)

(9)

for any causality configuration z, which in turn requires computing 158

p (φ, z | X, θ) = p (φ | X, z, θ) p (z | θ)

= p (z | θ)
∫

p (φ | X, v) p (v | z, θ) dv

= p (z | θ)
∫

p (φ | X, v) N
(
v | µz, diag

(
σ2

z

))
dv . (10)

In contrast to the classical maximum likelihood approach, in which the parameters v are 159

optimized, the above method integrates out the parameters v. This is a crucial difference in 160

practice, because it eliminates the need to learn a large number p � N of parameters and thereby 161

very effectively guards against overtraining. The only parameters that we still have to learn are 162

the hyperparameters θ = (βπ, µ, σ). Also, by integrating out the parameters we avoid the errors 163

incurred by fixing them to noisy point estimates. We will explain how to solve this integral in the 164

next section. 165

Optimization of hyperparameters and quasi-Laplace approximation 166

To learn the hyperparameters θ = (βπ, µ, σ), we maximize the marginal likelihood function 167

mL(θ) := p (φ | X, θ) =
∫

p (φ | v,X, θ) p(v|θ)dv. This empirical Bayes approach [12] is usually 168

robust against overtraining when only few hyperparameters need to be learned from the data. 169

Inserting Eq. (10) into the marginal likelihood yields 170

mL(θ) =
∑

z
p (φ, z | X, θ) =

∑
z

p (z | θ)
∫

p (φ | X, v) N
(
v | µz, diag

(
σ2

z

))
dv . (11)

The integral on the right hand side does not have an exact solution. A common approach to 171

solve such integrals is to approximate the integrand with a multivariate Gaussian using Laplace’s 172

method. The parameters of the Gaussian can be simply determined by finding the integrand’s 173

mode using gradient-based optimization and setting the precision matrix to the Hessian at the 174

mode. Unfortunately, the mode depends on the causality configuration z and the hyperparameters 175

θ. That means we would need to determine mode and precision matrix for every z in the sum 176

and every time θ is changed, which is clearly infeasible. One might instead approximate only 177

the likelihood by a Gaussian. This is also problematic because the approximation will become 178

inaccurate as we move away from the mode of the likelihood, and unfortunately the region in v 179

space which contributes most to the integrand (around the mode of the integrand) can be quite 180

far from the mode of the likelihood. 181

We propose a novel approximation (“quasi-Laplace approximation”) by splitting the integrand 182

into two factors, a regularized likelihood that closely approximates the integrand but does not 183
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depend on θ or z and a correction term that depends on θ and z: 184

p (φ | X, v) N
(
v | µz, diag

(
σ2

z

))
= p (φ | X, v) N

(
v | µ̃, diag

(
σ̃2

))
×

N
(
v | µz, diag

(
σ2

z
) )

N
(
v | µ̃, diag

(
σ̃2) ) (12)

Here, µ̃ and σ̃ are constants whose values will be estimated from the data. We approximate the 185

regularized likelihood by a multivariate Gaussian: 186

p (φ | X, v) N
(
v | µ̃, diag

(
σ̃2

))
∝ N

(
v | ṽ, Λ̃−1

)
. (13)

Since the regularized likelihood depends neither on z nor on θ, we have to perform the gradient- 187

based optimization only once to determine the summary statistics ṽ and Λ̃. The regularizer 188

N
(
v | µ̃, diag

(
σ̃2) ) acts as an approximate, simple prior distribution. We learn it from the data 189

in an iterative way (usually two iterations suffice) by maximizing the marginal likelihood given a 190

first estimate of µ̃ and σ̃. The above approximation allows us to analytically solve the integral of 191

Eq. (11) (see the detailed derivation in S1 File). 192

The regularized likelihood is well approximated by a Gaussian when N � 1 and the 193

number of cases and controls is similar. To see this, we note that the regularized log likelihood 194

LLreg(v) = log p(φ |X, v) + log N (v|µ, diag(σ2)) is the sum of N concave functions fn(v) = 195

− log(1 + exp(±vTxn)) (see Eq. (2)) plus a quadratic function with respect to v. The Hessians 196

of the concave functions must all have negative or zero diagonal elements and therefore their 197

sum will grow roughly proportionally with the number of patients N . In contrast to the second 198

derivatives, the third and higher partial derivatives will take both positive and negative signs. 199

If the number of diseased and control patients is roughly equal, p(φn |xn, v) will mostly lie near 200

(1/N)
∑

n I(φn = 1) ≈ 0.5, and therefore vTxn will be roughly as often positive as negative. 201

Therefore the third partial derivatives will tend to be close to zero and have no preferred signs. 202

The same is true of the higher derivatives. The magnitudes of the third and higher derivatives will 203

grow only as
√

N because their signs fluctuate around 0 for all patients. The second derivatives 204

will increasingly dominate over the higher derivatives as N gets larger, and the log likelihood will 205

be increasingly better approximated by a quadratic function, or in other words, by the logarithm 206

of a multivariate Gaussian. 207

In summary, B-LORE works in two steps: 208

1. Calculate summary statistics for each cohort. This, in turn, requires two optimizations: 209

• Learn µ̃ and σ̃ from the data. 210

• Learn ṽ and Λ̃ from the data by gradient-based maximization of the logarithm of the 211

regularized likelihood obtained from Eqs. (13) and (2) and setting ṽ to its mode and 212

Λ̃ to the negative of the Hessian matrix at the mode (see S1 File for details). 213

2. Meta-analysis using summary statistics. In this step, B-LORE optimizes the hyperparam- 214

eters θ by maximizing the marginal likelihood combining the summary statistics from 215

multiple studies (see below). 216

In our software, the first step can be run using the command �summary and the second step can 217

be run using the command �meta. 218

Factorization over loci 219

To speed up B-LORE analysis, we recommend to preselect loci with a faster method such as 220

SNPTEST [5–7] and to include SNPs from these preselected loci. Usually these candidate loci 221

will be in linkage equilibrium since LD is highly local. Therefore the covariance matrix XTX 222

is approximately block-diagonal, with each block corresponding to a locus. This allows us to 223

factorize the marginal likelihood in Eq. (11) as a product over all the loci (see S1 File). We 224

can therefore calculate the marginal likelihood for each locus independently, which makes the 225

evaluation of the sum over causality configurations and learning the hyperparameters from the 226

summary statistics ṽ and Λ̃ quite efficient. 227
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We note here that several other methods utilize this block-diagonal feature of LD matrix of 228

genotype. For example, BIMBAM [4] uses a factorization over loci to perform multiple regression 229

at each locus independently. However, it does not learn the hyperparameters from the data. Hence 230

it does not need to jointly analyze multiple loci and can compute summary statistics for each locus 231

separately. In contrast, B-LORE analyzes all loci jointly, which requires the summary statistics to 232

be computed for all loci jointly. 233

Meta-analysis of many studies 234

The likelihood for a single study is given in Eq. (2). We can combine multiple independent studies 235

simply by computing the total likelihood as the product of the likelihoods of each contributing 236

study s: 237

p (φ1, . . . , φS | X1, . . .XS, v) =
S∏
s=1

p (φs | Xs, v) (14)

The integrand in Eq. (11) will now have a product over multiple logistic functions. For each study, 238

we estimate the regularizer of the likelihood N
(
v | µ̃s, diag

(
σ̃2

s

) )
and the summary statistics ṽs 239

and Λ̃s . We apply the quasi-Laplace approximation for each study: 240

S∏
s=1

[
p (φs | Xs, v) N

(
v | µ̃s, diag

(
σ̃2

s

))]
∝

S∏
s=1

[
N

(
v | ṽs, Λ̃

−1
s

)]
(15)

where, 241

Λ̃ =

S∑
s=1
Λ̃s and ṽ = Λ̃−1

S∑
s=1
Λ̃s ṽs . (16)

We use this approximation to calculate the total marginal likelihood for all studies, and optimize 242

it to obtain estimates of the hyperparameters. We can then perform all the subsequent analyses 243

using the optimized hyperparameters. Unlike conventional meta-analysis methods which pool 244

aggregate allele count data of each individual SNP, the above method allows us to combine 245

information from multiple regression. For details of the derivations see S1 File. 246

Population stratification and other covariates 247

Population stratification presents a major challenge in the design and analysis of GWAS. As 248

discussed in the S1 File, current implementation of B-LORE uses a principal component analysis 249

(PCA) for correcting population substructure. The principal components are obtained from the 250

genotype matrix and used as covariates in the model. For all our analysis, we have used 20 251

principal components. The PCA-based correction assumes that the principal coordinates enter 252

linearly in the argument of the logistic function. Similarly, other external covariates such as age, 253

sex, etc. can be specified in the sample file and will also enter linearly in the argument of the 254

logistic function. 255

Datasets 256

To illustrate B-LORE, we used the genotype from five German population cohorts: German 257

Myocardial Infarction Family Study (GerMIFS) I - V [13–18]. Details for quality control and 258

pre-processing of these datasets were described by Nikpay et al. [18]. Briefly, there were a total 259

of 6234 cases and 6848 controls with white European ancestry. Each cohort was imputed with 260

phased haplotypes from the 1000 Genomes Project. SNPs were filtered for MAF > 0.05 and 261

HWE p -value > 0.0001. To test the ability for using genome-wide functional genomics tracks to 262

help distinguish causal from merely correlated SNPs, we used DNase-seq data to measure DNA 263

accessibility, published by the ENCODE project [10]. We normalized the DNase-seq data for 264

112 human samples, as described previously by Sheffield et al. [19]. 265
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Simulation framework 266

Simulation studies are popular to evaluate different methods of statistical analyses in GWAS, 267

because they are inexpensive and they give us access to the “ground truth”. In our case, we needed 268

to know which SNPs or which loci are causal in the population. The inherent complexity of the 269

genotype data with strong linkage effects are very difficult to simulate realistically from haplotype 270

data. We therefore used real patient genotypes and real DNase-seq tracks in our semisynthetic 271

benchmarking test. We simulated the phenotypes using genomic features as described previously 272

by Kichaev et al. [20]. 273

We randomly selected 200 loci, each with 200 SNPs from the whole genome. Random 274

selection of a locus was done by selecting a random SNP from the whole genome and using the 275

chosen SNP plus the nearest 199 SNPs as the locus. While SNPs within a locus can have strong 276

LD, we made sure that all SNP pairs between different loci have LD r2 < 0.8. 277

Each SNP had 112 functional genomics features, denoted by ξi . For each simulation, we 278

randomly selected 3 features as significant. We then defined a baseline probability π0 = 279

1/(1 + exp
(
−βπ,0

)
). The enrichment induced by the k th feature can be defined as ψk = πk/π0, 280

where πk = 1/(1 + exp
(
−βπ,0 − βπ,k

)
) assuming that the corresponding feature is binary (i.e. 281

1 for enriched SNPs, and 0 for other SNPs). For each selected feature, we randomly chose ψk 282

from a uniform distribution between 2 and 8, and calculated the corresponding βπ,k . The βπ,k 283

for the remaining 109 cell lines were set to zero. Next, we calculated πi = 1/
(
1 + exp(−ξT

i βπ)
)

284

which gives the probability for each SNP to be causal. The prior probability of a locus to be 285

causal is equal to 1 minus the probability of not containing a single causal SNP, which can be 286

obtained as pc = 1 −
∏

i(1 − πi) where i runs over all SNPs in a given locus. We ranked the 287

200 loci by this prior probability pc , and chose the top 100 loci as causal. For each of these 288

causal loci, we sampled causal SNPs with the probability πi . This gave us a “ground truth” of 289

100 causal loci and corresponding causal SNPs for each simulation. The number of causal SNPs 290

depended on the choice of π0 and the number of features. For example, π0 = 0.01 and 3 features 291

gave approximately 450 causal SNPs out of 40000 SNPs used for each simulation. 292

Once we established the causal SNPs, we used a linear model to simulate continuous 293

phenotypes yn =
∑

i vi xin + εj such that the causal SNPs aggregated to explain a fixed proportion 294

of the phenotypic variance h2
g. This phenotypic variance was partitioned equally amongst all 295

the causal SNPs. The environmental contribution given by εj , was assumed to be normally 296

distributed εj ∼ N
(
0, 1 − h2

g

)
. In our simulations, we used a heritability of h2

g = 0.25 as is used 297

typically in GWAS simulations [20]. 298

We obtained the binary phenotype for the 5 cohorts using the classical liability threshold 299

model [21, 22]. The model assumes that the binary disease status results from an underlying 300

continuous disease liability that is normally distributed in the population. If the combined effects 301

of genetic and environmental influences push an individual’s liability across a certain threshold 302

level, the individual is affected. In the population, the proportion of individuals with a liability 303

above the threshold is reflected in the disease prevalence. The observations on the risk scale and 304

the liabilities on the unobserved continuous scale can be related by a probit transformation [22]. 305

We used the continuous phenotype yn as the disease liability. Any individual with disease liability 306

exceeding a certain threshold T was assigned to be a case and a control otherwise. T is the 307

threshold of normal distribution truncating the proportion of K (disease prevalence). We used 308

K = 0.5 to obtain roughly equal number of cases and controls. 309

We repeated the simulations 50 times. For all simulations, we used the same genotype and 310

functional annotations. We resampled which functional features are significant, which loci and 311

which SNPs are causal and simulated new phenotype for every repetition of the simulation. 312

Results 313

Prediction of causal loci 314

We tested two widely used software packages employing conventional methods for association 315

testing in GWAS: (1) SNPTEST [5–7] on each cohort, followed bymeta-analysis usingMETA [23] 316

(designated as SNPTEST / META henceforth). (2) Meta-analysis with BIMBAM [4] using the 317
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-psd option to collect summary statistics on each cohort and -ssd to combine them. BIMBAM 318

can perform multiple regression and was earlier shown to outperform SNPTEST when given 319

access to individual genotype data. However, it falls back to simple single-SNP regression when 320

performing meta-analysis. 321

Furthermore, we tested the recent metaCCA software, which can perform multivariate meta- 322

analysis from summary statistics. The method requires choosing the relevant SNPs beforehand 323

since it has no shrinkage in the model for variable selection [8]. We ranked the SNPs based on 324

p -values obtained from SNPTEST / META, and chose the 10 best SNPs successively such that 325

each chosen SNP had little correlation
(
r2 ≤ 0.8

)
with all previously chosen SNPs. In other 326

words, once a SNP is chosen, all SNPs which had correlation
(
r2 > 0.8

)
were removed from 327

the ranked list. The method also requires the matrix of LD correlation coefficients between the 328

selected SNPs at each locus for each study. We calculated the LD matrix for each study directly 329

from the individual level genotype using LDstore [24]. 330

It was shown previously that genome-wide annotations and data tracks such as DNA accessi- 331

bility measurements from DNase-seq are enriched in causal SNPs [25,26] and can be used for 332

improving the finemapping of causal SNPs [20,27]. We therefore extended B-LORE, making 333

the mixture weight πi of the causal part of the effect size distribution for SNP i depend on these 334

functional genomics data tracks at the position of SNP i (see Eq. (6)). We ran B-LORE with and 335

without using the genome-wide functional genomics tracks and denoted the latter as B-LORE FG. 336

Fig. 2 summarizes the performance of different methods in predicting the causality of loci 337

using synthetic phenotypes. First, we compared the ranking of loci by SNPTEST/META and 338

B-LORE (Fig. 2A). For SNPTEST/META, loci were scored by the − log10(p) value of their most 339

significant SNP. For B-LORE, loci were scored by the easily interpretable posterior probability of 340

the locus to be causal, i.e., to contain at least one causal SNP (Eq. (8)). The two scores agreed well 341

on those loci that are confidently predicted by SNPTEST/META: All loci with high − log10(p) 342

values (> 5) also got high posterior probabilities (> 0.95), and all loci with low − log10(p) values 343

(< 1) also get low posterior probabilities (< 0.05). However, a sizeable fraction of loci with high 344

B-LORE posterior probabilities (> 0.95) had low significance in SNPTEST/META (− log10(p) 345

values < 3) even though they were all causal. Loci with − log10(p) values between 1.0 and 4.0 346

were classified with higher accuracy by B-LORE. Overall, the noncausal and causal loci were 347

much better separated by B-LORE scores along the vertical axis than by SNPTEST/META along 348

the horizontal one. 349

For a more quantitative analysis of the prediction performance,we performed a precision-recall 350

analysis (Fig. 2B). For each of the prediction tools, the 50 × 200 scores were ranked, the true 351

positive (TP) and false positive (FP) predictions were counted up to different threshold scores, and 352

the precision (TP/(TP + FP)) was plotted as a function of recall (= sensitivity) (TP/(TP + FN)). 353

BIMBAM and SNPTEST / META perform meta-analyses on single-SNP summary statistics 354

and provide similar accuracy. Surprisingly, metaCCA failed to improve the classification in our 355

benchmarks, probably due to improper preselection of the relevant SNPs. B-LORE significantly 356

improved the ranking of loci over the next best tool. The results suggest that multiple regression 357

can extract more information from the data. B-LORE FG further improved the prediction of causal 358

loci, suggesting that our tool can efficiently incorporate information from functional genomics 359

tracks. 360

To demonstrate the advantage of distinguishing coupling from correlation, we chose 8 loci 361

from a strongly correlated genomic region of chr6, while the remaining 192 loci were allowed 362

to remain in linkage equilibrium. We also constructed synthetic phenotypes in 50 simulations 363

as before. This ensured that these 8 loci would be correlated among them, and would lead to 364

situations as described in Fig. 1: There would be some noncausal SNPs in a noncausal locus 365

which are correlated with causal SNPs in a nearby locus. B-LORE was much less affected as 366

compared to other methods in presence of such correlations (Fig. 2C). All other methods found 367

many non-causal loci to be highly significant because they were correlated with the coupled loci. 368

leading to many false positive predictions with high significance, seen by the dip at low recall 369

values. 370

The successful predictions of B-LORE might seem counter-intuitive at first because it neglects 371

the interlocus genetic correlation in order to factorize over loci for the hyperparameter optimization. 372

We explain in Fig. 2D how B-LORE can still trace the correlation / coupling of loci. The schematic 373

figure shows the effect size of 2 correlated SNPs from different loci: a non-causal SNP i in locus 374
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Figure 2. B-LORE improves prediction and ranking of causal loci. We performed 50 simu-
lation runs using 200 loci each with 200 SNPs, obtained from 13082 patient genotypes from
the GerMIFS I-V studies. In each simulation run, we chose 100 out of 200 loci to be causal,
corresponding causally associated SNPs and their effect sizes, and simulated the case/control
phenotypes accordingly (see Simulation framework for details) (A) Scatter plot of significance
scores predicted by SNPTEST/META and by B-LORE for the 50×200 causal (red) and non-causal
(light blue) loci. (B) Precision-recall curves quantifying the power of 5 methods to predict the
100 causal loci among the 200 loci in each of 50 runs. All loci are sampled such that they are in
linkage equilibrium with all others. (C) Same as B, but including 8 loci that are in LD with one
another. (D) Schematic diagram to explain how B-LORE can distinguish merely correlated loci
from causal loci, in spite of assuming different loci to be in linkage equilibrium. We show the
effect sizes of 2 correlated SNPs: a non-causal SNP i in locus k along the x−axis and a causal
SNP j in locus m along the y−axis, their true marginal likelihood (dotted blue contour lines) and
the marginal likelihood learned by B-LORE (solid red contours).

k along the x−axis and a causal SNP j in locus m along the y−axis. The true marginal likelihood 375

of these 2 SNPs shows their correlation (non-zero off-diagonal terms in the covariance matrix). 376

In the calculation of B-LORE the off-diagonal terms are assumed to be zero because they are in 377

different loci. Still, it learns the diagonal terms of the covariance matrix because it maximizes the 378

genome-wide marginal likelihood which includes information from all the loci. The likelihood 379

learned by B-LORE is a fairly good approximation of the true likelihood and is obviously better 380

than getting point estimates for each SNP. It can distinguish the two loci: vjm explains away 381

the effect of vik and only the true causal locus m is picked. In contrast, methods that deal with 382

each locus separately will find associations for both m and k. Earlier attempts of distinguishing 383
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correlation and coupling were confined to each locus independently, for example, in finemapping 384

of causal variants within a locus. 385

Statistical finemapping of causal SNPs 386

Prioritization of variants within the associated region or loci (popularly called finemapping) has 387

been an important focus of post-GWAS era to provide insight into disease mechanism. For a 388

recent review of finemapping, see Spain et al. [28]. Over the past few years, several methods 389

have been proposed for finemapping of causal variants, i.e. to pinpoint individual causal SNPs. 390

We compared B-LORE with 3 finemapping methods, particularly PAINTOR (v3.0) [20, 29], 391

CAVIARBF (v0.1.4.1) [30, 31] and FINEMAP (v1.1) [32]. These methods require only the 392

summary test statistics and a matrix of the pairwise correlation coefficients (r2) of the variants in 393

each associated region. We used the meta-analysis results from SNPTEST / META as input to 394

these methods. To obtain r2 of the meta study, we combined the study-specific LD matrices by 395

weighting them by sample size, i.e. r =
∑

j(rjNj)/
∑

j Nj , where rj and Nj are the correlation 396

coefficient matrix and sample size for the j th study respectively. For all methods, we used the 397

default settings. Owing to computational limitations, we allowed a maximum of 2 causal SNPs 398

per locus in CAVIARBF, and 4 causal SNPs per locus in FINEMAP and B-LORE. We also 399

allowed B-LORE and PAINTOR to use the functional genomics tracks, and denoted them as 400

B-LORE FG and PAINTOR FG respectively. 401

B-LORE achieved superior accuracy over existing methodologies in identifying causal 402

variants (Fig. 3). For each of the 50 simulations, we ranked the 40000 scores from each of the 403

prediction tools. In Fig. 3A, we plotted the recall (TP/(TP + FN)) against the average number 404

of SNPs which were selected per locus ((TP + FN) /200) at different threshold scores. All 405

characteristic finemapping methods (i.e. PAINTOR, CAVIARBF and FINEMAP) performed 406

better than conventional GWAS methods (i.e. SNPTEST/META and BIMBAM) when selecting 407

less than 20 SNPs per locus on average. The recall of B-LORE was higher than all other methods 408

at practically relevant low selection thresholds. B-LORE improved the recall by more than 5% 409

from the next best tool when selecting 20 SNPs per locus. 410

Using ENCODE data for the SNPs significantly improved the performance of B-LORE and 411

PAINTOR. Both methods use the same logistic model (Eq. (6)) to describe the enrichment of 412

causality of a SNP from functional genomic features. Yet B-LORE FG provided better recall than 413

PAINTOR FG. B-LORE FG could identify more than 65% of the causal SNPs when selecting 414

only 20 SNPs per locus, as compared to 55% by PAINTOR FG at the given threshold. It should 415

be noted here that the gain in performance in simulation with functional genomics tracks does 416

not ascertain similar gains in real data, because the true enrichment strengths are yet unclear. 417

All finemapping methods got worse than conventional GWAS methods at higher selection 418

thresholds (see S3 Figure). Beyond a certain threshold, B-LORE predicts all SNPs with a causal 419

probability of zero when it can no longer distinguish between them. This happens because 420

learning hyperparameters from the data requires summing over causality configurations and 421

we restrict the sum to those configurations with non-negligible probability of being causal to 422

achieve the same in computationally reasonable time frame (see S1 File). Hence configurations 423

without enough evidence are removed from the calculation and the corresponding SNPs get zero 424

causal probability (Eq. (7)). Similarly, all other finemapping methods enforce sparsity in different 425

ways and hence show computational artefacts at high thresholds. However, performance at high 426

selection thresholds is not important for any practical purposes because the aim of finemapping 427

is to pick as few SNPs as possible for downstream analyses and experiments. 428

In classification of sparse binary data, as the one we are dealing with here, recall can hide 429

a lot of imprecision. However, improving precision presents more of a challenge. Hence, we 430

did a precision-recall analysis of the predictions by the different tools (Fig. 3B). PAINTOR, 431

CAVIARBF and FINEMAP had higher precision than conventional GWAS methods, but all 3 of 432

them performed similarly. B-LORE had higher precision than all other tools at all recall values. 433

Use of functional genomics tracks significantly improved the precision for B-LORE FG and 434

PAINTOR FG. Overall, B-LORE FG provided higher precision than PAINTOR FG. 435

While finemapping aims to pick truly causal SNPs, it is worthwhile to avoid useless false 436

positives but choose the ones which are correlated to a causal SNP. Hence, we looked at the 437

fraction of false positives (with respect to the total number of false positives) which are in strong 438
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Figure 3. B-LORE with functional genomics tracks improves finemapping of SNPs.
Finemapping results from 50 simulations (see Fig. 2 caption for summary and Simulation
framework for details) We ranked the significance scores of the SNPs predicted by the different
methods mentioned in the legends. A: Proportion of causal SNPs predicted by each method
(recall) against the average number of SNPs which are selected per locus at different threshold
scores. B: Precision-recall curves quantifying the power of each method to finemap i.e. to predict
the causal SNPs among the 200 loci, averaged over 50 simulations. C: Fraction of false positives
which are in strong LD (correlation coefficient r2

c > 0.9) with a true causal SNP in the locus as a
function of recall, at different selection thresholds. This gives an idea of the “quality” of false
negatives.

LD (correlation coefficient r2
c > 0.9) with a true causal SNP (Fig. 3C). Approximately 10% of 439

the SNPs were correlated to a causal SNP averaged over all simulations. When recall was > 0.3, 440

the false positives from B-LORE had the highest fraction of correlated SNPs as compared to all 441

other methods. B-LORE not only predicted the true positives with high precision, but also the 442

false positives were strongly correlated to actually causal ones. 443

Application to coronary artery disease 444

As a proof of concept, we applied B-LORE to identify SNPs affecting risk of coronary artery 445

disease (CAD) from GWAS of five small cohorts (GerMIFS I - V). These cohorts were also 446

used in the largest meta study of CAD GWAS till date, organized by CARDIoGRAMplusC4D 447

Consortium [18], which found 58 significant loci harboring SNPs in genome-wide significant 448

association with CAD. The study leveraged the power from meta-analysis of ∼ 185,000 CAD 449
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cases and controls, while the GerMIFS I-V cohorts have only ∼ 13,000 CAD cases and controls. 450

Figure 4. Association of genetic loci with CAD. Comparison of ranking of 50 genetic loci
using meta-analysis across 5 cohorts (GerMIFS I-V [13–18]) with a total of 6234 cases and 6848
controls from white European ancestry. We first used meta-analysis of genome-wide SNPTEST
summary statistics on these 5 small GWAS to select the top 50 loci and then applied B-LORE on
these loci using the genomic features obtained from ENCODE data and assuming a maximum
of 4 causal SNPs per locus. On the x-axis of the scatter plot, we show the − log10(p) values
obtained fromMETA, and on the y-axis we show the probability of a locus being causal, obtained
from B-LORE FG. The legend shows the classification of all the 50 CAD loci based on prior
evidence of association in existing literature (see Application to coronary artery disease and
S2 Table). This literature-based classification gives a reasonable “ground truth” of causal and
non-causal loci, despite our incomplete knowledge about true underlying association in reality.
The noncausal and causal loci are much better separated by B-LORE FG scores along the vertical
axis than by SNPTEST/META along the horizontal one.

We performed a meta-analysis using SNPTEST summary statistics of the five cohorts, and 451

found 3 loci to be genome-wide significant, namely the 9p21 locus on chr9, PHACTR1 and 452

SLC22A3-LPAL2-LPA loci on chr6. From this meta-analysis, we ranked the SNPs according to 453

their p -values and selected all the nominally significant SNPs with p -values < 5 × 10−5. We 454

grouped these SNPs together based on their genomic positions. SNPs which were spatially close 455

(within ± 200 kb) were included in the same locus. We then used the top 50 groups, and defined 456

each locus by collecting the top 400 SNPs (ranked according to their p -values) within ± 200 kb 457

regions of each lead group. 458

We used these 50 loci for meta-analysis with B-LORE. In practice however, one can use as 459

many loci as desired and use more sophisticated definition of a locus, for example, by considering 460

LD blocks. We generated summary statistics for each of the 5 cohorts and combined them using 461
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B-LORE meta-analysis. For the meta-analysis we used the 112 functional genomics tracks from 462

ENCODE data (see Datasets) and allowed a maximum of 4 causal SNPs per locus. 463

Since the ground truth is unknown for real data, we did an extensive blinded literature search 464

for all these 50 loci. For details about the genomic positions, exons in the region and prior evidence 465

of association with CAD please see S2 Table. We classified these 50 loci into 6 categories based 466

on this prior evidence: 467

• 8 loci harbor SNPs which were found to be statistically associated with CAD in the 468

CARDIoGRAMplusC4D study [18], the largest GWAS of CAD till date. 469

• 3 loci have significantly associated CARDIoGRAMplusC4D SNPs within ± 400 kb [18] 470

• 3 loci harbor SNPs which were found to be statistically associated with CAD in other 471

GWAS. 472

• 11 loci have evidence of statistical association with risk factors of cardiovascular diseases 473

(CVD), such as myocardial infarction, blood pressure, sudden cardiac arrest, heart failure, 474

high-density lipoprotein cholesterol levels, triglyceride levels, etc. 475

• 3 loci are associated with obesity and related traits. 476

• We could not find any statistical association with CAD or its risk pathway for the remaining 477

22 loci. 478

We compared the ranking of these loci using B-LORE and SNPTEST/META in Fig. 4, For 479

ranking, we used the same scores as already introduced for Fig. 2A. Unlike simulations, we 480

did not know the “ground truth” in this real data, but we used the literature classification as 481

qualitative indication for accuracy. Despite the modest sample size, B-LORE identified all the 11 482

CARDIoGRAMplusC4D loci (from the first 2 categories) present in the selected pool of loci 483

with Prcausal > 0.95. For comparison, SNPTEST / META could identify only 3 genome-wide 484

significant loci. Additionally, B-LORE predicted 12 other novel loci with Prcausal > 0.95. Three 485

of them are significant hits in other CAD GWAS, and 6 of them are significantly associated 486

with CVD risk-related phenotypes, such as blood pressure, high density lipoprotein cholesterol, 487

triglyceride levels, etc. B-LORE also predicted low probabilities for many loci with no prior 488

evidence of association despite being highly ranked by SNPTEST / META. 489

Three loci with no prior evidence of association with CAD were ranked with posterior 490

probabilities Prcausal > 0.95 by B-LORE. One of these loci is located in the AUTS2 gene region 491

in chr7, and another is located in chr10 overlapping with FGFR2 and ATE1 genes. The third one 492

is located in chr4q13.1, with no exons in the region and the nearest gene being LPHN3 ∼500kb 493

upstream. Due to lack of validation, it is unclear whether these loci are truely coupled to the 494

disease risk or if they are false positives. 495

We show the finemapping performance of B-LORE at two example loci – a known risk locus 496

near SMAD3 in chr15 (Fig. 5A) and a novel risk locus at 12q24.31 (Fig. 5B). At the SMAD3 497

locus, B-LORE picked up a single SNP (rs34941176) for explaining the association, while other 498

SNPs from the region showed negligible probability of being associated. In the novel locus, 499

there are three genes, DNAH10, ZNF664 and CCDC92, which are believed to be associated with 500

multiple CAD risk factors such as high-density lipoprotein cholesterol level, triglycerides levels 501

and waist-to-hip ratio [33–35] Here, B-LORE prioritized three SNPs (rs1187415, rs7961449 502

and rs6488913) in a region with strong LD. All SNPs in this region showed similarly significant 503

p -values. In both the above cases, B-LORE prioritized SNPs which are different than the ones 504

with lowest p -values in the region. 505

Indeed in most loci we find that B-LORE prioritizes a few SNPs, while SNPTEST / META 506

predict similar p -values for many SNPs (S4 Figure). Due to lacking validation it is unclear so far 507

whether the SNPs prioritized by B-LORE are actually causal. 508

In many loci that obtained a high probability to be coupled to disease risk, none of the 509

SNPs have significant probability of being causal (S4 Figure). This observation illustrates the 510

considerable advantage of a Bayesian method that can accumulate evidence for coupling over 511

many, sometimes weak, SNPs. In this way, highly confident predictions can result even though 512

no single SNP is considered significant by single-SNP analyses. 513
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Figure 5. Representative examples of finemapping in CAD-associated loci. The top parts in A
andB show the probability for each SNP to be causal as predicted by B-LORE (p (zi = 1 | φ,X, θ)).
Below we plot the − log10(p) values for each SNP obtained from SNPTEST / META. The four
best SNPs predicted by B-LORE and SNPTEST / META are marked by special symbols and
annotated in the legends. At the bottom, the genes and LD between the SNPs is shown. A: A
known locus near SMAD3. (A SNP rs56062135 at 67.45Mb was found associated with CAD by
the CARDIoGRAMplusC4D study [18]). The probability for finding at least one causal SNP in
the locus is Prcausal = 0.999. B: A novel locus discovered by B-LORE, with Prcausal = 0.976.

Discussion 514

Any method for GWAS meta-analysis that can predict substantially more risk loci at a given 515

precision or that can better distinguish the truly disease-coupled SNPs more accurately from 516

the merely correlated ones has enormous leverage. It can be applied to thousands of GWAS 517

involving millions of patients to help understand the origin of all common diseases in humans [2]. 518

Most GWAS have been analyzed using the simplest type of approach based on testing each 519

single variant in turn, which allows combining datasets using simple aggregate count summary 520

statistics. Previous work has shown that multiple regression and also Bayesian approaches have 521

the potential to yield better predictions [4], but their applicability was limited by the requirement 522

of individual genotype data, which precludes meta analyses. 523

Our software B-LORE for Bayesian multiple logistic regression can perform meta-analysis 524

using a novel type of summary statistics. B-LORE outputs easily interpretable probabilities 525

for each locus to harbor causal SNPs, as well as probabilities for each SNP to be coupled, not 526

only associated, with the phenotype. These probabilities contain all the information required for 527

further downstream analyses. 528

This study makes the following technical contributions: (1) It introduces a novel quasi-Laplace 529

approximation which makes the Bayesian treatment of the multiple logistic regression case 530

analytically tractable and yields an efficient software implementation obviating the need to use 531

MCMC sampling. (2) B-LORE learns the model hyperparameters from the GWAS data. One set 532

of hyperparameters describes the effect size distribution, another (optional) set describes how the 533

functional genomics tracks modify the prior probability of a SNP to be causal. (3) We show how 534

to calculate the marginal likelihood over many loci by factorizing the likelihood over the loci. (4) 535

The model can integrate genome-wide tracks from functional genomics and other sources. 536
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B-LORE is similar to several successful GWAS analysis methods based on Bayesian multiple 537

regression. It models the effect size distribution of the causal SNPs using a single normal 538

distribution, whereas BVSR models it using a normal distribution whose precision (inverse 539

variance) is sampled by MCMC using a Gamma prior. This is essentially equivalent to assuming 540

a Student’s-t prior for the causal component, because the latter is obtained as convolution of 541

a normal distribution with a Gamma distribution for the precision parameter. The Student’s-t 542

distribution is more flexible, as its third parameter can be used to tune the heaviness of the 543

distribution’s tails. However, this more flexible prior requires computationally expensive Markov 544

Chain Monte Carlo (MCMC) schemes for the integration over the effect sizes. Using a simpler 545

prior allowed us to find an analytical solution. 546

The analytical integration also allows B-LORE to learn the parameters of the prior distribution 547

from the GWAS data itself, whereas most existing Bayesian frameworks in GWAS, including 548

BVSR, work with a fixed prior distribution of effect sizes. Another method that is able to learn the 549

hyperparameters for the effect size distribution from the data is the Bayesian Sparse Linear Mixed 550

Model (BSLMM) [9], which, similar to B-LORE, uses a mixture of two normal distributions. 551

Any hyperparameter optimization method is limited by computational speed and the requirement 552

of individual level data. Our new quasi-Laplace approximation provides a solution to both 553

these problems. B-LORE thereby extends the scope of Bayesian multiple regression methods 554

to hundreds of loci over hundreds of studies, where the loci can be preselected with a lenient 555

p -value cutoff using a simpler and faster method such as SNPTEST [5–7]. 556

In parallel work, Zhu and Stephens have proposed a clever method with similar aims as B- 557

LORE but adapted to quantitative phenotypes using linear multiple regression, called Regression 558

with Summary Statistics (RSS) [36]. RSS uses summary statistics from simple regression methods 559

like SNPTEST [5–7]. Unlike RSS, our work uses logistic regression and is thus specifically 560

adapted to the case-control GWAS design, by far the most frequent type of GWAS. 561

B-LORE is robust and should perform well on any sufficiently large dataset. An important 562

caveat is that B-LORE needs a sufficient number of causal variants to be present in the GWAS 563

data it analyzes, because it needs to estimate the hyperparameters from them. If too few causal 564

loci are hidden in the data, the hyperparameter optimization could end up at unrealistic values, 565

e.g. by using both components of the Gaussian mixture to describe the non-causal SNPs. In such 566

a situation B-LORE would predict all SNPs as non-causal. We determined from simulations 567

that it is enough to have only 10 coupled SNPs for proper learning of hyperparameters (data not 568

shown). These SNPs could either be present in a single locus or distributed over many loci. This 569

requirement should be easily fulfilled in all practical cases because the number of validated SNPs 570

for most diseases investigated with GWAS are in the range of 20 − 100. 571

A central goal of GWAS is to learn what are the genetic factors that determine the risk 572

to acquire a noninfectuous disease or other, quantitative phenotypes. Yet despite ever larger 573

GWAS and advances in analysing the genotype-phenotype relationship, only relatively small 574

fractions of heritable variance can be explained for most diseases investigated [37]. One part 575

of this missing heritability might be due to the limitations of logistic regression models used 576

for risk prediction [38]. We hope to investigate this in the future by applying B-LORE to 577

predict the genetic component of disease risk from the genotype. We will also explore more 578

systematically how best to improve predictive performance by adding genome-wide experimental 579

and computational data tracks [11,20,39] that can inform us about the probability of each SNP to 580

be causal. 581
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