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Abstract 9 

In eukaryotic cells, most RNA molecules are exported into the cytoplasm after being 10 

transcribed in the nucleus. Long noncoding RNAs (lncRNAs) have been found to reside and 11 

function primarily inside the nucleus, but nuclear localization of protein-coding messenger 12 

RNAs (mRNAs) has been considered rare in both animals and plants. Here we show that two 13 

mRNAs, transcribed from the CDC20 and CCS52B (plant orthologue of CDH1) genes, are 14 

specifically sequestered inside the nucleus during the cell cycle. CDC20 and CDH1 both 15 

function as coactivators of the anaphase-promoting complex or cyclosome (APC/C) E3 ligase 16 

to trigger cyclin B (C YCB) destruction. In the Arabidopsis thaliana shoot apical meristem 17 

(SAM), we find CDC20 and CCS52B are co-expressed with CYCBs in mitotic cells. CYCB 18 

transcripts can be exported and translated, whereas CDC20 and CCS52B mRNAs are strictly 19 

confined to the nucleus at prophase and the cognate proteins are not translated until the 20 

redistribution of the mRNAs to the cytoplasm after nuclear envelope breakdown (NEBD) at 21 

prometaphase. The 5’ untranslated region (UTR) is necessary and sufficient for CDC20 mRNA 22 

nuclear localization as well as protein translation. Mitotic enrichment of CDC20 and CCS52B 23 

transcripts enables the timely and rapid activation of APC/C, while their nuclear sequestration 24 

at prophase appears to protect cyclins from precocious degradation.  25 

 26 

Introduction 27 

Understanding the patterns and regulatory mechanisms of organ formation in multicellular 28 

organisms is a central aspect of developmental biology (Lander, 2011). Animal organogenesis 29 

is completed during embryonic development or, in some instances, during metamorphosis; 30 
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while in plants, active division and differentiation of stem cells and their progenitors in the 31 

shoot apical meristem (SAM) and the root apical meristem (RAM) lead to continuous 32 

formation of new tissues and organs, ensuring developmental plasticity in a changing 33 

environment (Gaillochet and Lohmann, 2015; Heidstra and Sabatini, 2014; Meyerowitz, 1997; 34 

Vernoux et al., 2000). Plant cell division, as in mammalian cells, yeast and Drosophila, is 35 

triggered and maintained by the kinase complex composed of cyclin-dependent kinases (CDKs) 36 

and various cyclin subunits. Fluctuating gene expression and orderly proteolysis of cyclins, 37 

spatial positive feedback of Cdk1-cyclin B1 redistribution, combined with the antagonistic 38 

actions of Wee1 kinase and Cdc25 phosphatase, generate a robust and highly ordered mitotic 39 

process (Coudreuse and Nurse, 2010; Dewitte and Murray, 2003; De Veylder et al., 2007; 40 

Morgan, 1995; Santos et al., 2012). 41 

Destruction of cyclins at the appropriate time in the cell cycle is mediated by APC/C, an E3 42 

ubiquitin ligase whose catalytic activity and substrate specificity are conferred by two 43 

coactivators, CDC20 and Cdc20 homolog 1 (CDH1) (Peters, 2006; Pines, 2011; Yu, 2007). 44 

During early mitosis, phosphorylation of the APC/C subunits, such as the auto-inhibitory 45 

segment loop in APC1, exposes the binding sites of CDC20 thus facilitating CDC20 46 

association with APC/C (Fujimitsu et al., 2016; Kraft et al., 2003; Qiao et al., 2016; Zhang et 47 

al., 2016). At prometaphase, APC/C activity is restrained by the spindle assembly checkpoint 48 

(SAC), a regulatory pathway during which unattached kinetochores generate a diffusible ‘wait 49 

anaphase’ signal that triggers the incorporation of CDC20 into a complex composed of MAD2, 50 

BUBR1 and BUB3, leading to the formation of the mitotic checkpoint complex (MCC) 51 

(Fraschini et al., 2001; Hardwick et al., 2000; Sudakin et al., 2001). Recently it has been 52 

proposed that MCC itself could function as a diffusible signal to inhibit APC/C by recognizing 53 

a second CDC20 that has already bound to and activated APC/C (Izawa and Pines, 2015). 54 

Furthermore, APC/C activity is counteracted by the F box protein early mitotic inhibitor 1 55 

(Emi1) (Reimann et al., 2001). The multi-faceted regulation of APC/C in various organisms 56 

suggests high plasticity of APC/C activity, and also implies the existence of additional 57 

mechanisms. 58 

Subcellular RNA localization has been implicated in multiple cellular processes by 59 

regulation of spatial gene expression (Lipshitz and Smibert, 2000). For instance, the posterior-60 

anterior polar localization of bicoid, oskar, gurken, and nanos mRNAs in Drosophila oocytes 61 

guides proper pattern formation and embryo development (Martin and Ephrussi, 2009). Long 62 

noncoding RNAs (lncRNAs) predominantly localize to the nucleus to modulate transcription 63 
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factor binding, histone modification, chromosome structures and specific nuclear body 64 

formation (Batista and Chang, 2013; Engreitz et al, 2016; Geisler and Coller, 2013; Tsai et al., 65 

2010). While mature mRNAs are considered to reside predominantly in the cytoplasm, deep 66 

sequencing of nuclear and cytoplasmic RNA fractions from various mouse tissues identified a 67 

number of mRNAs with higher amounts in the nucleus than in the cytoplasm (Bahar Halpern 68 

et al., 2015), suggesting a potential for mRNA nuclear retention in gene expression regulation. 69 

However, nuclear localization of mRNAs or mRNA precursors and its biological relevance 70 

have rarely been documented. In Drosophila embryos, the non-polyadenylated histone mRNAs 71 

are retained in the nuclei of DNA-damaged cells, contributing to the maintenance of genome 72 

integrity (Iampietro et al., 2014). CTN-RNA, an adenosine-to-inosine (A-to-I) edited mouse-73 

specific pre-mRNA, localizes in the nuclear paraspeckle and can be rapidly cleaved under 74 

physiologic stress to produce mCAT2 mRNA encoding a cell-surface L-arginine receptor 75 

(Prasanth et al, 2005). Apart from these examples, nuclear sequestration of non-edited mature 76 

mRNAs remains to be discovered. 77 

Here, through a comprehensive fluorescent in situ hybridisation (FISH) analysis of mRNA 78 

distribution of core cell cycle genes in Arabidopsis stem cells, we have found that CDC20 and 79 

CDH1 orthologue CCS52B mRNAs are sequestered in the nucleus during prophase. We show 80 

that CDC20 and CCS52B transcripts accumulate to peak levels but are confined to the nucleus 81 

at prophase, and redistribute into the cytoplasm following NEBD at prometaphase. With 82 

fluorescence live cell imaging, we demonstrate that this mRNA nuclear sequestration blocks 83 

CDC20 and CCS52B protein translation, thus preventing premature APC/C activation in early 84 

mitosis. By systematic mRNA deletion and chimeric RNA localization analysis, we found that 85 

CDC20 mRNA 5’UTR confers nuclear sequestration and is also involved in protein translation. 86 

Nuclear sequestration of CDC20 and CCS52B mRNAs reveals a previously unrecognized 87 

mechanism for the tuning of APC/C activity. 88 

 89 

Results 90 

Systematic Analysis of mRNA Localization of Core Cell Cycle Genes in Meristematic 91 

Cells 92 

In Arabidopsis, the SAM is organized into three zones distinguished by cell division activity: 93 

the central zone (CZ) composed of slowly dividing stem cells, which is surrounded by the 94 

peripheral zone (PZ) that contains rapidly dividing cells that give rise to primordia of leaves 95 
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and flowers, and the rib meristem (RM) underlying the CZ and the PZ responsible for stem 96 

growth (Steeves and Sussex, 1989) (Figure1A). The distinct cell division activities in different 97 

SAM regions can be visualized by using a fusion of green fluorescent protein (GFP) to 98 

CyclinB1;1 (CYCB1;1-GFP), exhibiting a low number of GFP-positive cells in the slowly 99 

dividing cells of the CZ and RM, and relatively higher number in the PZ and flower primordia 100 

(Figure 1B). Using a GFP-microtubule-binding domain marker (GFP-MBD) and the nuclear 101 

reporter histone H2B fused to red fluorescent protein (H2B-RFP), we found that the 102 

microtubule and nuclear structures corresponding to different cell cycle stages could all be 103 

identified in the SAM (Figure 1C). Therefore, the SAM serves as a suitable system with which 104 

to study the control of the cell cycle in plants. 105 

CDKs, CYCs and other regulatory proteins constitute a group of core cell-cycle regulators. 106 

Multiple members in each CDK and cyclin subfamily exist in plants, suggesting a level of 107 

functional conservation but also specialized regulation of cell cycle progression in plants as 108 

compared to animals (Vandepoele et al., 2002) (Figure 1D). To explore the role of cell cycle 109 

regulatory genes in Arabidopsis SAM development, we first analysed their mRNA abundance 110 

from RNA-seq data of meristematic cells derived from dissection of enlarged clavata3 (clv3) 111 

mutant SAM (Yang et al., 2016). We focused on 130 annotated core cell-cycle regulators 112 

(Menges et al., 2005; Van Leene et al., 2010), and identified 72 genes showing detectable 113 

expression in the SAM (TPM > 10; Table S1). To investigate their expression pattern in planta, 114 

we carried out systematic RNA in situ hybridization. Using RNA probes specific to individual 115 

SAM-expressed cell cycle genes, we were able to detect the distribution of transcripts from 66 116 

genes at single-cell resolution. In situ hybridization results are presented in Data S1. Most of 117 

the genes exhibited strong expression in the SAM compared to other tissues (e.g. stem), 118 

supporting the RNA-seq data. Based upon their expression patterns, these cell-cycle genes were 119 

classified into six groups: (i) homogeneous signal (Type I); (ii) homogeneous background 120 

signal with weak additional signal in a spotted pattern (Type II); (iii) homogeneous background 121 

signal with strong additional spots of signal (Type III); (iv) weak spots of signal in a subset of 122 

cells (Type IV); (v) only strong spots of signal in a subset of cells (Type V); and (vi) 123 

homogeneous background expression with additional strong signal in developing primordia 124 

(Type VI) (Figure 1E; Table S1). Homogeneous signals across the whole meristem indicate 125 

that the corresponding genes are expressed throughout the cell cycle; whereas patchy patterns 126 

suggest that expression correlates to specific cell cycle stages.  127 
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Most of the G1/S regulators, including CDKA;1, E2Fs (E2Fa, E2Fb and E2Fc) and DPs 128 

(DPa and DPb), displayed homogeneous expression in the shoot apex, which would maintain 129 

these meristematic cells with the capacity for active proliferation. One exception was 130 

RETINOBLASTOMA RELATED (RBR), an inhibitor of E2F and DP transcription factors, 131 

which showed a strong patchy pattern (Type III) (Figure 1E), similar to previous observations 132 

in embryonic and root meristematic cells (Wildwater et al., 2005), and implying a cell-cycle 133 

controlled regulation. Compared to G1/S genes, G2/M regulators, including plant-specific B 134 

type CDKs (CDKBs), and A and B type cyclins (CYCAs and CYCBs) were all grouped into 135 

Type V, showing a strongly patchy pattern with weak background expression (Figure 1E). 136 

RNA fluorescence in situ hybridization (RNA FISH) together with 4', 6-diamidino-2-137 

phenylindole (DAPI) staining indicated that these genes were exclusively expressed in mitotic 138 

cells from early prophase until late anaphase (Figure S1).  139 

Our gene expression map data were consistent with Affymetrix microarray data of dividing 140 

Arabidopsis cell cultures (Menges et al., 2005). The mRNA distribution patterns in the shoot 141 

apex, combined with previous cell-cycle transcript in situ analysis in Arabidopsis seedlings and 142 

in the shoot/floral meristems of Antirrhinum majus (de Almeida Engler et al., 2009; Fobert et 143 

al., 1994), provide a good overview of cell cycle gene expression patterns in various plant 144 

tissues.  145 

 146 

Mitosis-specific Expression of CDC20 and CCS52B mRNA 147 

The accumulation of CYCB transcripts at M-phase (Figures S2A and S2B) would be expected 148 

to lead to a corresponding peak of CYCB proteins at this stage. Indeed, CYCB1;1-GFP 149 

fluorescence signals increased from prophase onwards, peaked at metaphase and then 150 

decreasing rapidly at anaphase, finally being undetectable in telophase cells (Figures S2C-S2E). 151 

The decline of CYCB1;1-GFP fluorescence signals could be caused by insufficient protein 152 

synthesis and/or short half-life. The rapid elimination of large amount of CYCB1 proteins may 153 

attribute to APC/C-mediated degradation (Figure 2A), a mechanism conserved among various 154 

organisms. The genes encoding Arabidopsis APC/C subunits, as well as the CDH1 orthologues 155 

CCS52A1 and CCS52A2, were all expressed homogeneously in the SAM at relatively low level 156 

(Table S1 and Data S1). By contrast, both CDC20 and CCS52B showed strong patchy patterns 157 

similar to CYCB genes (Data S1). The distinct expression patterns of A- and B-class CCS52 158 

genes supported the predicted roles of CCS52As in regulating endoreduplication (Cebolla et 159 
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al., 1999; Lammens et al., 2008; Vanstraelen et al., 2009), and CCS52B in controlling mitosis 160 

(Tarayre et al., 2004).  161 

    Cell-cycle controlled CDC20 and CCS52B expression was further investigated by RNA 162 

FISH. Both mRNAs accumulated exclusively in mitotic cells from prophase until cytokinesis 163 

(Figures 2B-2E). The amount of CDC20 mRNA decreased when mitosis was completed 164 

(Figure 2D), whereas a high level of CCS52B mRNA persisted until cytokinesis (Figure 2E). 165 

The extended expression of CCS52B relative to CDC20 was validated by double RNA FISH. 166 

CDC20 and CCS52B mRNAs co-expressed in early mitotic cells, but at late mitosis a 167 

population of cells were found only to express CCS52B (Figure S3). Taken together, the 168 

enrichment of CDC20 and CCS52B transcripts, along with the constitutive expression of all 169 

APC/C components, would presumably allow for rapid APC/C activation. 170 

 171 

CDC20 and CCS52B mRNAs Are Sequestered in the Nucleus at Prophase 172 

Mature mRNAs are usually rapidly exported out of the nucleus (Köhler and Hurt, 2007). For 173 

example, CYCB transcripts, despite their high levels, were all found to reside in the cytoplasmic 174 

space (Figures S1 and S2). However, when analysing the sub-cellular distribution of CDC20 175 

and CCS52B mRNAs in prophase cells, we found that each of them is localized inside the 176 

DAPI-labelled nuclei (Figure 2F). No hybridization signals could be detected in the cytoplasm 177 

even when we increased the detection settings to saturation (data not shown). To further 178 

validate the nuclear sequestration of CDC20 and CCS52B transcripts, we examined CDC20 179 

and CCS52B mRNA localization in mitotic cells together with a marker for the nuclear 180 

envelope. CDC20 and CCS52B mRNAs were detected by RNA FISH. The nuclear envelope 181 

was revealed by immunohistochemistry using an anti-GFP antibody in SAM sections of 182 

Arabidopsis nuclear envelope marker line SUN2-GFP (Oda and Fukuda, 2011; Varas et al, 183 

2015). As shown in Figures 2G and 2H, both CDC20 and CCS52B mRNAs were localized 184 

inside the nucleus and were surrounded by the intact nuclear envelope in prophase cells; when 185 

cells enter metaphase and the nuclear envelope has disassembled, the transcripts were found 186 

distributed in the cytoplasm. At late telophase and cytokinesis when the nuclear envelope 187 

reforms, CDC20 and CCS52B mRNAs were excluded from the nuclei of daughter cells, 188 

suggesting that once in the cytoplasm, CDC20 and CCS52B mRNAs are not imported back or 189 

recruited into the nucleus. These cytosol-localized CDC20 and CCS52B mRNAs seem to be 190 

unstable as they could only be detected in a small group of newly divided cells. Nuclear 191 
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localization of CDC20 mRNA was also detected in root apical meristem (Figures S4A and S4B) 192 

and shoot vascular cambium (Figure S4C), demonstrating that this phenomenon exists in the 193 

dividing cells of different tissues. 194 

 195 

Nucleo-cytoplasmic Compartmentalization of CDC20 and CYCB mRNAs 196 

Since both CYCBs and CDC20 transcripts could be detected at prophase, we hypothesized that 197 

they might be expressed simultaneously in the same cells, although the possibility of sequential 198 

expression could not be excluded. To clarify this, we investigated CYCBs and CDC20 199 

expression in the same meristems by double RNA FISH. Arabidopsis wild-type meristems 200 

were hybridised with both CYCBs and CDC20 gene-specific RNA probes and the number of 201 

cells expressing different genes was quantified. CDC20 was found to largely co-express with 202 

different CYCB genes in all mitotic cells from prophase until anaphase (Figures 3A and 3C), 203 

whereas no co-expression was detected for CDC20 with the S phase marker Histone H4 (HIS4) 204 

gene (Figure 3B). In prophase cells, the localization of CDC20 and CYCB transcripts was 205 

clearly separated: CDC20 mRNA was restricted to the nuclei and surrounded by 206 

cytoplasmically localized CYCB mRNAs (Figures 3A and S5). Therefore, CYCB mRNAs can 207 

be translated, resulting in high expression of CYCB1;1-GFP in prophase cells (Figure S2); 208 

whereas nuclear confinement of CDC20 and CCS52B transcripts might prevent protein 209 

synthesis. 210 

 211 

Nuclear Sequestration of CDC20 and CCS52B mRNAs Blocks Protein Translation 212 

To evaluate the effect of CDC20 and CCS52B mRNA nuclear sequestration upon protein 213 

translation, we analysed the expression patterns of GFP-tagged CDC20 and CCS52B fusion 214 

proteins in living cells, an approach that has been widely used to track the dynamics of key cell 215 

cycle proteins, including CDC20 in animal cells (Nilsson et al., 2008). Genomic fragments 216 

containing the entire coding sequences of CDC20 and CCS52B were fused with GFP at the N-217 

terminus and expressed in wild-type plants under the control of their endogenous promoters. 218 

Double RNA FISH using GFP probe and CDC20 and CCS52B gene-specific probes showed 219 

overlapping signals at different mitotic stages, suggesting that fusion of GFP coding sequence 220 

did not interfere with nuclear localization of CDC20 or CCS52B mRNAs (Figure S6). 221 
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The meristems of pCDC20::GFP-gCDC20 and pCCS52B::GFP-gCCS52B transgenic 222 

plants were examined using confocal microscopy. GFP-CDC20 was only expressed in a small 223 

fraction of meristematic cells (Figure 4A). GFP-CCS52B protein expression could be identified 224 

in a greater proportion of SAM cells, which predominantly localized in the nucleus but also in 225 

the cytoplasm (Figure 4C). For both proteins, the expression levels varied between different 226 

cells (Figures 4B and 4D). To analyse their expression in relation to different phases of the cell 227 

cycle, we further introduced GFP-CDC20 and GFP-CCS52B into H2B-RFP plants. GFP-228 

CDC20 fluorescence signals were detected at very low level in prometaphase cells, increased 229 

slowly at metaphase and anaphase, and reached maximal level in late telophase cells. When 230 

cytokinesis was completed, GFP-CDC20 eventually decreased and disappeared (Figures 4E 231 

and 4F). Compared to GFP-CDC20, the expression of GFP-CCS52B was much delayed, as it 232 

was not detected until cells enter late telophase. GFP-CCS52B protein expression exhibited its 233 

peak level at cytokinesis, and persisted until the next G1 stage (Figures 4G and 4H).  234 

The protein expression pattern of CDC20 beginning at prometaphase was consistent with its 235 

transcript accumulation prior to NEBD, followed by mRNA redistribution into the cytoplasm 236 

after NEBD. However, given the late appearance of CCS52B protein despite much earlier 237 

release of its RNA from the nucleus, it appears that there are additional mechanisms beyond 238 

nuclear sequestration that controls CCS52B translation, one of which could be regulation by 239 

CCS52B mRNA binding proteins as RNA-binding proteins also play crucial roles in controlling 240 

translation efficiency besides guiding RNA localization (Lipshitz and Smibert, 2000). 241 

Nevertheless, the peak accumulation of CCS52B protein at cytokinesis and subsequent stages 242 

was in line with the predicted roles of Cdh1 to degrade CDC20 and maintain a low cyclin 243 

abundance through late mitosis and G1 phases (Fang et al., 1998). After analysing a number of 244 

meristems from different transgenic lines, we were unable to detect any GFP-CDC20 or GFP-245 

CCS52B protein expression in prophase cells, demonstrating that mRNA nuclear sequestration 246 

correlated with an absence of protein translation. 247 

 248 

Dynamic Turnover of CDC20 and CCS52B proteins 249 

The GFP-CDC20 and GFP-CCS52B proteins dynamics was further examined by real-time 250 

fluorescence imaging of individual cells, revealing that both proteins accumulated rapidly at 251 

late mitosis and disappeared when mitosis was completed (Figures S7A and S7B). Fluctuation 252 

in CDC20 protein levels during the cell cycle has been observed in animal cells (Fang et al., 253 
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1998; Kramer et al., 1998; Prinz et al. 1998). For CDH1, the protein level appears to remain 254 

constant throughout the cell cycle in HeLa cells (Fang et al., 1998; Kramer et al., 1998). In 255 

order to distinguish changes in gene expression from proteolytic activity, we treated SAMs 256 

with the proteasome inhibitor MG132. This treatment did not increase the protein level of GFP-257 

CCS52B, suggesting that CCS52B levels are a function of gene expression and translation 258 

(Figure S7C). By contrast, MG132 treatment resulted in a marked increase in GFP-CDC20 259 

fluorescence intensity in both SAM and root cells (Figures S7D and S7E), implying that 260 

CDC20 may undergo continuous synthesis and degradation. Therefore, a conserved 261 

surveillance system exists to tightly control CDC20 protein abundance in plants as in human 262 

cells (Ge et al., 2009; Izawa and Pines, 2015; Nilsson et al., 2008). 263 

 264 

Mapping the Cis-acting Element Involved in CDC20 mRNA Nuclear Localization 265 

To investigate how CDC20 mRNA is sequestered in the nucleus, we first tested the 266 

mechanisms proposed for known nuclear RNAs. It has been shown that mRNAs containing 267 

adenosine (A)-to-inosine (I) edited Alu inverted repeats are predominantly localized in the 268 

nucleus (Chen et al., 2008). A-to-I editing was responsible for the nuclear retention of CTN-269 

RNA (Prasanth et al., 2005). We compared the sequences of CDC20 full-length cDNA and 270 

genomic DNA but did not find any difference, ruling out A-to-I editing in CDC20 mRNA. In 271 

addition, mRNA transcribed from CDC20 cDNA, like the genomic DNA-derived mRNA, was 272 

also confined to the nucleus (Figure S8A), suggesting that CDC20 nuclear sequestration can 273 

act upon the mature mRNA. These results indicate that the regulation of CDC20 mRNA nuclear 274 

localization was distinct from other nuclear RNAs. 275 

As the targeting signals of localized RNAs are usually encoded by their own sequences 276 

(Buxbaum et al., 2015), we next sought to identify the cis-acting element involved in CDC20 277 

mRNA nuclear localization. A series of deletions spanning the entire CDC20 coding sequence, 278 

each 200 bp in length (except for Δ1207-1374) with 100 bp overlapping, were fused with GFP 279 

and expressed in wild-type plants under the control of the CDC20 promoter (Figure 5A). The 280 

localization of these truncated GFP-CDC20 chimeric RNAs was examined by RNA FISH. As 281 

cytoplasmic localization of CDC20 mRNA can be observed at late mitosis when daughter cell 282 

nuclei reform (Figure 2D), we used CYCB1;2 mRNA expression as an indicator of prophase 283 

cells. CYCB1;2 showed similar expression in these transgenic plants compared to wild-type 284 

plants (Figure 5B), suggesting that expression of these exogenous RNAs did not interfere with 285 
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normal cell cycle progression. Examination of the subcellular distribution revealed that all 286 

these GFP-CDC20 truncated RNAs were all localized inside the nucleus, surrounded by the 287 

cytoplasmic CYCB1;2 mRNA (Figures 5B and S8B), indicating that deletion of a single 288 

fragment of CDC20 coding region was not sufficient to disrupt RNA nuclear localization.  289 

We next investigated the role of UTRs in CDC20 mRNA nuclear sequestration. Chimeric 290 

mRNAs transcribed from GFP in-frame fused with CDC20 genomic fragment without the 291 

5’UTR or 3’UTR (pCDC20::GFP-CDC20Δ5’UTR and pCDC20::GFP-CDC20Δ3’UTR) were 292 

analysed by RNA FISH. CDC20 3’UTR-truncated mRNAs showed the same nuclear 293 

localization pattern as full length GFP-CDC20 transcript. By contrast, when the 5’UTR was 294 

deleted, nuclear localization was largely reduced. In most of the prophase cells, 5’UTR-295 

truncated GFP-CDC20 mRNAs were present either in both the nucleus and the cytoplasm, or 296 

mostly in the cytoplasm (Figures 5C, 5D and S8B), indicating that deletion of the 5’UTR 297 

abolished CDC20 mRNA nuclear sequestration. 298 

 299 

CDC20 5’UTR Is Sufficient to Confer Nuclear Sequestration 300 

To further evaluate the function of the CDC20 5’UTR, we fused it to a GFP coding sequence 301 

(Figure 6A). This chimeric mRNA, 5’UTRCDC20-GFP, as well as GFP alone, were expressed 302 

in wild-type plants under the control of the CDC20 promoter. The number of prophase cells 303 

expressing these GFP mRNAs seem to be reduced compared to GFP fused with full length 304 

CDC20 mRNA (Figure 6C), implying that the CDC20 coding region contains cis-element 305 

contributing to transcriptional activity. Nevertheless, when expressed, 5’UTRCDC20-GFP 306 

mRNA was found to be exclusively confined to the nucleus. The control, GFP mRNA alone, 307 

was distributed in the cytoplasm similar to CYCB1;2 mRNA (Figures 6B and S8C ). The results, 308 

taken together, demonstrate that the 5’UTR was both necessary and sufficient to sequester 309 

CDC20 mRNA inside the nucleus.  310 

 311 

CDC20 5’UTR Is Required for Protein Translation 312 

The cytoplasmic localization of GFP-CDC20Δ5’UTR mRNA in prophase cells, if translated, 313 

would be expected to interfere with proper cell cycle progression. However, we did not observe 314 

any cellular defect in chromosome alignment or segregation, and the transgenic plants grew 315 

normally. Confocal microscopy analysis revealed that in GFP-CDC20Δ3’UTR meristems, the 316 
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fusion protein could be normally translated, showing clear GFP fluorescence in root and shoot 317 

apical meristem similar to the full length transcript (Figures 6D and 6E). However, no 318 

fluorescence could be observed in multiple independent GFP-CDC20Δ5’UTR transgenic lines, 319 

indicating that 5’UTR truncated GFP-CDC20 mRNA cannot be properly translated. Taken 320 

together, these results demonstrate that the 5’UTR of CDC20 plays dual roles in mRNA nuclear 321 

localization and translation.  322 

 323 

Discussion 324 

To ensure the fidelity of chromosome segregation, APC/C activity needs to be precisely 325 

modulated, especially at early mitosis when APC/C targets (e.g. CYCB proteins) are playing 326 

crucial roles. Emi1 has been implicated in animals as the inhibitor of APC/C by binding to 327 

CDC20, preventing its interaction with APC/C substrates at prophase (Reimann et al., 2001). 328 

However, the role of Emi1 remains contentious as it was also shown to have little effect on 329 

APC/CCDC20 activity, and expression of a non-degradable version of Emi1 does not affect the 330 

destruction of cyclin A, cyclin B1 and securin (Di Fiore and Pines, 2007). Phosphorylation of 331 

APC/C subunits can facilitate CDC20 binding thus promoting APC/C activation (Sivakumar 332 

and Gorbsky, 2015). In mammalian cells APC/C phosphorylation is already initiated and 333 

CDC20 protein is also highly expressed at prophase (Kraft et al., 2003; Nilsson et al., 2008), 334 

which would presumably lead to APC/C activation. Therefore, it still remains obscure how 335 

APC/C activity is restrained during prophase. In plants, no Emi1 orthologue has been identified. 336 

GIG1/OSD1 and UVI4 have been suggested as the negative regulators of plant APC/C 337 

(Heyman et al., 2011; Iwata et al., 2011), but their direct effect on APC/C activity has not been 338 

determined. We found that in Arabidopsis dividing cells the mRNAs of CDC20 and CCS52B 339 

are sequestered inside the nucleus. Nuclear retention of mRNAs is expected to block their 340 

accessibility to cytoplasmic ribosomes. Consistent with this scenario, neither CDC20 nor 341 

CCS52B proteins could be detected in prophase cells. As CDC20 and CCS52B are key 342 

activators of APC/C, it seems that absence of CDC20 and CCS52B proteins at prophase due to 343 

RNA nuclear sequestration would result in very low APC/C activity, thereby allowing cyclin 344 

B function (Figure S9).  345 

    Cellular mRNA localization has been proposed as a common mechanism to control local 346 

protein abundance. A systematic study revealed that 71% of expressed mRNAs in Drosophila 347 

embryos exhibit distinct cytoplasmic distribution patterns (Lécuyer et al., 2007). Compared to 348 
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the predominant distribution in the cytoplasm, nuclear localization of protein coding mRNAs 349 

has rarely been encountered. Our data demonstrate that properly processed, unedited mature 350 

mRNAs can be specifically sequestered inside the nucleus, correlating with control (absence) 351 

of protein synthesis. Nuclear sequestration of CDC20 and CCS52B mRNA, despite their high 352 

levels, prevents protein translation, but on the other hand could also generate a store of RNA 353 

molecules that can be rapidly released to the cytoplasm upon NEBD for protein synthesis, thus 354 

to efficiently activate APC/C. 355 

RNA localization is guided by specific cis-acting elements that are mostly identified in the 356 

3’UTR (Martin and Ephrussi, 2009). The localization signals contributing to the spatial 357 

distribution of bicoid, nanos, xcat2, β-actin mRNAs, and histone mRNAs have all been mapped 358 

to the 3’UTR (Iampietro et al., 2014; Martin and Ephrussi, 2009). However, deletion analysis 359 

revealed that the 3’UTR has no effect on CDC20 mRNA nuclear localization. By contrast, 360 

when the 5’UTR is removed, the resulting GFP-CDC20Δ5’UTR chimeric mRNA is found to 361 

distribute into the cytoplasm. Furthermore, adding the CDC20 5’UTR was sufficient to 362 

sequester GFP mRNA in the nucleus, indicating that the 5’UTR is necessary and sufficient for 363 

CDC20 mRNA nuclear sequestration. Despite being exported into the cytoplasm, the 5’UTR 364 

truncated GFP-CDC20 RNA was not detectably translated, which is consistent with the 365 

important functions of 5’UTR in ribosome recruitment and translational initiation (Hinnebusch 366 

et al., 2016). Therefore, the dual roles of the 5’UTR in CDC20 mRNA nuclear localization and 367 

translation provides a ‘belt-and-braces’ approach to avoid CDC20 protein synthesis and APC/C 368 

activation. RNA localization elements are recognized by trans-acting proteins. The RNA 369 

interactome capture method has been recently developed to identify Xist lncRNA binding 370 

proteins in human cells (Chu et al., 2015; McHugh et al., 2015; Minajigi et al., 2015). Applying 371 

this technology in plants to characterize CDC20 and CCS52B mRNA interacting protein(s) 372 

would provide more insights into the understanding of mRNA localization, translational 373 

control, and cell cycle regulation. 374 

 375 

Materials and Methods 376 

Plant material and growth conditions 377 

Arabidopsis Columbia ecotype (Col-0) was used as wild-type for the in situ hybridization 378 

analysis. The reporter lines GFP-MBD, H2B-RFP, CYCB1;1-GFP, and SUN2-GFP were 379 

described previously  (Federici et al., 2012; Hamant et al., 2008; Oda and Fukuda, 2011; Reddy 380 
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et al., 2005). Seeds were germinated on Murashige and Skoog agar plates and 7 day-old 381 

seedlings were transferred to soil. Plants were grown under long day conditions (16 h/8 h 382 

light/dark period) at 20 °C. 383 

 384 

mRNA In Situ Hybridization 385 

RNA Probe Synthesis 386 

The cDNA fragments corresponding to each cell cycle gene were amplified with gene-specific 387 

primers (Table S4), ligated into the pGEM®-T Easy vector (Promega) and verified by 388 

sequencing. The plasmids containing the cDNA fragments were then used as templates for 389 

PCR with primers T7 and SP6. The PCR products were used as templates for in vitro 390 

transcription using the DIG RNA Labeling Kit (Roche). For fluorescence in situ probes, 391 

Fluorescein-12-UTP (Roche) was used instead of Digoxigenin-11-UTP (Roche). 392 

Sample Preparation 393 

Shoot apices of Arabidopsis were harvested and fixed in FAA (3.7% formaldehyde, 5% acetic 394 

acid, 50% ethanol). The samples were embedded in wax and cut into 8-μm sections. The 395 

sections were processed by dewaxing, rehydration and dehydration, as described in 396 

(http://www.its.caltech.edu/~plantlab/protocols/insitu.pdf). 397 

Hybridization 398 

The sections were hybridized with gene-specific probes at 55 °C. After washing with SSC, the 399 

slices were incubated with anti-digoxigenin-AP antibody (Roche) for 2 hours at room 400 

temperature. The signals were detected by overnight colour reaction at 28 °C using NBT/BCIP 401 

(Roche). Sense-strand hybridizations, yielding no hybridization with target mRNA, are shown 402 

as controls. Images were taken using a Zeiss AxioImager M2 microscope fitted with a Zeiss 403 

Axiocam MRc colour camera and a PlanApochromat 20x/ 0.8 NA objective. 404 

RNA Fluorescence in situ Hybridization (RNA FISH) 405 

Samples were processed as above for in situ hybridization, except that anti-fluorescein-POD 406 

(Roche) or anti-digoxigenin-POD (Roche) antibodies were used. After antibody incubation, 407 

the hybridization signals were detected using TSA Plus Fluorescein Fluorescence System 408 

(Perkin Elmer) for green signals or TSA Plus Cy5 Fluorescence System (Perkin Elmer) for red 409 

signals. DAPI staining was performed by mounting the slices with 1µg/ml DAPI shortly before 410 

observing the in situ hybridization signals. Images were taken with a Zeiss LSM700 confocal 411 

microscope equipped with a 20 × 0.8NA dry objective. Laser excitation was 405 nm (DAPI), 412 

488 nm (Fluorescein) and 633 nm (Cy5). 413 
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Double RNA FISH 414 

Double RNA FISH was used to check the mRNA expression of two genes in the same cells. 415 

Processed sections were hybridized with a mixture of two gene-specific probes, one labelled 416 

with digoxigenin and the other with fluorescein. The slices were incubated with anti-417 

fluorescein-POD (Roche) and subsequently detected with TSA Plus Fluorescein Fluorescence 418 

System, giving green signals. After the first TSA reaction, 3% H2O2 (Sigma) was applied to 419 

quench peroxidase activity (1 hour incubation in 3% H2O2 was found to sufficiently quench all 420 

peroxidase activity of the first antibody). The slices were further incubated with anti-421 

digoxigenin-POD antibody and detected by TSA Plus Cy5 Fluorescence System (Perkin 422 

Elmer), resulting in red signals. 423 

RNA FISH and Immunohistochemistry 424 

RNA FISH was carried out as described above. After TSA-Cy5 reaction to reveal the mRNA 425 

hybridization signals, the sections were washed in PBST (PBS containing 0.3% v/v Triton X-426 

100), and then blocked in PBS-Blocking buffer (PBS containing 1.0% bovine serum albumin, 427 

0.2% powdered skim milk, and 0.3% Triton X-100) for 30 min at room temperature. The 428 

sections were then incubated with Alexa Fluor® 488 conjugated GFP antibody (1:100 dilution) 429 

(A-21311, Molecular Probes) overnight at 4 °C. The slides were washed in PBST for 3 times, 430 

5 min each and observed using a Zeiss LSM700 confocal microscope. 431 

 432 

Plasmid Construction and Plant Transformation 433 

GFP Fusion with Full Length CDC20 and CCS52B mRNA 434 

The MultiSite Gateway® Three-Fragment Vector Construction system (Invitrogen) was used 435 

to generate plasmid constructs. For pCDC20.1::GFP-CDC20.1, a 2,417 bp promoter upstream 436 

of CDC20.1 ATG was amplified using genomic DNA as template with primers 437 

CDC20_promoter_F and CDC20_promoter_R. The PCR product was inserted into pDONR™ 438 

P4-P1R by BP reaction, resulting in 1R4-pCDC20. The enhanced GFP (EGFP) coding 439 

sequence was amplified using primers GFP_gateway_F and GFP_ gateway_R, and the product 440 

was inserted into pDONR™ 221 by BP reaction, resulting in 221-GFP. A 3,161bp genomic 441 

fragment containing the whole coding sequence of CDC20.1 as well as 1,115bp 3’ region was 442 

amplified with primers CDC20_DNA_F and CDC20_DNA_R, and the PCR product was 443 

inserted into pDONR™ P2R-P3, resulting in 2R3-gCDC20. The three entry constructs was 444 

incorporated into the binary vector pB7m34-GW by LR reaction. Similar strategy was applied 445 

to CCS52B. The primers used for CCS52B promoter were CCS52B_promoter_F and 446 

CCS52B_promoter_R; for coding region as well as 3’ region were CCS52B_DNA_F and 447 
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CCS52B_DNA_R, and the constructs were named as 1R4-pCCS52B and 2R3-gCCS52B, 448 

respectively. pCDC20.1::GFP-CDC20.1 and pCCS52B::GFP-CCS52B were transformed into 449 

Arabidopsis wild-type Col-0 as well as nuclear reporter line H2B-RFP (Col-0 background) via 450 

Agrobacterium mediated transformation. 451 

To construct CDC20 cDNA fused with GFP, the full length cDNA including 5’ and 3’ UTR 452 

was first amplified from meristem cDNA library using primers CDC20_cDNA_F and 453 

CDC20_cDNA_R. GFP was amplified with primers GFP_F and GFP_R. CDC20 cDNA and 454 

GFP fragments were ligated into pBluescript SK(-), resulting in SK-GFP-cCDC20, which was 455 

then incorporated into pB7m34-GW with CDC20 promoter and Nos terminator by LR reaction. 456 

CDC20 5’UTR and 3’UTR Deletions 457 

For 5’UTR deletion analysis, CDC20 promoter was amplified with primers 458 

CDC20_promoter_F and CDC20_promoter_NoUTR_R. The PCR products were inserted into 459 

pDONR™ P4-P1R by BP reaction, resulting in 1R4-pCDC20_ No5’UTR. 1R4-pCDC20_ 460 

No5’UTR was further introduced into the binary vector pB7m34-GW with 221-GFP and 2R3-461 

gCDC20 by LR reaction. For 3’UTR deletion analysis, CDC20 genomic sequence without 462 

3’UTR was amplified with primers CDC20_KpnI and CDC20_SalI. CDC20 terminator was 463 

amplified with primers CDC20_SalI_1 and CDC20_BamHI. The two fragments were ligated 464 

into pBluescript SK(-), and the resulting plasmid was used as template for PCR with primers 465 

CDC20_DNA_F and CDC20_DNA_R. The PCR product was inserted into pDONR™ P2R-466 

P3, resulting in 2R3-gCDC20_NoUTR. 1R4-pCDC20, 221-GFP and 2R3-gCDC20_NoUTR 467 

were ligated into pB7m34-GW by LR reaction.  468 

CDC20 Coding Sequence Deletions 469 

Fusion PCR was used to generate CDC20 ORF deletion constructs. Two PCR fragments with 470 

25 bp overlapping were amplified with specific primers (Table S2). The PCR products were 471 

mixed and used as templates for a second round of PCR using primers GFP_GW1_F and GFP-472 

CDC20_GW1_R. The product was inserted into pDONR™ 221 by BP reaction, and further 473 

incorporated into pB7m34-GW with CDC20 promoter and Nos terminator by LR reaction. 474 

 475 

Observation of Fluorescent Reporter Expression by Confocal Microscopy 476 

Shortly after bolting (stem length ~ 1 cm), the shoot apex was dissected and the fully developed 477 

flowers were carefully removed in order to expose the SAM. The meristem was then transferred 478 

to a square box containing fresh MS medium (Duchefa Biochemie - MS basal salt mixture) 479 

supplemented with vitamins (myoinositol 100 µg/ml,  nicotinic acid 1 µg/ml, pyridoxine 480 

hydrochloride 1 µg/ml, thiamine hydrochloride 1 µg/ml, glycine 2 µg/ml) and 1% sucrose in 481 
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order to keep the meristem alive during observation. Viewed-stacks of SAMs were acquired 482 

with either a Zeiss LSM700 with 20 × NA 1.0 water dipping objective or a Leica SP8 with 25 483 

× NA 1.0 water dipping objective. 3D rendering was carried out using either Zen (Zeiss) or 484 

LAS X (Leica) confocal microscope software. The cell boundaries of the SAM were revealed 485 

by 0.1% propidium iodide (PI) staining for 5 min. Laser excitations were 488 nm (PI, GFP) 486 

and 555nm or 561nm (RFP). GFP fluorescence intensity was measured in Fiji ImageJ. To 487 

display the fluorescence intensity as shown in Figures 5 and S7, the fluorescence pictures were 488 

edited with the LUT editor plugin in Fiji ImageJ. 489 

    For MG132 treatment, dissected meristems were emerged in liquid MS medium containing 490 

DMSO (Mock) or 50 µM MG132 (C2211 Sigma) for 2 hours. For time lapse experiment, 491 

dissected meristems were kept in MS medium (Duchefa) supplemented with vitamins and 492 

sucrose. The meristems were kept in growth chamber under long day conditions (16 h/8 h 493 

light/dark period) at 20 °C, and were taken out for confocal imaging at each time point. 494 
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Figures and Legends 686 

 687 

Figure 1. Expression Patterns of Core Cell Cycle Genes in Arabidopsis Meristematic Cells. 688 

(A) A schematic representation showing the organization of the Arabidopsis inflorescence 689 
shoot apical meristem (SAM). Upper panel, side view; lower panel, top view. CZ, central zone; 690 

PZ, peripheral zone; RM, rib meristem; P, flower primordia, which form sequentially in the 691 
PZ.  692 

(B) CYCB1;1-GFP reporter expression in wild type (WT) SAM. Scale bar, 20 µm. 693 

(C) Expression of nuclear reporter H2B-RFP and microtubule reporter GFP-MBD in 694 
meristematic cells corresponding to different cell cycle stages. From 6 WT SAMs, 326 cells 695 
were observed to be undergoing division and the number of cells at each stage is shown. Scale 696 

bar, 5 µm. 697 

(D) Functional modules of core cell cycle regulators in the Arabidopsis SAM. 698 

(E) Classification of the mRNA distribution patterns of core cell cycle genes expressed in the 699 

SAM. In situ hybridisation images for representative genes in each class are shown. 700 

 701 
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 702 

Figure 2. Nuclear Sequestration of CDC20 and CCS52B mRNAs in Prophase Cells. 703 

(A) A schematic model illustrating CYCB protein dynamics during mitosis and its degradation 704 
by APC/CCDC20 and APC/CCDH1 E3 ligases. 705 

(B and C) RNA FISH to reveal the expression patterns of CDC20 and CCS52B in the SAM. 706 

No signals were detected from the sense probes. Scale bars, 50 µm. 707 

(D and E) Expression of CDC20 and CCS52B at different mitotic stages. Note the nuclear 708 

localization of CDC20 and CCS52B mRNAs at prophase. Scale bars, 5 µm. 709 

(F) 3-D projection of CDC20 and CCS52B mRNAs in prophase cells. Scale bar, 5 µm. 710 

(G and H) CDC20 and CCS52B mRNA localization with nuclear envelope reporter at different 711 

stages of mitosis. The mRNAs were detected by FISH. The nuclear envelope was revealed 712 
using GFP antibody against a nuclear envelope reporter protein, SUN2-GFP. Scale bars, 5 µm. 713 
All images, with the exception of (F), show single optical confocal sections. 714 

 715 
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 717 

Figure 3. Spatial Separation of CDC20 and CYCB mRNAs in Prophase Cells. 718 

(A) Co-expression of CDC20 with cell cycle genes as revealed by double RNA FISH coupled 719 
with DAPI staining.  720 

(B) CDC20 does not co-express with an S-phase expressed gene HIS4. CDC20 and cell cycle 721 
genes were detected by gene specific probes with different labelling. Scale bars in (A) and (B), 722 

SAM overview (top panels) = 50 µm; single cells (bottom panels) = 5 µm. 723 

(C) Quantification of the number of cells that express CDC20 and CYCB genes at different 724 

mitotic stages. CYCB1 genes were mostly expressed at prophase and metaphase, and largely 725 
co-express with CDC20. 726 
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 733 

Figure 4. Expression Patterns of CDC20 and CCS52B Proteins during the Cell Cycle. 734 

(A-D) GFP-CDC20 (A, B) and GFP-CCS52B (C, D) expression in the Arabidopsis SAM. The 735 
cell wall was stained with propidium iodide (PI). Expression of GFP-CDC20 and GFP-736 
CCS52B in (B) and (D) were displayed using the Fire lookup table in ImageJ to show difference 737 

in fluorescence intensity. Scale bars, 20 µm. 738 

(E-H) Protein dynamics of GFP-CDC20 (E) and GFP-CCS52B (G) at different stages of 739 

mitosis. The fluorescence intensity was shown in (F) and (H). Scale bars, 5 µm. 740 
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 744 

Figure 5. CDC20 5’UTR Is Involved in mRNA Nuclear Localization. 745 

(A) Schematic diagram of CDC20 mRNA deletion constructs.  746 

(B) Quantification of the number of prophase cells expressing GFP fused CDC20 mRNAs that 747 
contain serial deletions. CYCB1;2 expression was used as a prophase marker. All GFP-CDC20 748 

mRNAs with deletions in the CDC20 ORF were found to localize in the nucleus. Each pair of 749 
columns represents data from one meristem. 750 

(C) Localization of GFP-CDC20 truncated mRNAs lacking CDC20 5’UTR or 3’UTR. 751 
Deletion of 5’UTR abolished GFP-CDC20 mRNA nuclear sequestration, leading to 752 
nucleocytoplasmic or mostly cytoplasmic localization. Scale bars, 50 µm for SAM overview 753 
(top panels) and 5 µm for single cells (bottom panels). 754 

(D) Quantification of the number of prophase cells expressing full length, 3’UTR deleted, and 755 
5’UTR deleted GFP-CDC20 mRNAs. Each pair of columns represents data from one meristem.  756 
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 766 

Figure 6. Dual Roles of 5’UTR in CDC20 mRNA Nuclear Localization and Translation. 767 

(A) Schematic diagram of chimeric mRNA construction in which GFP was fused with CDC20 768 
5’UTR. GFP alone was used a control. 769 

(B) Localization of 5’UTRCDC20-GFP and GFP mRNAs in prophase cells. Scale bars, 50 µm 770 
for SAM overview (top panels) and 5 µm for single cells (bottom panels). 771 

(C) Quantification of the number of prophase cells expressing5’UTRCDC20-GFP and GFP 772 

mRNAs. Each pair of columns represents cell numbers from one meristem.  773 

(D) The expression of GFP-CDC20 fusion protein in root and SAM as revealed. No GFP 774 
fluorescence could be observed in 5’UTR truncated GFP-CDC20 transgenic plants. Scale bar, 775 
50 µm. 776 

(E) The number of transgenic lines analysed. GFP-CDC20 expression was detected in 22/23 777 
lines of full length GFP-CDC20 plants, 15/21 lines of 3’UTR truncated GFP-CDC20 778 
transgenic plants, and 0/23 of 5’UTR truncated GFP-CDC20 transgenic plants. 779 

 780 
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Supplemental Figures 784 

 785 

Figure S1. Mitosis Specific Expression of Cell Cycle Genes in the SAM.  786 

The mRNAs were detected by DIG labelled probes, which were further recognized by POD-787 
labelled anti-DIG antibody coupled with the TSA-CY5 detection system. The nucleus was 788 
stained with DAPI. 789 

(A-K) Expression patterns of G2/M cell cycle genes. Scale bar, 50 µm. 790 

(L) Quantification of the number of cells expressing cell cycle genes at different mitotic stages. 791 
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 800 

Figure S2. Rapid CYCB1;1 Protein Degradation at Metaphase-to-Anaphase Transition. 801 

(A) RNA FISH to show the accumulation of CYCB1;1 transcripts at different stages of mitosis. 802 
Scale bar, 5 µm. 803 

(B) CYCB1;1 mRNA levels at different stages of mitosis, as calculated from the fluorescence 804 
intensity of RNA FISH images. 805 

(C) CYCB1;1-GFP protein expression at different stages of the cell cycle. H2B-RFP is used to 806 
monitor chromosome alignment and segregation. Scale bar, 5 µm. 807 

(D and E) Protein dynamics of CYCB1;1-GFP during mitosis. GFP fluorescence intensity is 808 
shown in (E). 809 
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 816 

Figure S3. Co-expression Analysis of CDC20 and CCS52B. 817 

(A) Double RNA FISH to show the expression patterns of CDC20 and CCS52B in the same 818 
meristem. Scale bar, 50 µm.  819 

(B) Co-expression of CDC20 and CCS52B at different mitotic stages. The anaphase and late 820 
telophase cells shown are those only expressing CCS52B. Scale bar, 5 µm. 821 

(C) Quantification of the number of cells that express CDC20 and CCS52B.  822 

 823 

 824 

 825 

Figure S4. Expression Pattern of CDC20 in Root and Shoot Dividing Cells. 826 

(A) Root overview. Scale bar, 50 µm. 827 
(B) Root cells at different stages of mitosis. Note that CDC20 mRNA is sequestered inside the 828 
nucleus at prophase. Scale bar, 5 µm. 829 
(C) Nuclear localization of CDC20 mRNA in shoot prophase cells. Scale bars, 50 µm for shoot 830 
overview (top panels) and 5 µm for cells (bottom panels). 831 
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 833 

Figure S5. 3-D Projection of Confocal Images to Show CDC20 Expression Patterns with 834 

CYCBs and HIS4 in the Same Meristems. 835 

(A) Nucleocytoplasmic separation of CDC20 and CYCB1 transcripts in prophase cells. 836 

(B) CDC20 does not co-express with S-phase marker HIS4 gene. 837 
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 845 

Figure S6. Fusion of GFP does not Affect CDC20 or CCS52B mRNA Nuclear Localization. 846 

(A and B) Overview of GFP mRNA distribution with CDC20 and CCS52B in pCDC20::GFP-847 
CDC20 (A) and pCCS52B::GFP-CCS52B (B) transgenic plants. Scale bars, 50 µm. 848 

(C and D) Co-localization of GFP mRNA with CDC20 (C) or CCS52B (D) mRNA in mitotic 849 

cells. Scale bars, 5 µm. 850 
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 857 

Figure S7. Fluctuation in the Protein Levels of CDC20 and CCS52B during the Cell Cycle. 858 

(A and B) Time-lapse imaging of GFP-CDC20 and GFP-CCS52B protein expression in the 859 
same cell as it undergoes division. Arrowheads indicate the cells analysed. Scale bars, 5 µm. 860 

(C) MG132 treatment does not affect GFP-CCS52B protein abundance. Scale bar, 50 µm. 861 

(D and E) The amount of GFP-CDC20 proteins in both SAM (C) and root (D) can be increased 862 
by MG132 treatment. Scale bar, 50 µm. 863 
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 868 

Figure S8. 5’UTR Affects CDC20 mRNA Nuclear Localization. 869 

(A) The expression patterns of full length GFP-CDC20 mRNAs transcribed from genomic 870 
DNA or cDNA in the shoot apex. Shown are representative meristems from one of the 871 
independent transgenic lines. Scale bar, 50 µm for SAM overview and 5 µm for single cells. 872 

(B) The expression patterns of GFP-CDC20 truncated mRNAs. 873 

(C) The expression patterns of GFP chimeric mRNAs. 874 
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 883 

Figure S9. Model for Cell Cycle Control by mRNA Nuclear Sequestration. 884 

(A) Subcellular distribution of CYCB, CDC20 and CCS52B mRNAs during cell cycle 885 
progression in plant stem cells.  886 

(B) CYCB, CDC20 and CCS52B protein dynamics. Nuclear sequestration of CDC20 and 887 
CCS52B mRNAs in prophase prevents their translation to protein. Nuclear envelope 888 
breakdown at prometaphase enables redistribution of the mRNAs into the cytoplasm and 889 
subsequent protein synthesis, following which the proteins activate APC/C to destroy cyclin B 890 
proteins and other substrates. 891 
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