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ABSTRACT  
Why are we so slow in choosing the lesser of two evils? We considered whether 

such slowing relates to uncertainty about the value of these options, which arises 

from the tendency to avoid them during learning, and whether such slowing relates to 

fronto-subthalamic inhibitory control mechanisms. 49 participants performed a 

reinforcement-learning task and a stop-signal task while fMRI was recorded. A 

reinforcement-learning model was used to quantify learning strategies. Individual 

differences in lose-lose slowing related to information uncertainty due to sampling, 

and independently, to less efficient response inhibition in the stop-signal task. 

Neuroimaging analysis revealed an analogous dissociation: subthalamic nucleus 

(STN) BOLD activity related to variability in stopping latencies, whereas weaker 

fronto-subthalamic connectivity related to slowing and information sampling. Across 

tasks, fast inhibitors increased STN activity for successfully cancelled responses in 

the stop task, but decreased activity for lose-lose choices. These data support the 

notion that fronto-STN communication implements a rapid but transient brake on 

response execution, and that slowing due to decision uncertainty could result from an 

inefficient release of this “hold your horses” mechanism.  
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Introduction  
Optimal foraging entails learning to select among decision alternatives, based on 

their (hidden) probabilistic values. Individuals differ in their exploration/exploitation 

balance, and hence the degree to which they sample options with lower valued 

outcomes, during reinforcement learning. Such inter-individual variability may help 

understand the mechanisms involved in choosing the lesser of two evils. Value-

based decision-making often requires choice between options that have similar 

learned values but may never have been presented together (for example, a novel 

choice between miso soup and corn chowder). These kinds of choices can elicit 

conflict arising from either the novel pairing of two previously desired outcomes (win-

win) or undesired outcomes (lose-lose). Despite identical value differences, the novel 

pairing of two lose-lose options is consistently associated with prolonged decision 

times when compared to win-win conflict1–5. While the relative speeding for high 

valued options is attributed to effects of reward expectation (and dopamine levels) on 

reaction time (RT), the literature has generally not considered the impact of 

differential uncertainty about choice values. Consider a common reinforcement-

learning task in which an agent learns to choose among pairs of options with different 

reinforcement probabilities (e.g., 80% vs. 20%, 70% vs. 30%, and 60% vs. 40%)6. 

While one can optimize rewards in this task by exploiting/maximizing (i.e., always 

choosing the more rewarded option), this strategy would prevent the agent from 

exploration and hence from acquiring a precise representation about the value of the 

lesser options7,8. Critically, this exploitation strategy would also then make it more 

difficult to later choose between a 40% and 20% option (a high-conflict lose-lose 

choice), due to less sampling and greater uncertainty about their true values.  

What are the neural mechanisms that can leverage such uncertainty to adjust 

decision times? Prior studies indicate that when presented with decision conflict, 

increased activity in the STN acts to delay response execution by inhibiting action 

altogether9–11 or by raising the decision threshold, i.e., the level of evidence required 

to make a choice1,2,4,12–18. Intuitively, a common mechanism for response inhibition 

and threshold adjustment seemingly implies that faster or more efficient inhibition 

would relate to more conflict-induced slowing.  However, in the case of lose-lose 

conflict such a fixed increase in decision threshold mechanism is maladaptive when 

the learned information for the optimal choice is sparse (i.e., it could engender 

decision paralysis). Instead, simulation studies suggested that the STN “hold your 

horses” mechanism is dynamic, with a fast initial STN surge that is followed by a 

steep decline of activation (“releasing the horses”), facilitating choice even when the 

evidence is sparse4,15. This dynamic could even suggest an efficient initial STN 
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surge, and hence rapid response inhibition, might actually lead to less uncertainty-

induced slowing. 

We aimed to specify these relationships with the examination of two tasks. 

Functional magnetic resonance imaging (fMRI) data was recorded while participants 

performed a reinforcement-learning task followed by a test-phase containing novel 

win-win, lose-lose and win-lose pairs without feedback (Fig. 1a). Here, the degree of 

exploration/exploitation (and hence subsequent uncertainty in learned values of lose 

options) was assessed during learning by stochasticity in choices and quantified with 

a reinforcement-learning model that reliably predicted trial-to-trial choices (Fig. 2). 

Importantly, we also administered a stop-signal task to assess the efficiency of 

response inhibition in the absence of learning (Fig. 1b), and to relate this to the 

behavioral and neural markers of conflict-based slowing. We assess how choice 

strategies and the efficiency of response inhibition each relate to slowing in 1) 

reaction times, 2) the BOLD response of the STN, and 3) the strength of effective 

connectivity in the fronto-subthalamic pathway by using a model-driven effective 

connectivity approach termed ancestral graphs19. This last explorative analysis 

followed prior studies suggesting that the communication from PFC into the STN (the 

so-called hyperdirect pathway20), is enhanced under response conflict10,13,21,22 to 

motivate a brake23–25, or decision threshold adjustments on striatal reward-based 

choice in order to prevent impulsive or premature responses2,12,15,26. 

 

Please think of Fig. 1&2 somewhere here 
 
RESULTS 
49 young adults (25 male; mean age = 22 years; range 19-29 years) participated in 

this study. Four participants were excluded from all analyses due to movement (2), 

incomplete sessions (1), or misunderstanding of task instructions (1). One participant 

did not complete the stop-task, and for one we were unable to obtain reliable SSRT 

estimates (stopping latency) therefore they were only included for the RL-task 

analysis. As shown in Fig. 1, participants performed a reinforcement-learning task27 

and a stop-signal task in the MRI scanner. In our reinforcement learning task 

participants learned to select among choices with different probabilities of 

reinforcement (i.e., AB 80:20, CD 70:30, and EF 60:40). A subsequent test-phase, 

where feedback was omitted, required participants to select the optimal option 

among novel pairs involving low (win-lose) or high (win-win and lose-lose) decision 

conflict. 
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Uncertainty and Conflict-induced slowing 

During the test-phase, as expected, accuracy in choosing the more rewarded 

stimulus was reduced for both high conflict lose-lose and win-win pairs compared to 

low-conflict win-lose pairs (F(2,88)=18.8, p<0.0001; Fig. 3a). Slowed RT’s were 

observed for only the lose-lose pairs (F(2,88)=21.4, p<0.0001; Fig. 3b).  

To understand how the experience of conflict is influenced by the uncertainty 

associated with learned values that arises from information sampling, we quantified 

such sampling via the softmax β parameter estimated from the reinforcement 

learning model. Higher estimates of β index a greater tendency to exploit higher 

valued stimuli and as such predicted higher accuracies (rAB=0.79, rCD=0.74, rEF=0.47; 

all p’s<0.01; Fig. 3c) with steeper learning curves (Fig. 3d-f) in the learning phase. As 

noted above, however, we posited that such exploitation would increase the 

uncertainty about the values of under-sampled loss stimuli in future test-phase 

choices. A repeated measures ANOVA with the between subject variable Strategy 

(Exploit/Explore; defined as the continues variable β) and within subject factor 

Conflict (win-win, lose-lose, win-lose) revealed that exploitation during learning was 

related to improved accuracy (F(1,43)=72.1, p<0.0001; please see Fig. 3g for a 

visualization based on a median split on β), but also prolonged reaction times in the 

test phase (F(1,43)=9.0, p<0.01; Fig. 3h). Critically, these effects were qualified by 

an interaction between Strategy and Conflict (accuracy: F(2,86)=3.4, p=0.04; RT: 

F(2,86)=6.9, p<0.01), revealing especially large costs for lose-lose decisions in 

exploiters. In particular, compared to explorers, exploiters exhibited the most 

prominent RT cost for lose-lose (t(42)=3.5, p=0.001) and less so for win-lose 

(t(42)=2.1, p=0.04), and win-win (t(42)=1.7, p=0.09). Similarly, although they 

performed more accurately overall, exploiters showed significant gains in accuracy 

only for choices involving a win stimulus (win-win t(42)=3.2, p<0.01; win-lose 

t(42)=6.3, p<0.0001), and not for lose-lose choices (t(42)=1.8, p=0.08).  

Hence, while it is unsurprising that overall, participants performing more 

accurately during training also do so at test, these exploitative participants were 

characterized by relatively selective RT costs for the lose-lose choices in the test 

phase. These costs are expected given that they had not sampled these stimuli as 

much and hence should exhibit larger uncertainty when choosing among them. We 

next considered whether such RT costs were mitigated by response inhibition, 

separately from choice strategy. 

 
Please think of Fig. 3 somewhere here 
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Control and Conflict-induced slowing 
While prolonged decision-times (RT’s) in the test-phase were related to exploitative 

choice strategies, we also were interested to assess the role of response inhibition 

independently of learning and uncertainty. Previous work has attributed conflict-

induced slowing to the same STN mechanism associated with outright response 

inhibition10,12 via either dynamic modulation of decision thresholds and/or an initial 

delay that precedes the decision-process4. Therefore, we additionally examined an 

independent measure of inhibitory control efficiency in the stop-signal task termed 

the stop-signal reaction time (SSRT, Fig. 4a). We hypothesized that if conflict-

induced slowing is simply associated with more overall response inhibition (or a fixed 

increase in decision threshold), then subjects engaging this mechanism would exhibit 

more inhibition and slower conflict-induced RTs. If, on the other hand, conflict-

induced slowing involves a transient threshold increase that then collapses, then 

efficient response inhibition should relate to less conflict-induced slowing. Moreover, 

for exploiters, this release of a transient brake should particularly censor the tail of 

the RT distribution, which would otherwise have more density due to uncertainty in 

the evidence.      

Indeed, overall, faster SSRTs (more efficient inhibition) were related to faster 

lose-lose response times (r=0.36, p=0.02; Fig. 4b), and less slowing relative to low 

conflict win-lose trials (r=0.37, p=0.02). (No such relationship was seen for win-win 

RT; p=0.27). SSRT was unrelated to exploration vs exploitation in choices during 

learning (r=0.18, p=0.24), suggesting that the two factors might contribute 

independent variance to the lose-lose decision times. Indeed, a multiple regression 

showed a significant contribution of both β (bβ=52.00, t(40)=3.356, p=0.002), and 

SSRT (bssrt=0.92, t(40)=2.115, p=0.041) to lose-lose response times. Furthermore, 

while the inhibition effect was observable in both exploiters and explorers - consistent 

with an independent effect of SSRT on implementing and releasing the brake - its 

impact on the tail of the distributions was observed only in exploiters (Fig. 4cd). This 

result is consistent with the notion that exploiters have more uncertainty about action 

outcomes, and hence without an efficient brake they exhibit longer tails. SSRT’s 

were not related to lose-lose accuracy performance (p=0.26).  

These results explain lose-lose RT as a function of both choice strategies 

(previous sampling of information and hence uncertainty) and active but transient 

inhibitory control. Highly slowed participants were exploitative during learning, and 

inefficient in the implementation of a fast brake.  

 

Please think of Fig. 4 somewhere here 
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The efficacy of control in the STN during full stops and conflict 
At the neural level, the STN is well known for its role in global stopping (fast full 

brake) and the modulation of decision requirements. To evaluate how our behavioral 

observations relate to this literature, the time-course of activity within the STN was 

estimated for both the stop-signal task and the test-phase of the reinforcement 

learning task. Multiple regressions were then used to evaluate how the STN activity 

in each task relates to one’s efficacy to inhibit a planned response (SSRT), or choice 

strategy β.   

 In the stop-signal task, the estimated STN activity (Fig. 5a) was strongest for 

failed stop trials, corroborating a recent 7T study focusing on the STN in this task28, 

and possibly reflects a reactive engagement to correct for the failure to stop (we 

return to this result in the discussion). Notably, efficient inhibition, as indexed by 

SSRT, was marginally correlated with the estimated STN response only when 

participants succeeded to suppress a planned response on time (i.e., successful stop 

trials); such that higher early BOLD responses in the STN were related to faster or 

more efficient inhibition times (Fig. 5bc). As expected, no relationship was observed 

between the STN BOLD response and β, when participants were engaged in the 

stop-task.  

 We then turned to the test-phase of the reinforcement learning task to 

understand how STN activity relates to the observed behavioral relationships 

between slowing and control. Overall, the estimated STN response was very similar 

across all trials of the test phase (Fig. 5d). The multiple regression, however, showed 

that STN response to high conflict (win-win and lose-lose), but not low conflict win-

lose trials, was directly related to SSRT (Fig. 5e).  STN activity was unrelated to β, 

pointing towards distinct effects of inhibitory control and choice uncertainty on 

response slowing. The positive relationship between SSRT and lose-lose STN 

activity (Fig. 5f) corresponds to the behavioral observation that more slowing was 

tied to longer SSRT’s, consistent with the notion that it results from the inefficient 

implementation of a transient STN brake.  

   

Please think of Fig. 5 somewhere here 
 
Conflict-induced slowing in cortico-basal ganglia pathways 
Finally, we used the model-driven ancestral graphs approach (please see methods 

section for a detailed explanation) to analyze the information flow between PFC and 

BG during test-phase trials, and to explore how this interplay relates to the significant 

lose-lose slowing. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 6, 2017. ; https://doi.org/10.1101/199299doi: bioRxiv preprint 

https://doi.org/10.1101/199299
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

The evaluation of effective connectivity restricted the interplay between PFC 

and BG with the use of three pathways generally described in animal and human 

studies20,29,30 (Fig. 6a). Here, most projections terminate in the striatum (STR), from 

where two (out of three) pathways depart. A direct-pathway projects into thalamus 

via the globus pallidus interna (GPi) to facilitate action selection, while an indirect-

pathway via the globus pallidus externa (GPe) can allow the integration of additional 

information by adaptively slowing the motor output. A third, hyperdirect-pathway 

directly projects from PFC into subthalamic nucleus (STN), and inhibits the thalamus 

output to primary motor cortex (M1) by exciting the GPi. These described PFC-BG 

pathways each play a specific (and therefore testable) role in the selection, 

regulation, or suppression of choices, and were therefore selected for the evaluation 

of seven potential connectivity networks to describe information flows, or 

connectivity, between the PFC and BG during test-phase decisions (please see 

methods section for the definition of all seven models). 

Concurrent with the literature, random effects analysis across the whole 

group indicated that a connectivity network comprising the direct, indirect and the 

hyperdirect pathway best describes the pattern of activity during all choice trials 

(Table 1). Fig. 6b shows the graphical outline of this model with functional 

connectivity (undirected relationship) between all PFC nodes (i.e., DLPFC, preSMA, 

vmPFC) and effective connectivity from each PFC region into the striatum (STR) and 

STN. Within BG, effective connectivity was defined from STN into GPi, Striatum into 

GPe, GPe into GPi, GPi into thalamus, and finally Thalamus into primary motor 

cortex (M1) to select a response. To better understand the top-down dynamics we 

next focused on connection strengths (regression values derived from ancestral 

graphs) from PFC into STN or STR in two steps.  

First, the strength of top-down connections was investigated using a repeated 

measure ANOVA with the factors Conflict (win-win, lose-lose, win-lose) and 

Connection (PFC->STN, PFC->STR). There was a main effect of connection: PFC 

effective connectivity towards the STR (Mean=-0.17, SD=0.007) was stronger 

compared to that toward STN (Mean=-0.15, SD=0.007; F(1,44)=10.38, p=0.002). 

There were no additional main effects or interactions modulated by conflict.  

Second, we explored how decision durations (RT’s) in the test-phase relate to 

the strength of connectivity (estimated regression strengths) from PFC into either 

STN or STR. For lose-lose trials, weaker, or disrupted, PFC-into-STN connectivity 

was related to longer RT’s (r=0.30, p=0.048; Fig. 6c) and more slowing (in 

comparison to the easy win-lose choices; r=0.32, p=0.03). These relationships were 

not observed for win-win or win-lose trials, or for PFC-into-STR connectivity 
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(p’s>0.05). Because choice strategies and active control were both related to lose-

lose RT (or slowing) in behavior, we next focused on the relationship between PFC-

into-STN connectivity and β, or SSRT. The strength of PFC-into-STN connectivity 

correlated significantly with past choice strategies (r=41, p<0.01; Fig. 6d); such that 

participants with the most exploitative strategies, and hence most uncertain about 

values of lose-lose options, exhibited the weakest PFC-STN communication. 

Critically, a multiple regression of both β and reaction times on the PFC-into-STN 

connectivity (omnibus R2=0.18, F(2,42)=4.655, p=0.015), revealed that only β 

contributed significantly to this regression (bβ=0.0068, t(42)=2.19 p=0.034), 

suggesting that the previously described relation to RT was mediated by uncertainty. 

In contrast, no relationship was found between SSRT and PFC-into-STN connectivity 

(p=0.18). The lack of a relationship between fronto-subthalamic connectivity and 

stop-task performance is consistent with our previous work focusing on the stop-

signal task11,24, and possibly relates to the fast signal conduction within the 

hyperdirect pathway. 

In sum, the directed PFC-into-STN connectivity correlated with the slowing of 

RT’s in lose-lose trials as a function of uncertainty, but not with the efficacy of 

inhibitory control implementation itself. These findings suggest that prolonged lose-

lose decisions could result from: 1) weaker PFC-into-STN communications because 

of choice uncertainty, and 2) one’s efficacy to initiate and release a brake through the 

STN.  

 

Please think of Fig. 6 somewhere here 
 

Discussion 
A large body of work focuses on the neural mechanisms of reinforcement learning 

and value-based decision making, and how animals and humans can optimize 

learning and choice performance in stochastic environments. However, here we 

provide evidence for a tradeoff: subjects that appear to perform better during learning 

are less able to quickly avoid the worst of low value options in a later generalization 

test. Because exploitative subjects during learning did not sample the less valuable 

options, they obtained less information about their precise probabilities. The 

concomitant increased choice uncertainty for later decisions and was marked by 

altered communication strengths from the PFC into STN and slower response times. 

We additionally focused on the mechanisms of this lose-lose slowing and the related 

neural response in the STN to show how both relate one’s ability to rapidly and 

transiently suppress all the preponent muscle buildup.  
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The fronto-subthalamic connections are thought to support conflict-induced 

slowing, and allow the integration of additional information by slowing or fully 

suppressing the motor output2,4,12,15,17. With the use of a model-driven connectivity 

approach, we found that the dynamic coupling between PFC and STN was weakest 

for the most uncertain and slowed participants. This relationship was further clarified 

by three additional findings. First, we observed that the magnitude of lose-lose 

slowing is best explained by considering not only past choice strategies (and hence 

uncertainty), but also, independently, stop signal reaction time (SSRT). The SSRT is 

an estimate for one’s efficiency to implement control31,32 and extensively related to 

the STN, which provides a fast and transient brake on all responses1,9,10,23,33–40. 

Accordingly, those subjects who were least efficient at rapid response inhibition (long 

SSRTs) exhibited more lose-lose slowing and a stronger STN surge during high 

conflict trials. Moreover, while no direct relationship was observed between choice 

strategies and SSRT, the fast (and transient) implementation of control was 

especially helpful in the prevention of overly slow lose-lose choices, especially for 

uncertain exploitative learners. 

In the last decade two parallel lines of literature have focused on the specific 

role of the STN in the modulation of evidence requirements / decision threshold 

adjustments2,4,17,41, or full response suppression9,35,36,42. Response conflict has been 

consistently associated with the adaptation of evidence requirements15,25,43,44, 

including win-win and lose-lose conflict after reinforcement learning2,3,45,46. In this 

study, we evaluated the efficacy of control against the STN BOLD response during 

the experience of conflict, after learning, and in a separate task during full response 

suppression. We observed that the efficacy to implement a fast and full brake on all 

responses (SSRT) is differentially related to the STN in each process.  

In the stop-signal task, the activity pattern of the STN was only related to 

stopping times when inhibition was successful. Here, the rise of the STN BOLD was 

highest for fast inhibitors. We note that this effect was only marginal in the 43 

participants evaluated but consistent with the literature describing the STN in the 

stop task with rodents, or humans9,10,38,47. The strongest BOLD response in the STN 

was observed for trials where participants failed to inhibit a response on time28,34. 

Here, participants fail to inhibit the growth of activity for the go decision on time, and 

as a result might compensate by activating the STN without restraint or any 

regulation48,49. This compensation effort could increase estimates of the slow BOLD 

response, but as observed, should have no causal contribution to the stop process 

for which the average inhibition time is estimated with SSRT.  
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 In contrast to successful stop trials, slower inhibition times were associated 

with increased STN BOLD responses in the evaluation of value-based decisions. 

Critically, however, this relationship was specific to the high conflict win-win and lose-

lose trials, and not observed for easy win-lose decisions. Supporting the contrast 

between stopping and conflict, recent recordings from the STN have shown power 

increases in the STN to differ in the frequency range for conflict (2-8 Hz range)2,50, or 

response inhibition (13-30 Hz)23,51,52. Our results therefore suggest that a fast but 

transient STN brake, as posited by models showing a collapse in STN activity, might 

be helpful during conflict-choices. 

The efficiency to suppress all responses correlated with the STN BOLD 

response during lose-lose and win-win conflict. Behaviorally, however, responses 

were only slowed and related to uncertainty, or SSRTs during lose-lose trials. 

Possibly, with the presentation of two negative options, the lack of information, 

negative value, and conflict all conspire to delay the selection process, or 

decision4,53. In contrast, when conflict is the result of two positive options (win-win) 

there is more information, and the STN activates to counterbalance only the most 

impulsive choices with the increase of evidence requirements1,2,6. The lack of 

response slowing for win-win choices can largely be attributed to the impact of 

predicted reward on the decision process itself. Indeed, when the normal 

counterbalancing function of the STN is disrupted win-win choices become even 

faster that the easy win-lose1,4. 

The strength of fronto-STN connectivity or the magnitude of the STN BOLD 

both did not differ when compared between low conflict (win-lose), or high conflict 

(win-win, lose-lose) trials. Nevertheless, we observed selective relationships between 

uncertainty and fronto-STN connectivity for lose-lose slowing, or a relationship 

between control and the STN BOLD only at times of high conflict. These data imply 

fronto-subthalamic involvements and activity to be condition specific - despite any 

differences in magnitude. In the literature, condition specific relationships between 

PFC-theta and RT are found for learned high conflict choices – an effect that is 

reversed by deep brain stimulation of the STN – whereas no difference is found in 

overall theta power across conditions2. Moreover, the oscillatory activity of STN is 

related to behavior in opposing directions for low or high conflict conditions17. Our 

results complement these observations with the analysis of BOLD to show how high 

conflict responses can be specifically tied to disrupted fronto-STN dynamics, or 

inefficient control mechanisms.  

Finally, previous time-sensitive reports have shown that the coherence 

between medial PFC and STN is increased in early periods of high-conflict13,50, with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 6, 2017. ; https://doi.org/10.1101/199299doi: bioRxiv preprint 

https://doi.org/10.1101/199299
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

slower and more accurate responses when increases in the STN follow adaptations 

in medial PFC22. At first glance, our connectivity results contradict these findings. The 

critical difference here is that we evaluate connectivity, or co-activation patterns, with 

the use of trial-by-trial estimates of the slow BOLD response in PFC and BG nodes. 

In the STN, these BOLD estimates include both the rise (implementation), and fall 

(release)4 of the brake that is implemented to allow more time in conflicted decisions. 

With an identical rise, the trial-by-trial estimates of the STN BOLD should be lower 

with faster releases of the brake. We found stronger negative PFC-into-STN 

connections for the most certain participants, who responded faster, and chose the 

lesser options more often during learning. This pattern may suggest that when 

activity levels across PFC are raised sufficiently by information, the STN brake is 

released to allow choice. Consistently, PFC-into-STN connectivity was disrupted, and 

tied to slowing, for the most uncertain participants who mostly avoided the lesser 

options during learning. Future work should refine this interpretation with high 

temporal resolution approaches to evaluate connectivity in both early and late 

phases of conflict based decisions54.   

To summarize, these results describe the profound lose-lose slowing as a 

function of past learning choices, and individual differences in active but transient 

response suppression through the STN (i.e., ‘hold and release your horses’). 

Moreover, they provide novel insights into the fronto-subthalamic (‘hyperdirect’) 

pathway involvement during the regulation of value-driven conflict.    

 

Methods 
Participants 

All participants had normal or corrected-to-normal vision and provided written 

consent before the scanning session, in accordance with the declaration of Helsinki. 

The ethics committee of the University of Amsterdam approved the experiment, and 

all procedures were in accordance with relevant laws and institutional guidelines.  

 

Reinforcement learning task (RL-task) 

The RL-task consisted of two phases; an initial reinforcement learning phase and a 

subsequent test-phase. During the learning phase, three different male or female 

face pairs (AB, CD, EF) were presented in random order, and participants learned to 

choose one of the two faces (Fig. 1a). Probabilistic feedback followed each choice to 

indicate ‘correct’ (happy smiley) or ‘incorrect’ (sad smiley). Choosing face-A lead to 

‘correct’ on 80% of the trials, whereas face-B leads to ‘incorrect’. Other ratios for 

‘correct’ were 70:30 (CD) and 60:40 (EF). Each trial started with a jitter interval of 0, 
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500, 1000 or 1500ms to obtain an interpolated temporal resolution of 500ms. During 

this interval, a white fixation cross was presented and participants were asked to 

maintain fixation. Two faces were then presented left and right of the fixation-cross 

and remained on screen up to response. A white box surrounding the chosen face 

was then shown (300ms) and followed (interval 0-450ms) by feedback (500ms). 

Each trial had a fixed duration of 4000ms, and omissions were followed by the text 

‘miss’ (2000ms). The test-phase contained the three face-pairs from the learning 

phase, and 12 novel combinations, in which participants had to select which item 

they thought had been more rewarding during learning. High conflict win-win trials 

were defined as choices that involved two previously rewarding stimuli (ie.  AC, AE, 

CE), whereas high conflict lose-lose trials were defined as choices that involved two 

previously losing stimuli (BD, BF, DF). Low conflict win-lose stimuli served as 

controls for selection among novel pairs but which invoked little conflict (AD, AF, CB, 

etc). Test-phase trials (4000ms) were identical to the learning phase but no feedback 

was provided. In addition to the jitter used at the beginning of each trial, null trials 

(4000ms) were randomly interspersed during the learning (60 trials) and test (72 

trials) phase. Across the whole task, each face was presented equally often on the 

left or right side, and choices were indicated with the right-hand index (left) or middle 

(right) finger. All stimuli were presented on a black-projection screen that was viewed 

via a mirror-system attached to the MRI head coil. 

Before the MRI session, participants performed a complete learning phase to 

familiarize with the task (300 trials with different faces). In the MRI scanner, 

participants performed 2 learning blocks of 150 trials each (300 trials total; equal 

numbers of AB, CD and EF), and three test phase blocks of 120 trials each (360 

total; 24 presentations of each pair).  

 

Stop-signal task 

Each trial started with a white fixation cross followed by a male or female face 

stimulus indicating a left or right response with the index or middle finger of the right 

hand (Fig. 1b). Trials started with a random jitter interval of 0 to 1500ms (steps of 

500 ms), during which a white fixation cross was presented in the center of the 

screen. A face stimulus was then presented for a period of 500 ms. On 30% of the 

trials, the go stimulus was followed by a high tone (stop signal). The stop signal delay 

(SSD) between the go stimulus and the stop signal was initially set at 250ms and 

adjusted according to standard staircase methods to ensure convergence to 

p(inhibit) = 0.5. For example, if a stop signal was presented and the participant 

responded (“failed stop”), then the SSD was reduced by 50ms on the subsequent 
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stop trial; if the participant did not respond (i.e., “successful stop”), then SSD was 

increased by 50 ms. Instructions emphasized that participants should do their best to 

respond as quickly as possible while also doing their best to stop when an auditory 

stop signal occurred. Each trial had a fixed duration of 4000 ms, and trials were 

further separated by an occasional null trial with only a fixation (4000ms; 15 trials). 

Outside the scanner, participants performed a brief practice block of 30 trials to 

familiarize with the task. In the MRI scanner, participants subsequently performed a 

total of 150 trials (100 go trials, 50 stop trials). Faces used for the stop-task were not 

used in the RL-task. 

Reinforcement-learning model 

We quantitatively characterized participants’ learning curves using a variant of the Q 

learning RL algorithm55–57, using hierarchical Bayesian parameter estimation, 

allowing us to separately estimate learning rates from choice 

stochasticity/exploration. Based on previous work we defined separate learning rate 

parameters for positive (αgain) and negative (αloss) reward prediction errors56,58,59. Q-

learning assumes participants represent reward expectations for each 

stimulus/action (A-to-F). After observing a particular reward outcome, the expected 

value (Q) for selecting a stimulus i (A-to-F) on the next trial is updated as follows: 

 

 
Where 0≤ αgain or αloss ≤1 represent learning rates, t is trial number, and r=1 (positive 

feedback) or r=0 (negative feedback). The probability of selecting one response over 

the other (i.e., A over B) is computed as: 

 

 
 

With 0≤β≤100 known as the inverse temperature governing the degree to which 

learned Q values are exploited. Higher estimates of β indicate that decisions are 

mostly determined by the relative difference in value (exploitation), whereas lower 

estimates show a more stochastic choice pattern but which facilitates better learning 

of the underlying values of the lesser options.  

PA(t) = exp(β ×Qt(A))
exp(β ×Qt(B))+ exp(β ×Qt(A))
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The Q-learning algorithm was fit to the learning-phase trials using a Bayesian 

hierarchical estimation method where parameters for individual subjects are drawn 

from a group-level distribution. This hierarchical structure is preferred for parameter 

estimation as it allows for the simultaneous estimation of both group level parameters 

and individual parameters, and confers greater statistical strength for estimating and 

recovering parameters60–65. Fig. 2a shows a graphical representation of the model. 

The quantities ri, t-1 (reward for participant i on trial t-1) and chi,t (choice for participant 

i on trial t) are obtained directly from the data. The quantities αGi, αLi and 𝛽𝑖  are 

deterministic, and are transformed during estimation by using their respective probit 

transformations 𝑍′𝑖  (α'Gi , α'Li ,  β'i  ). The probit transform is the inverse cumulative 

distribution function of the normal distribution. The parameters 𝑍′𝑖 lie on the probit 

scale covering the entire real line. Parameters 𝑍′𝑖  were drawn from group-level 

normal distributions with mean μz’ and standard deviation δz’. A normal prior was 

assigned to group-level means μz’ ~ N(0,1), and a uniform prior to the group-level 

standard deviations δz’ ~ U(1,1.5)60,63. Model fits were implemented in Stan66,67. 

Multiple chains were generated to ensure convergence, and evaluated with the Rhat 

statistics (i.e., all Rhats were close to 1.0)68. The right panel of Fig. 2 shows group-

level posteriors on model parameters, and simulations from these parameters yield 

reasonable learning curves that match those observed empirically.  

 

Behavioral analysis 
Accuracy rates and median reaction times (RT’s) were calculated for the RL-task 

test-phase and separated into high conflict win-win (ww; AC, AE, CE), high conflict 

lose-lose (ll; BD, BF, DF), and low conflict win-lose (wl; AD, AF, CB, CF, EB, ED) 

pairs, Fig. 1c. Pairs that were presented during the learning phase (AB, CD, EF) 

were excluded from the win-lose condition, so that all conditions only contained novel 

pairs. Repeated measures ANOVA’s with Tukey’s test were used to assess how 

conflict affects performance (RT and Accuracy). Conflict-induced slowing (or 

accuracy) was computed by subtracting median RT’s (or error rates) on win-lose 

trials from median RT’s (or error rates) on win-win or lose-lose trials. The stop-signal 

reaction time (SSRT) for the stop-task was estimated using the so-called ‘integration 

method’31,43. Pearson’s correlations, multiple regressions were used to focus on the 

relationship between conflict induced slowing/errors and choice strategies (β) or the 

efficiency to stop (SSRT), after reinforcement learning. 
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Magnetic resonance imaging scanning procedure  

The fMRI data for the RL-task was acquired in a single scanning session with two 

learning and three test-phase runs on a 3-T scanner (Philips Achieva TX, Andover, 

MA) using a 32-channel head coil. Each scanning run contained 340 functional T2*-

weighted echoplanar images for the learning phase, and 290 T2*-weighted 

echoplanar images for the test phase (TR = 2000 ms; TE = 27.63 ms; FA = 76.1°; 3 

mm slice thickness; 0.3 mm slice spacing; FOV = 240 × 121.8 × 240; 80 × 80 matrix; 

37 slices, ascending slice order). After a short break of 10 minutes with no scanning, 

data collection was continued with a three-dimensional T1 scan for registration 

purposes (repetition time [TR] = 8.5080 ms; echo time [TE] = 3.95 ms; flip angle [FA] 

= 8°; 1 mm slice thickness; 0 mm slice spacing; field of view [FOV] = 240 × 220 × 

188), and the fMRI data collection for the stop-task (335 T2* weighted echoplanar 

images; TR = 2000 ms; TE = 27.63 ms; FA = 76.1°; 3 mm slice thickness; 0.3 mm 

slice spacing; FOV = 240 × 121.8 × 240; 80 × 80 matrix; 37 slices, ascending slice 

order).  

 

Preprocessing 

Preprocessing was performed using FEAT (FMRI Expert Analysis Tool) version 6.00, 

part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The first six volumes 

were discarded to allow for T1 equilibrium effects. Preprocessing steps included 

motion correction, high-pass filtering in the temporal domain (s = 50), and 

prewhitening69. All functional data sets were individually registered into 3D space 

using the participant’s individual high-resolution anatomical images. The individual 

3D representation was then used to normalize the functional data into Montreal 

Neurological Institute (MNI) space by linear and non-linear scaling. 

 

fMRI analysis procedure and ROI selection 

The analysis procedure of the fMRI data was twofold. First, an anatomically defined 

template of the STN region was used to explore how the STN BOLD response 

relates to SSRT (control) or β (choice uncertainty based on past learning) in the test 

phase after learning, and in the stop-signal task. The STN template was derived from 

a recent study using ultrahigh 7 tesla scanning70, and selected for its use in previous 

fMRI studies focusing on reinforcement based conflicted choices13, or response 

inhibition24,25,28.  

Second, the model-driven ancestral graphs (AG) connectivity method was 

used for selecting the optimal network in describing PFC and BG co-activation 

patterns during test-phase trials (for the analysis of the stop-task using ancestral 
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graphs please see11,24,25), and, to subsequently explore how the strength of PFC-BG 

connectivity in the optimal model relates to decision times, SSRT, or β. The regions 

of interest (ROIs) used for the AG analysis included: 1) masks based on a whole 

brain cluster-corrected analysis of the learning-phase fMRI data to identify regions 

that co-vary with trial-by-trial signed reward prediction errors, and 2) a priori selected 

PFC and BG anatomical masks for regions typically associated with fronto-BG 

decision-making, or choice evaluations12,22,29,71,72. Please see below for a detailed 

description of each step. 

   

Deconvolution analysis of the STN  

To more precisely examine the time course of activations in the STN, we performed 

finite impulse response estimation (FIR) on the STN BOLD signals. After motion 

correction, temporal filtering and percent signal change conversion, data from the 

STN were averaged across voxels, and upsampled from 0.5 to 3 Hz. This allows the 

FIR fitting procedure to capitalize on the random timings (relative to TR onset) of the 

stimulus presentations and decisions in the experiment. For this analysis, stimulus 

onset was chosen as t0 of the FIR time course. FIR time courses for all trial types 

were then estimated simultaneously using a least-squares fit, as implemented in the 

FIRDeconvolution package73. Resulting single-participant response time-courses 

were then used to evaluate the contribution of SSRT and choice strategies for each 

timepoint separately, using multiple regression as implemented in the statsmodels 

package74. Here, alpha value for the contributions of SSRT and choice strategy was 

set to 0.0125 (i.e. a Bonferroni corrected value of 0.05 given the interval of interest 

between 0 and 8 s). Confidence intervals in Fig. 5 were estimated using bootstrap 

analysis across participants (n=1000), where the shaded region represents the 

standard error of the mean across participants (i.e. bootstrapped 68% confidence 

interval).  

 

Ancestral graphs method  

To focus on fronto-basal ganglia dynamics when participants make reinforcement 

guided-decisions after learning, the fMRI data recorded during test-phase was 

analyzed using ancestral graphs19. Ancestral graphs (AG) infer functional or effective 

connectivity by taking into account the distribution of BOLD activation per ROI, 

across trials, per subject, and so are not dependent on the low temporal resolution of 

the time series in fMRI. A graphical model reflects the joint distribution of several 

neuronal systems with the assumption that for each individual the set of active 

regions is the same. The joint distribution (graphical model) of two nodes is 
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estimated from the replications of condition specific trials (e.g., win-win, or lose-lose), 

and not from the time series. With this method, we can infer three types of 

connections: (i) effective connectivity (directed connection ->), (ii) functional 

connectivity (undirected connection -), and (iii) unobserved systems (bi-directed 

connection <->). Directed connections are regression parameters in the usual sense 

(denoted by b) and undirected connections are partial covariances (unscaled partial 

correlations; denoted by l). The bi-directed connections refer to the covariance of the 

residuals from the regressions (denoted by w). These three types of connections can 

be identified by modeling the covariance matrix (denoted by S) as: 

 
where b contains the regression coefficients, L contains the partial covariances, and 

W contains the covariances between residuals. A random effects model is used to 

combine models across subjects to then compare different models over the whole 

group using Bayes information criterion (BIC). The graph with the lowest BIC value 

will be selected.  

To infer directions from the ancestral graph, it is required that a change in 

direction implies a change in probability distribution. This is not always the case. For 

example, a chain from A to B to C is in terms of conditional independencies 

equivalent to a chain with the directions reversed, that is from C to B to A (for more 

details see19). Two equivalent models, such as those just mentioned, will result in the 

same BIC value, indicating that directionality cannot be inferred. The most important 

structure is when two arrowheads meet (a collider). This will always result in a 

change in BIC value. The causal interpretations of the connections from an ancestral 

graph that is the best model according to the BIC can be briefly described as follows: 

 

• A -> B: A is a cause of B [effective connectivity] 

• A - B: A is a cause of B and/or B is a cause of A [functional connectivity] 

• A <-> B: there is a latent common cause of A and B [missing region] 

 

For a more detailed description and cautions on causal interpretations see75.  

Individual (subject) fits are obtained by using an adjusted goodness-of-fit test, 

indicating whether the model explains the data well enough. To assess relative fit 

between the selected model and saturated model, the ancestral graphs method 
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makes use of a modified version of the likelihood ratio (LR) test. For ancestral 

graphs, the modified LR test is defined as the ratio of the model of interest 

(hypothesis) and the unrestricted (saturated) model. The test is corrected for being 

overly sensitive because the data can deviate from normality slightly76.  

 The main differences between ancestral graphs (described in19) and dynamic 

causal modeling (DCM) or structural equation modeling (SEM) are: 1) inference is 

based on trial-by-trial variation in the estimated BOLD signal and not on the time 

series as in DCM or SEM because of the low frequency sampling in fMRI, 2) both 

functional and effective connectivity can be represented in a single ancestral graph, 

3) a common unobserved (latent) cause of a connection can be detected, and 4) the 

definition of a circular system is only possible in undirected systems. The method of 

ancestral graphs relies on conditional independencies implied by the topology of the 

network. Therefore, different models (e.g., different directions of connections) result 

in different fits to the data. The differences between models is characterized by BIC, 

which combines both accurate descriptive (for the data at hand) and predictive (for 

future data) value. 

 

ROI definition for AG connectivity 

AG connectivity was evaluated only for the test-phase trials of the RL task. The 

definition of ROI’s used for AG connectivity relied on 1) the analysis of the learning-

phase fMRI data as to identify regions (voxels) within the striatum and vmPFC that 

correlate specifically with the signed reward prediction error (RPE), and 2) on 

previous work linking specific regions within the PFC and BG to value-driven 

decisions.  

First, the two learning blocks were used to identify voxels within the vmPFC 

and striatum that respond to ongoing reward prediction errors during reinforcement-

guided decision-making. For this purpose, the onset of each outcome was modeled 

as a separate delta function and convolved with the hemodynamic response function. 

We used a parametric GLM design with orthogonalized regressors where positive or 

negative outcomes were parametrically modulated by demeaned trial-wise prediction 

errors derived from the Q-learning model. Individual contrast images were computed 

for positive and negative error related responses and taken to a second-level random 

effect analysis using one-sample t-test. For the whole-brain analysis Z (Gaussianzied 

T/F) statistic images were thresholded using clusters determined by z > 2.3 (contrast 

positive RPE correlation) and a cluster-corrected significance threshold of p=0.05. 

Note, that this liberal threshold was only used for the definition of ROI masks that co-

vary with RPE during learning; to be used only as masks for the evaluation of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 6, 2017. ; https://doi.org/10.1101/199299doi: bioRxiv preprint 

https://doi.org/10.1101/199299
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 20	

connectivity in the subsequent test-phase. During the test-phase feedback is no 

longer presented and internal representations of action values become vital to the 

selection process. Because reward prediction errors are thought to act as a teaching 

signal, ROI definition for the striatum [center of gravity (cog): 1, 5, -4] and vmPFC 

[cog: -3, 52, -1] nodes made use of the positive correlation RPE contrast in the 

learning phase, with the exclusion of voxels in the ventricles.  

Second, a priori anatomical masks were defined for the following regions: 

preSMA [cog: (-) 9, 25, 50], DLPFC [cog: (-) 37, 37, 27], STN [cog: (L) -9, -14, -7; (R) 

10, -13, -7], globus pallidus interna (GPi) [cog: (L) -18, -8, -3; (R) 19, -7, -3], globus 

pallidus externa (GPe) [cog: (L) -19, -5, 0; (R) 20, -3, 0], thalamus [cog: (L) -10, -19, 

7; (R) 11, -18, 7], and primary motor cortex (M1) [cog: -18, -26, 61]. All selected 

ROI’s were bilateral. The DLPFC template was obtained from a recent study, linking 

especially the posterior part to action execution77. The STN, GPe, and GPi templates 

were derived from a previous study using ultrahigh 7 tesla scanning70, thresholded to 

exclude the lowest 25% voxels, and then binarized. All other ROIs were created from 

cortical and subcortical structural atlases available in FSL.  

 

Single-trial parameter extraction for AG connectivity 

For each ROI (anatomical or RPE based) we subsequently obtained a single 

parameter estimate (averaged normalized β estimate across voxels in each ROI 

mask) for each trial of the recorded test-phase, per subject. The average number of 

parameters (based on trials) per ROI was 71.1 (sd=1.7) for win-win, 71.4 (sd=1.3) for 

lose-lose, and 213.7 (sd=5.2) for win-lose. Misses were excluded from connectivity 

analysis. Connectivity analysis was conducted in R-Cran (version 3.0.2), including 

the packages ggm (version 1.995-3), graph (version 1.40.0), and RBGL (version 

1.38.0).  

 

Model definition for AG connectivity 

To examine how frontal and basal-ganglia nodes work together in selecting a 

response during the test phase, model fits were performed on the following trials: 1) 

win-win, 2) lose-lose, and 3) win-lose choices. A set of seven potential choice models 

containing the direct (PFC – Striatum –GPi –Thalamus–M1), hyperdirect (PFC – STN 

–GPi –Thalamus–M1), or indirect (PFC – Striatum –GPe – GPi –Thalamus–M1) 

PFC-BG pathways was tested to find the most optimal model in explaining the 

pattern of activation in the predefined regions. PFC consisted of vmPFC, DLPFC and 

preSMA, and each PFC region was defined to project into BG (see above for 

specification in the separate pathways). Because all PFC regions projected into BG, 
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connections between PFC nodes could only be defined as undirected (functional 

connectivity). To optimize fits, all models were evaluated separately for left (right 

hand index finger) and right (right hand middle finger) responses (Table 1), and win-

lose trials were first subdivided into three smaller chunks based on value-differences 

between pairs (small, 30; medium, 40; large, 50). Because connection strengths did 

not differ for win-lose divisions, parameter estimates of the winning model were 

averaged for the win-win, lose-lose, and win-lose condition to align with the 

behavioral analysis. To compare the contribution of each model with the BIC criterion 

all nine regions were always entered into the model, but the defined relationship (or 

connections) among regions varied across models.  

 

Please think of Table 1 somewhere here 

 
Data Availability: The code and processed files supporting the findings can be 

downloaded from: https://github.com/sarajahfari/Control_Conflict.git.	The raw 

data is available from the corresponding author in BIDS format upon reasonable 

request. 
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Figures	and	Tables	
	
Table 1. BIC values for model fits across test-phase conditions 

 

Lower BIC values indicate a better balance between the variance and bias of the 

estimated model connections.  
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Figure 1. Experimental design. a) Reinforcement-learning task. During learning, 

two faces were presented at each trial, and participants learned to select the most 

optimal face stimulus (A, C, E) solely through probabilistic feedback (probability of 

correct is displayed beneath each stimulus). The learning-phase only contained three 

face pairs (AB, CD, ED) for which feedback was given. In the test-phase, faces were 

arranged into 15 combinations. Trials were further identical to the learning-phase 

with the exception of feedback. b) Stop-signal task. Each trial started with the 

presentation of a fixation-cross followed by a male or female face stimulus, indicating 

a left or right response. During stop trials, a tone was played at a variable delay 

(SSD) after the presentation of the go stimulus. The tone instructed participants to 

suppress the indicated response. 
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Figure 2. Q-learning model and performance. Graphical Q-learning model for 

hierarchical Bayesian parameter estimation (a). Φ () is the cumulative standard 

normal distribution function. The model consists of an outer subject (i=1,…..,N), and 

an inner trial plane (t=1,…,T). Nodes represent variables of interest. Arrows are used 

to indicate dependencies between variables. Double borders indicate deterministic 

variables. Continues variables are denoted with circular nodes, and discrete with 

square nodes. Observed variables are shaded in grey. The right panel shows group-

level posteriors for all Q-learning parameters (with β/100) (b), and model 

performance where data is simulated with the estimated parameters and evaluated 

against the observed data for the AB (c), CD (d), or EF (e) pairs. Error bars represent 

SEM.  
 
	
 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 6, 2017. ; https://doi.org/10.1101/199299doi: bioRxiv preprint 

https://doi.org/10.1101/199299
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 29	

 
Figure 3. The exploit/explore trade-off in future decisions. Percentage of correct 

responses (a) and median reaction times (b) in the test-phase. c) Participants with an 

exploitative choice strategy learned well by mostly choosing the optimal options 

during the learning phase (d-f), and were more accurate (g) but slowed (h) in the 

test-phase; especially for the mostly neglected lose-lose pairs. The groups in plots d 

to h were created with a median split on β, and plotted to illustrate learning 

differences over time. Error bars represent SEM. **=p<0.01, *=p<0.05  
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Figure 4. The efficiency to implement control predicts lose-lose slowing. a) 

Graphic representation of the race model estimation for SSRT. A distribution of go 

trial RTs is shown beneath the curve. SSRT represents the average time needed to 

suppress a planned response. The efficiency to stop (SSRT) predicted both 

response slowing and response times during lose-lose trials (b). Exploitative 

participants who were more efficient in inhibition showed a steeper decline in the tail 

of the lose-lose reaction time distribution (c), this was not seen for explorative 

participants (d). Median splits were used to create the Exploit/Explore or fast/slow 

SSRT groups.  
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Figure 5. The efficiency to stop predicts the STN BOLD response in conflict 
and full response cancellation. The FIR-estimated STN BOLD signal time-course 

for trials in the stop-signal task (top panel) and the test-phase after learning (bottom 

panel), with the estimated regression coefficients SSRT shown for each trial type 

(mid panel). SSRT differentially related to activity patterns of the STN when inhibition 

was successful in the stop task (marginal effect with p=0.05), or with the experience 

of conflict in test-phase trials. The horizontal lines show the interval in which SSRT 

contributed significantly to the multiple regression, for the conflicted lose-lose (red) 

and win-win (green) trials. The right panel highlights the differential relationship 

across task, with drawn correlation plots for successful stop trials (c), and the slowed 

lose-lose trials after learning (f).  

 

 

 

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 6, 2017. ; https://doi.org/10.1101/199299doi: bioRxiv preprint 

https://doi.org/10.1101/199299
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32	

 
Figure 6. Schematic of the theoretical fronto-basal ganglia pathways and 
effective connectivity results. a) Theoretical fronto-basal ganglia model with the 

direct, indirect and hyperdirect pathways. Gray arrows represent excitatory 

connections; black arrows represent inhibitory connections. b) Graphical 

representation of the most representative effective connectivity network for all test-

phase trials. Directed arrows represent effective connectivity (EC); undirected lines 

represent functional connectivity. For lose-lose trials, weaker PFC-into-STN 

connections related to prolonged response times (c) because of an exploitative 

choice strategy in the past and more uncertainty about the lose-lose options (d). 
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