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Abstract

The attractor neural network scenario is a popular scenario for memory storage in
association cortex, but there is still a large gap between models based on this scenario
and experimental data. We study a recurrent network model in which both learning
rules and distribution of stored patterns are inferred from distributions of visual re-
sponses for novel and familiar images in inferior temporal cortex (ITC). Unlike classical
attractor neural network models, our model exhibits graded activity in retrieval states,
with distributions of firing rates that are close to lognormal. Inferred learning rules
are close to maximizing the number of stored patterns within a family of unsupervised
Hebbian learning rules, suggesting learning rules in ITC are optimized to store a large
number of attractor states. Finally, we show that there exists two types of retrieval
states: one in which firing rates are constant in time, another in which firing rates
fluctuate chaotically.
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Introduction

Attractor neural network models are one of the leading candidate scenarios for explaining how
learning and memory occur in the cerebral cortex (Hopfield, 1982; Amit, 1992, 1995; Brunel,
2005). In these models, synaptic connectivity in a recurrent neural network is assumed to be
set up in such a way that the network dynamics possesses multiple attractor states, each of
which represent a particular item that is stored in memory. Each attractor state is a specific
pattern of activity of the network, that is correlated with the state of the network when the
particular item is presented through external inputs. The attractor property means that
the network converges to the stored pattern, even if the external inputs are correlated to,
but not identical, to the pattern, a necessary requirement for an associative memory model.
In many of these models, the appropriate synaptic connectivity is assumed to be generated
thanks to a ‘Hebbian’ learning process, according to which synaptic efficacies are modified
by the activity of pre and post-synaptic neurons (Hebb, 2005).

These models have been successful in reproducing qualitatively several landmark obser-
vations in experiments on awake monkeys performing delayed response tasks (Fuster et al.,
1971; Miyashita, 1988; Funahashi et al., 1989; Goldman-Rakic, 1995). In these experiments,
animals are trained to perform a task in which they have to remember for short times the
identity or the location of a visual stimulus. These tasks share in common a presentation
period during which the monkey is subjected to an external stimulus, and a delay period
during which the monkey has to maintain in working memory the identity of the stimulus,
which is needed to solve the task after the end of the delay period. One of the major findings
of these experiments is the observation of selective persistent activity during the delay pe-
riod in a subset of recorded neurons in many cortical areas, in particular in prefrontal cortex
(Fuster et al., 1971; Funahashi et al., 1989; Romo et al., 1999), parietal cortex (Koch and
Fuster, 1989), inferior temporal cortex (Fuster and Jervey, 1981; Miyashita, 1988; Nakamura
and Kubota, 1995) and other areas of the temporal lobe (Nakamura and Kubota, 1995). In
those neurons, the firing rate does not decay to baseline during the delay period, but it is
rather maintained at higher than baseline levels. Furthermore, this increase in firing rate is
selective, i.e. it occurs only for a subset of stimuli used in the experiment. Selective persistent
activity is consistent with attractor dynamics in a recurrent neural network, whose synaptic
connectivity is shaped by experience dependent synaptic plasticity (Amit, 1995; Wang, 2001;
Brunel, 2005).

The attractor network scenario was originally instantiated in highly simplified fully con-
nected networks of binary neurons (Amari, 1972; Hopfield, 1982). While theorists have since
strived to incorporate more neurophysiological realism into associative memory models, us-
ing e.g. asymmetric and sparse connectivity (Derrida et al., 1987), sparse coding of memories
(Tsodyks and Feigel’Man, 1988; Tsodyks, 1988), online learning (Mézard et al., 1986; Parisi,
1986; Amit and Fusi, 1994), spiking neurons (Amit and Brunel, 1997; Brunel and Wang,
2001; Lansner, 2009), there is still a large gap between these models and experimental data.
First, none of the existing models use patterns whose statistics is consistent with data. Most
models use bimodal distributions of firing rates, with neurons either ‘activated’ by a stimulus
or not, while there is no indication of such a bimodality in the data. Second, the connectiv-
ity matrix used in these models are essentially engineered (and sometimes highly fine-tuned)
such as to produce attractor dynamics, but are totally unconstrained by data. Third, the
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attractor network scenario has been challenged by the observation of a high degree of irregu-
larity and strong temporal variations in the firing rates of many neurons, which seem hard to
reconcile with fixed point attractors (Druckmann and Chklovskii, 2012; Barak et al., 2013;
Murray et al., 2017).

A recent study (Lim et al., 2015) provides us with the tools to potentially bridge these
gaps. It used data from experiments in which neuronal activity is recorded in IT cortex in
response to large sets of novel and familiar stimuli (Woloszyn and Sheinberg, 2012). The
distribution of neuronal responses to novel stimuli permits to infer the distribution of firing
rates of neurons in stimuli that are being memorized. This distribution is close to a lognormal,
at odds with bimodal distributions of firing rates used in the vast majority of theoretical
studies (for a few exceptions, see Treves (1990a,b); Festa et al. (2014)). Comparison between
the distributions of responses to novel and familiar stimuli allows to infer the dependence
of the learning rule on post-synaptic firing rates. The inferred learning rule is Hebbian, but
shows two major differences with classic rules such as the covariance rule (Sejnowski, 1977):
(1) The post-synaptic dependence of the rule is dominated by depression, such that the vast
majority of external inputs leads to a net decrease in total synaptic inputs to a neuron with
learning, leading to a sparser representation of external stimuli; (2) The dependence of the
rule on post-synaptic firing rates is highly non-linear.

These results beg the question of whether associative memory can emerge in networks
whose distributions of firing rates and learning rules are consistent with data. We therefore
set out to study a recurrent network model in which distributions of external inputs, single
neuron transfer function and learning rule are all inferred from ITC data (Lim et al., 2015).
We show that: (1) learning rules inferred from visual responses in ITC lead to attractor
dynamics, without any need for parameter adjustment or fine tuning; (2) Activity in the
delay period is graded, with broad distributions of firing rates; (3) Learning rules inferred
from data are close to maximizing the number of stored patterns, in a space of unsupervised
Hebbian learning rules with sigmoidal dependence on pre and post-synaptic firing rates; (4)
In a large parameter region, our model presents irregular temporal dynamics during retrieval
states that strongly resembles the temporal variability observed during delay periods. In
this region, retrieval states are chaotic attractors that maintain a positive overlap with the
corresponding stored memory, and the network performs as a associative memory device
with fluctuations internally generated by the chaotic dynamics.

Results

We model local cortical circuits in IT cortex by a recurrent network composed of ‘firing rate’
units (Wilson and Cowan, 1972; Hopfield, 1984). The network is composed of N neurons
whose firing rates are described by analog variables ri, where i = 1, 2, . . . , N represents the
neuron index, as a simplified model for a local network in ITC (see Fig. 1 for a schematic
depiction of the network). Firing rates obey standard Wilson-Cowan type equations (Wilson
and Cowan, 1972)

τ ṙi = −ri + φ

(
Ii +

N∑
i6=j

Jijrj

)
, (1)
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Figure 1: Learning and retrieval in recurrent neural networks with unsupervised Hebbian
learning rules. (A) When a novel pattern is presented to the network, synaptic inputs to each
neuron in the network (ξl, for neurons l = 1, . . . , N) are drawn randomly and independently
from a Gaussian distribution. Synaptic inputs elicit firing rates through the static transfer
function, i.e. φ(ξl). Some neurons respond strongly (red circles), others weakly (white
circles). (B) The firing rate pattern produced by the synaptic input currents modifies the
network connectivity according to an unsupervised Hebbian learning rule. The connection
strength is represented by the thickness of the corresponding arrow (the thicker the arrow the
stronger the connection). (C) After learning, a pattern of synaptic inputs that is correlated
but not identical to the stored pattern is presented to the network. (D) Following the
presentation, the network goes to an attractor state which strongly overlaps with the stored
pattern (compare with panel A), which indicates the retrieval of the corresponding memory.

where τ is the time constant of firing rate dynamics, φ is the input-output single neuron
transfer function (or f-I curve), Ii are the external inputs to neuron i, and Jij is the strength
of the synapse connecting neuron j to neuron i.

The connectivity matrix is sparse, and existing connections are shaped by external inputs
(‘patterns’) through a non-linear unsupervised Hebbian synaptic plasticity rule,

Jij =
Acij
cN

p∑
k=1

f
[
φ(ξki )

]
g
[
φ(ξkj )

]
, (2)

where cij is a sparse random (Erdos-Renyi) structural connectivity matrix (cij = 1 with
probability c, cij = 0 with probability 1 − c, where c � 1), ξki (i = 1, 2, . . . , N and k =
1, 2, . . . , p) are the external synaptic inputs to neuron i during presentation of pattern k,
generated randomly and independently from a Gaussian distribution (see Fig. 1A,B and
Methods). The external inputs shape the connectivity matrix through the firing rates φ(ξki )
generated by such inputs, and through two non-linear functions f and g that characterize
the dependence of the learning rule on the post-synaptic rate (f) and pre-synaptic rate (g),
respectively. Note that this rule is a generalization of Hebbian rules used in classic models
such as the Hopfield model (Hopfield, 1982) or the Tsodyks-Feigel’mann model (Tsodyks and
Feigel’Man, 1988), with two important differences: patterns have a Gaussian distribution
instead of binary; and the dependence of the rule on firing rates is non-linear instead of
linear. In the following, the patterns that have shaped the connectivity matrix will be
termed ‘familiar’ while all other random patterns presented to the network will be termed
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‘novel’.

Inferring transfer function and learning rule from data

The model defined by Eqs. (1,2) depends on three functions φ, f and g that define the
single neuron transfer function and synaptic learning rule, respectively. How to choose
these functions? We used a method that was recently introduced by Lim et al. (2015) to
infer the tranfer function (φ) and the post-synaptic dependence of the learning rule f from
electrophysiological data recorded in ITC (Woloszyn and Sheinberg, 2012). The transfer
function φ is obtained by finding the function that maps a standard Gaussian distribution
to the empirical distribution of visual responses of neurons to a large set of novel stimuli
(see Methods). The post-synaptic dependence of the learning rule f was obtained from the
differences between the distribution of visual responses to familiar and novel stimuli, under
the assumption that changes in such distributions are due to changes in synaptic connectivity
in recurrent ITC circuits. As an additional step to the procedure described by Lim et al.
(2015), we fitted the resulting functions φ and f using sigmoidal functions (see Methods and
Fig. 2). These sigmoidal functions provided good fits to the data (see Fig.2A-C, that shows
fits of three representative ITC neurons; and Fig. S1-3 for all neurons in the data set). This
fitting procedure gave us for each neurons three parameters of the transfer function: the
maximal firing rate whose median value was rm = 76.2 Hz, the slope at the inflection point
whose median value was βT = 0.82, and the threshold (current at the inflection point) whose
median value was h0 = 2.46 (see Fig. 2D for a boxplot of these parameters). It also gives us
for each neuron three parameters characterizing the function f : the threshold xf (median:
26.6 Hz), slope βf (median: 0.28 s) and saturation qf (median: 0.83). Finally, the fitting
procedure also gives us the learning rate A (median: 3.55).

A number of features of these fitted functions are noteworthy: First, the vast majority
of the visual responses of neurons are in the supralinear part of the transfer function, and
therefore far from saturation. This is consistent with many studies showing supra-linear
transfer functions at low firing rates, both in vitro (Rauch et al., 2003) and in vivo (Anderson
et al., 2000). Second, this has the consequence that the distribution of visual responses are
strongly right-skewed, and in fact close to lognormal distributions, consistent with multiple
observations in vivo (Hromadka et al., 2008; Roxin et al., 2011; Buzsaki and Mizuseki, 2014;
Lim et al., 2015). Third, the function f presents two major differences compared to standard
Hebbian rules such as the covariance rule (Sejnowski, 1977; Tsodyks and Feigel’Man, 1988):
It is strongly non-linear; and the threshold between depression and potentiation occurs at a
firing rate that is much higher than the mean rate, leading to depression of the mean synaptic
inputs to a neuron for the vast majority of shown stimuli. Consequently, the average of the
function f across the distribution of patterns is negative, which leads to a decrease of the
average visual response with familiarity (Lim et al., 2015).

The only parameters that are left unconstrained by data are two parameters character-
izing the function g. In most of the following, we will take those parameters to be identical
to the corresponding parameters of the function f (i.e. xg = xf and βg = βf ; note that qg is
fixed by the condition that the average of the function g across the distribution of patterns
is zero, see Methods). We will also explore the space of values of xg and βg (see below).
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Figure 2: Inferring transfer function and learning rule from ITC data. (A) Static transfer function
φ derived from the distribution of visual responses for novel stimuli, assuming a Gaussian distri-
bution of inputs (see (Lim et al., 2015) and Methods) for three different ITC neurons. The data
(blue circles) was fitted using a sigmoidal function (red line; see Methods, Equation 3), defined by
three parameters: the current h0 that leads to half the maximal firing rate (cyan dashed lines), a
slope parameter βT (dashed yellow line in top plot), and maximal firing rate rm. (B) Distributions
of firing rates in response to novel stimuli, for the same three neurons shown in A. Blue histogram:
histogram of experimentally recorded visual responses. Red: Distribution of firing rates obtained
from passing a standard normal distribution through the sigmoidal transfer function shown in A.
Gray vertical line: average firing rate. Green vertical line: learning rule threshold xf (see C) (C)
Dependence of the synaptic plasticity rule on the postsynaptic firing rate as a function of firing rate
(i.e. f(r)). The data (black circles) was fitted with a sigmoidal function (blue line; see Methods,
Eq. 8), defined by three parameters: maximum potentiation qf ; threshold xf (see green dashed
line); and slope parameter βf (dashed yellow line in top plot). On the right axis is indicated the
maximum potentiation of the fit qf . (D) Boxplot for the fitted parameters rm, βT and h0 of the
transfer function. (E) Boxplot for the fitted parameters xf , βf , qf of the dependence of the synaptic
plasticity rule on the postsynaptic firing rate, and A, the learning rate. The red line and green
triangle indicate the median and the mean of the fitted parameters, respectively. Gray symbols
indicate the parameters of the three neurons shown in A,B,C.
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Dynamics of the network following presentation of a familiar stim-
ulus

Having specified the model, we now turn to the dynamics of the network described by
Eqs. (1,2), whose parameters are set according to the procedure described above. In particu-
lar, we ask whether the model exhibits attractor dynamics. To address this question, we used
both numerical simulations of large networks (see methods) and mean field theory (MFT -
see methods and mathematical note on SI). For the MFT, we assume that both the number
of neurons and stored patterns are large (i.e. more specifically the limit p,N → ∞), while
the number of stored patterns p divided by the average number of synapses per neuron (Nc),
α ≡ p/Nc remains of order one. We call α the memory load of the network. The results
of the MFT only depend on N , c and p via this quantity (see methods and mathematical
note on SI). From our MFT analysis, we obtain mathematical expressions for two ‘order
parameters’ that describe how network states are correlated (or not) with stored patterns.
We are specifically interested here in the situation when the network state is correlated with
one of the stored patterns (e.g. following the presentation of this particular pattern).

The first order parameter describes the ‘overlap’ m between the current state of the
network (described by the vector of firing rates ri, for i = 1, 2, . . . , N) and the pattern
of interest (see Methods for the mathematical definition of m). When m is of order 1,
this indicates that the corresponding pattern is retrieved from memory. Consequently, each
pattern stored in memory can be retrieved by initializing the network dynamics with a
configuration that is close to that particular pattern, and letting the network evolve towards
its attractor state. In this case, giving a partial cue to the network leads to the dynamics
towards an attractor state correlated with the stored pattern, a signature of associative
memory. The other order parameter M describes the interference due to the other stored
patterns in the connectivity matrix; it is proportional to the average squared firing rates of
the network (see Methods). Equations for the order parameters as a function of α, φ, f and
g are given in Methods.

The results of the simulation of a particular realization of a network of N = 50, 000
neurons with c = 0.005 (an average of 250 connections per neuron) storing p = 30 patterns
(α = 0.12), and the comparison with the results from MFT are shown in Fig. 3. In the
simulations, the network was initialized in a state which was uncorrelated with all the stored
patterns. For these parameters, the network converged to a ‘background’ state in which all
neurons fire at low rates (average 7.98/s, standard deviation 2.92/s). Upon presentation
of a novel stimulus (Fig. 3A), neurons were driven to stimulus-specific firing rates, with a
distibution of firing rates that was close to a lognormal distribution (Fig. 3C), similar to
experimental observations (Lim et al., 2015). The distribution is close to lognormal because
the distribution of inputs to neurons is Gaussian, and the neuronal transfer function is close
to being exponential at low rates (see Methods). After the end of the presentation of the
stimulus, the network came back to its initial background state (Fig. 3A). Upon presentation
of a familiar stimulus (Fig. 3D), the statistics of neuronal responses differed markedly from
the response to novel stimuli: a few neurons responded at higher rates, but the majority of
neurons responded at lower rates compared to a novel stimulus. The distribution of visual
responses for familiar stimuli had consequently a lower mean compared to the distribution
of responses for novel stimuli but a larger tail at high rates (compare Fig. 3C and F). These
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Figure 3: Dynamics of the network before, during and after the presentation of novel (top
row) and familiar (bottom row) stimuli, mimicking the initial part of a trial of a delay match
to sample (DMS) experiment. (A) Firing rate of a randomly sampled subset of 100 neurons
of a simulated network before, during and after the presentation of a novel stimulus. Vertical
dashed lines indicate the beginning and the end of the presentation. Note that the firing
rates of all neurons decay to baseline following removal of the stimulus. (B) Dynamics of the
overlaps with the stored patterns. Green traces show overlaps computed numerically from
the network simulation corresponding to each of the stored patterns. The yellow trace shows
the overlap of the network state with the shown novel pattern. (C) Distribution of firing
rates during the presentation (red) and delay (blue) periods. Smooth curves correspond to
the predictions of the MFT, histograms are obtained from network simulations. (D) Similar
to A, except that the shown stimulus is familiar. Note that this time firing rates do not
decay to baseline during the delay period, but to a value that is strongly correlated (but
not identical) to the visual response. (E) Dynamics of overlaps when a familiar stimulus
is presented. The blue trace shows the numerically computed overlap with the pattern
presented during the presentation period. The red trace shows the corresponding overlap
computed from MFT. (F) Distribution of firing rates during the presentation (red) and
delay (blue) periods in response to the presentation of a familiar stimulus. Note that the
distributions appear unimodal, with most neurons firing in the 0-10Hz range. However a
zoom on the right side of the distribution shows a tiny peak close to saturation (see text).
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Figure 4: Storage capacity of the network, and its dependence on g. (A) Overlap as a function
of memory load α (number of patterns stored divided by average number of connections per
neuron). Grey: MFT. Red circles: Numerical simulations (average and standard deviations
computed from 100 realizations with N = 5 ·104). The overlap stays positive until α ∼ 0.56.
Parameters of g are chosen to be identical to those of f . (B) Capacity vs βg. The capacity is
maximized for βg ∼ βf (dashed red line βg = βf ). (C) Capacity vs xg. The capacity is close
to being maximized for xf ∼ xg (dashed red line xg = xf ). Other parameters as in Fig. 3.

two features were consistent with data recorded in ITC by multiple groups (Li et al., 1993;
Kobatake et al., 1998; Logothetis et al., 1995; Freedman et al., 2006; Woloszyn and Sheinberg,
2012).

After removal of a familiar stimulus, the network no longer came back to the initial
background state, but rather converged to an attractor state that was strongly correlated
with the shown stimulus (Fig. 3D), as shown by the strong overlap between the network state
and the shown pattern (see blue curve in Fig. 3E). A small fraction of neurons exhibited
persistent activity at high rates (4.5% of the neurons are above half maximal rate), but most
neurons remained at low rates during the simulated delay period (Fig. 3F). The distribution
of firing rates was again similar to a lognormal distribution at low rates, but the tail of the
distribution was shaped by neuronal saturation and therefore exhibited a tiny peak close
to maximal firing rates. Both overlap with presented pattern and distributions of firing
rates could be computed by the MFT and were in close agreement with network simulations
(Fig. 3E and F).

Thus, our network behaved as an associative memory when constrained by ITC data,
without any need for parameter variation or fine tuning. Furthermore, in addition to re-
producing the distributions of visual responses for both novel and familiar stimuli seen ex-
perimentally, it also exhibited qualitatively some of the main features observed both during
spontaneous and delay activity in IT cortex: broad distribution of firing rates in both sponta-
neous and delay period activity, and small fraction of neurons firing at elevated rates during
persistent activity (Miyashita, 1988; Nakamura and Kubota, 1995).
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Storage capacity, and its dependence on g

We now turn to the question of the storage capacity of the network, i.e. how many different
patterns can be stored in the connectivity matrix. The calculation of the storage capacity
of associative memory models such as the Hopfield model was one of the first successful
applications of statistical physics to theoretical neuroscience (Amit et al., 1987). One of
the main findings of such models is that the number of patterns that can be stored scales
linearly with the number of plastic connections per neuron, i.e. the maximal value of α is
of order 1. This maximal storage capacity αc has been computed in many variants of the
Hopfield model (see e.g. Amit (1992)). To compute the storage capacity of our network, we
found numerically the largest value of α for which retrieval states (i.e. states with positive
overlap with one of the stored patterns, m > 0) exist. Fig. 4A shows how the overlap in
retrieval states m varies as a function of the storage load α, computed using both MFT
(solid line) and simulations (symbols with errorbars) when parameters of the functions φ
and f are taken to be the median best-fit parameters, and those of the function g are taken
to be identical to f . It shows that m gradually decreases with α, due to more ‘noise’ in the
retrieval due to other stored patterns, until it drops abruptly to zero at a value of αc = 0.56.
This value is remarkably similar to the maximal capacity of the sparsely connected Hopfield
model of binary neurons storing binary patterns, for which αc = 0.64 (Derrida et al., 1987).

We then explored how the capacity depends on the parameters of the function g, that
describes the dependence of the learning rule on the presynaptic firing rate. Fig. 4B and C
show that the capacity is close to being maximized when these parameters match those of
the function f , i.e. xg = xf and βg = βf . Fig. 4B shows that the capacity is non-zero only
when the g is sufficiently non-linear, i.e. βg > 0.1. It peaks around βg = βf , but remains
high in the β →∞ limit when the function g becomes a step function. Fig. 4C shows that
the capacity is non-zero only in a finite range of xf , between 10 and 30/s. It shows again
that capacity peaks when xg is close to xf .

Learning rules inferred from ITC data are close to maximizing
memory storage

The storage capacity of the network with median parameters is in the same range or higher
than the capacity of classic associative memory models of binary neurons - for instance, the
Hopfield model has a capacity of αc ∼ 0.14 (Amit et al., 1987), while its sparsely connected
variant has a capacity of αc ∼ 0.64 (Derrida et al., 1987). The next question we addressed is
how this capacity depends on the parameters of this learning rule. We have already discussed
above the dependence of the capacity on xg and βg. Here, we explore the dependence on
the four remaining parameters characterizing the learning rule - A, xf , βf and qf . Using
MFT, we explored systematically the space of these four parameters, and plot in Fig. 5 all
possible cuts of this four dimensional space, in which 2 of the 4 parameters are varied, while
the other 2 are set to the median values. In all these plots, the maximal capacity αc is
plotted as a function of two parameters, using a gray scale (white indicate high capacity,
black low capacity). The yellow dashed line indicates the line for which the function f is
‘balanced’ (i.e. its average across the distribution of patterns is zero). It marks the border
between a depression-dominated region, for which learning leads to a decrease in average
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Figure 5: Inferred learning rules from ITC are close to maximizing memory storage. Contour
plots for the capacity of the network as a function of two parameters. In each plot, two
parameters are set to the median best-fit parameters, and the other two are varied. The
yellow dashed line indicates the curve where potentiation and depression are balanced in
average (i.e.

∫
Dξf(φ(ξ))) = 0). It separates the potentiation (i.e.

∫
Dξf(φ(ξ))) > 0 ) and

depression (i.e.
∫
Dξf(φ(ξ))) < 0) regions. The parameter region corresponding to the IQR

is indicated with a red dashed rectangle. The median best-fit parameters are shown as a red
cross mark. The parameters of g: xg = xf and βg = βf .
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responses, and a potentiation-dominated region, for which learning leads to an increase of
such responses. The red cross mark indicates the median parameters, while the dashed red
rectangle indicate the interquartile range.

Fig. 5 shows that the median parameters are close to maximizing storage capacity. In
fact, we found that the maximal capacity over this space is αc ≈0.85 (see Fig. S4 and SI
Mathematical Note for details). These figures show also that most (but not all) of the inter-
quartile range lie in a high-capacity region. It also shows that some parameter variations
lead to little changes in capacity, while others lead to a drastic drop. Decreasing the learning
strength A from its optimal value leads to an abrupt drop in capacity, while increasing it
leads to a much gentler decrease (see Fig. 5D-F). A similar effect is observed for the slope of
f ; decreasing the slope (i.e. making f more linear) leads to an abrupt decrease in capacity,
while increasing it beyond the median value leads to very little change in capacity (see
Fig. 5B-D). Thresholds xf for which high capacities are obtained are much higher than the
mean visual response (Fig. 5A,B and D), leading to a sparsening of the representations of
the patterns by the network. Finally, the optimal offset is close to the ‘balanced’ line, but
slightly on the depression-dominated region, as the median parameter (Fig. 5A,C and F).

A chaotic phase with associative memory properties

Are fixed point attractors the only possible dynamical regime in this network? Firing rate
models with asymmetric connectivity have been shown to exhibit strongly chaotic states
(Sompolinsky et al., 1988; Tirozzi and Tsodyks, 1991). Varying parameters of the learning
rule, we found parameter regions in which background and/or retrieval fixed point attractor
states destabilize and the network settle into strongly chaotic states. Fig. 6A shows an
example of such chaotic states, obtained for the median parameters as in Fig. 3, except for
the learning rate (A = 11.5). For such parameters, the background state is strongly chaotic.
Presentation of a familiar stimulus leads to a transition to another chaotic state, in which all
neurons fluctuate chaotically around stimulus-specific firing rates, such that the mean overlap
with the corresponding pattern remains high (see Fig. 6 B). Remarkably, chaotic retrieval
states remain strongly correlated with the corresponding patterns (see Fig. 6B), so that the
network can still perform as an associative memory in spite of the chaotic fluctuations of
network activity. Interestingly, the storage capacity for such parameters is larger than the
capacity estimated from the static MFT (see Fig. 6C).

In such chaotic retrieval states, single neuron activity exhibit strong firing rate fluctua-
tions which vary from trial to trial (see thin colored lines in Fig. 6D-F showing three randomly
selected neurons), but trial-averaged firing rates show systematic temporal patterns. For in-
stance, the activity of the neuron shown in Fig. 6D ramps up in the first second of the delay
period, before this activity plateaus at a rate of about 40/s. The neuron shown in Fig. 6F
shows a rapid activity increase during the presentation period, but then this activity drops
to an intermediate rate of about 5/s during the delay period. These temporal patterns of the
trial-averaged firing rate, together with a strong irregularity within trials, are remininscent
of observations by multiple groups in primate PFC during delay periods (Shafi et al., 2007;
Brody et al., 2003; Murray et al., 2017).
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Figure 6: Chaotic background and retrieval states, for a network with different parameters
as in Fig. 3. (A) Firing rate dynamics for a randomly sampled subset of 10 neurons of a
simulated network when a familiar stimulus (i.e. one of the stored patterns) is presented.
(B) Dynamics of the overlap during the presentation of a familiar stimulus. Green traces
shown all the overlaps computed numerically from the network simulation corresponding to
each of the stored patterns except the one with the presented pattern, shown in blue. (C)
Overlap vs memory load. Gray curve: MFT. Red circles: simulations in which the dynamics
converge to fixed point attractors. Blue square: simulations in which the dynamics converge
to chaotic states. (D-F) Dynamics of the firing rate of three example neurons in 10 different
trials (random initial conditions - transparent traces). Trial-averaged firing rate (over 20
trials) is shown with an opaque trace. Parameters as in Fig. 3, except for the learning rate
(A = 11.5) and memory load (α = 0.48 in all panels except in C).
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Discussion

We have shown that a learning rule inferred from data generate attractor dynamics, without
any need for parameter adjustment or tuning. Furthermore, this rule produces a storage
capacity that is close to the maximal capacity, in the space of unsupervised Hebbian learning
rules with sigmoidal dependence on both pre and post-synaptic firing rates. Remarkably,
as the inferred learning rules from ITC recordings, learning rules that maximize memory
storage depress the bulk of the distribution of the learned inputs (those that lead to low to
intermediate firing rates) while potentiating outliers (those that lead to high rates), leading
to a sparse representation of stored memories. The attractor states generated by our model
are characterized by graded activity with a continuous range of firing rates (Treves, 1990a,b;
Festa et al., 2014). Most of the distribution lies in the low rate region of the neuronal transfer
function, leading to a strongly skewed distribution, with a small fraction of neurons firing at
higher rates. These observations are consistent with the available data in ITC during delay
match to sample experiments (Miyashita, 1988; Nakamura and Kubota, 1995).

For a range of parameters values consistent with learning rules inferred from data, our
model presents irregular temporal dynamics for retrieval states, similar to the temporal
and across trial variability observed during delay periods in multiple studies (Murray et al.,
2017). In this regime, retrieval states are chaotic, yet they maintain non-zero overlap with
the corresponding memories. Thus, the network performs robustly as an associative memory
device, even though strong fluctuations are internally generated by its own chaotic dynamics.

Distribution of firing rates

Our model naturally gives rise to highly skewed distributions of firing rates, consistent with
those that have been observed during presentation of visual stimuli in ITC (Lehky et al., 2011;
Lim et al., 2015) and during delay periods of DMS tasks (Miyashita, 1988; Nakamura and
Kubota, 1995). It also reproduces the decrease in the mean response with familiarity, and the
increase in selectivity with familiarity. Our model shows for most of the explored parameter
space a weak bimodality in the distribution of firing rates due to neuronal saturation in
response to familiar stimuli, with a tiny peak close to neuronal saturation. Detecting this
bimodality in data would require far larger stimuli sets than have been used so far, which
might be difficult given experimental constraints. We also note that the shape of the transfer
function close to saturation is only weakly constrained by data, since most of the data
points lie in the supralinear range of this transfer function. Transfer functions with different
behaviors at high rates will have an effect on the tails of the distributions. We have checked
for instance that a transfer function with a square root behavior at high rates (Brunel, 2003)
leads to a broader peak at high rates.

Learning rule

The learning rule we have used in our network model was inferred from ITC data (Lim
et al., 2015). It is an unsupervised Hebbian rule, as it only depends on the pre and post-
synaptic firing rates, and it leads to potentiation for large pre and post-synaptic rates.
As other popular examples of Hebbian rules such as the covariance rule (Sejnowski, 1977)

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2017. ; https://doi.org/10.1101/199521doi: bioRxiv preprint 

https://doi.org/10.1101/199521


or the the BCM rule (Bienenstock et al., 1982), it is separable in pre and post-synaptic
rates. It also reproduces some of the phenomenology of the dependence of synaptic plasticity
on pre and post-synaptic firing rates in cortical slices; in particular, large pre and post-
synaptic firing rates lead to LTP (Sjöström et al., 2001). Large pre-synaptic firing rate in
conjunction with low post-synaptic firing rate, lead to depression, consistent with ‘pairing’
experiments in which LTD is triggered by pre-synaptic activity, together with intermediate
values of the membrane potential (Ngezahayo et al., 2000). Plasticity at low pre-synaptic
firing rates could be due to plasticity mechanisms leading to ‘normalization’ or homeostasis.
Indeed, our plasticity rule could be written as ∆Jij = ∆JHebbij + ∆Jhomij where ∆JHebbij =
Af(ri)(g(rj)− g(0)), ∆Jhomij = Af(ri)g(0). The ‘homeostatic’ component ∆Jhomij leads to a
decrease in the efficacy of all synapses onto a post-synaptic neuron when the neuron is firing
at high rates, while it leads to an increase when the neuron fires at low rates (note g(0) < 0).

To derive the learning rule, we used a subset of the data recorded by Woloszyn and
Sheinberg (2012), i.e. excitatory neurons that show negative changes at low rates and positive
changes at high rates. Those neurons are approximately half (14/30) of the neurons that
showed significant differences between the distributions of visual responses for familiar and
novel stimuli. Out the remaining 16 neurons, 10 showed negative changes for all rates,
while 6 showed the opposite pattern of positive changes for all rates. This heterogeneity in
inferred learning rules could be due to a heterogeneity in neuronal properties - for instance, it
could be that the ‘putative’ excitatory neurons recorded in this study form a heterogeneous
group of cells, some of which might actually be inhibitory. Consistent with this, some
inhibitory neuron classes have electrophysiological properties (and in particular, spike width)
that are closer to pyramidal cells that to fast-spiking interneurons. Another possibility is that
part of the apparent heterogeneity stems form the same underlying learning rule, but with
heterogeneous parameters. For instance, inferred learning rules with negative changes at all
rates are consistent with a sigmoidal post-synaptic dependence f , but with a high threshold
xf that lies above the range of firing rates elicited in that particular experiment. Elucidating
which of these scenarios hold in IT cortex will need recordings from more neurons, as well
as recordings of single neurons with more stimuli.

Our approach is complementary to other studies that have inferred learning rules from in
vitro studies, and then shown that these rules lead to attractor dynamics in large networks
of spiking neurons (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015). In contrast to
these studies, we showed that a network with learning rules inferred from in vivo data can
achieve a high storage capacity, and generate graded distributions of firing rates during visual
presentation and delay periods. It will be interesting to investigate whether, and in which
conditions spike-timing and voltage based learning rules used in such studies can produce a
firing rate dependence that is consistent with the rule used here.

Time-varying neural representations

In recent years, the standard attractor network scenario has been challenged by multiple
observations of strong variability and non-stationarity during the delay period in prefrontal
cortex (Compte et al., 2003; Shafi et al., 2007; Barak et al., 2010; Barak and Tsodyks, 2014;
Kobak et al., 2016; Murray et al., 2017). Statistical analysis of recordings in this area during
two different working memory tasks has shown that variability observed during delay periods
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is consistent with static coding of the stimulus kept in memory (Murray et al., 2017). Various
models have been proposed to account for variability and/or non-stationarity (Barbieri and
Brunel, 2007; Mongillo et al., 2008; Lundqvist et al., 2010; Mongillo et al., 2012; Druckmann
and Chklovskii, 2012).

Here we propose an alternative mechanism where chaotic attractors with associative
memory properties naturally generate the time-varying irregular activity observed during
delay periods in associative memory tasks. In this state, chaotic attractors correspond to
internal representations of stored memories. Each chaotic attractor state maintains a positive
overlap with the corresponding stored memory. In this scenario, the network performs as
an associative memory device where temporal variability is generated internally by chaos.
This model naturally exhibits the combination of strong temporaly dynamics yet stable
memory encoding which has been demonstrated in PFC by various groups (Druckmann and
Chklovskii, 2012; Murray et al., 2017). It will be interesting to compare this model to existing
data, using for instance methods used in Murray et al. (2017).

There has been a longstanding debate whether the type of chaotic states seen in firing rate
models can be seen also in spiking network models under the form of ‘rate chaos’. Recent
studies indicate that this type of chaos can be observed provided coupling is sufficiently
strong, as in firing rate models Ostojic (2014); Harish and Hansel (2015); Kadmon and
Sompolinsky (2015). Thus, it is reasonable to expect that the type of retrieval chaotic states
we observed in our network can also be realized in networks of spiking neurons.

Optimality criteria for information storage

Here, we have argued that learning rules that are inferred from electrophysiological recordings
in ITC of behaving primates are close to optimizing information storage, in the space of
unsupervised Hebbian learning rules that have a sigmoidal dependence on both pre and
post-synaptic firing rates. Such learning rules are appealing because synapses do not need to
know anything beyond the firing rates of pre and post-synaptic neurons to form memories,
two quantities that are easily available at a synapse. However, one cannot exclude that the
dependence of plasticity on neuronal activity takes other forms than the one investigated
here. In particular, a potentially more powerful approach proposed by Gardner (1987)
relies in maximizing the number of attractors in the space of all possible synaptic matrices.
Unsurprisingly, this approach leads in general to a larger capacity than the ones that can
be achieved by unsupervised Hebbian rules, but it turns out that in sparse coding limit,
the covariance rule reaches asymptotically the Gardner bound (Tsodyks and Feigel’Man,
1988; Tsodyks, 1988). These results have been obtained in networks of binary neurons,
and it remains to be investigated whether similar results could be obtained in networks of
analog firing rate neurons. An additional challenge in comparing the two approaches in
such networks is that the stored attractors are in our case not identical to the pattern that
was initially shown to the network, while in the standard Gardner approach, the two were
constrained to be identical.

Altogether, our results strongly reinforce the link between attractor network theory and
electrophysiological data during delayed response tasks in primates. Furthermore, they sug-
gest that learning rules in association cortex are close to maximizing the number of possible
internal representations of memories as attractor states.
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Methods

Data analysis

We reanalyze the data recorded by Luke Woloszyn and David Sheinberg (Woloszyn and
Sheinberg, 2012) using the method described in Lim et al. (2015). This data consists in
trial-averaged firing rates of individual neurons in ITC (in a time window between 75 ms
and 200 ms after stimulus onset) in response to 125 novel and 125 familiar stimuli measured,
during a passive fixation task. We focused on the 30 putative excitatory neurons whose
distributions of visual responses for novel and familiar stimuli were significantly different,
using the Mann-Whitney U test at 5 significance level. In these neurons, the postsynaptic
dependence of the learning rule, was inferred using the method described in Lim et al. (2015).
In this subset of neurons, we focused on 14 excitatory neurons, the ones that show negative
input changes for low firing rates and positive input changes for high firing rates. For these
14 neurons, the transfer function φ, and the postsynaptic dependence of the learning rule,
f , are inferred using the method described in Lim et al. (2015).

The first step is to infer the transfer function φ. We assume that inputs to neurons
during presentation of novel stimuli have a Gaussian distribution. The transfer function is
then obtained as the function φ that maps a standard Gaussian to the empirical distribution
of firing rates for novel stimuli (Lim et al., 2015). In practice, the function is obtained by
building a quantile-quantile plot between the distribution of firing rates for novel stimuli and
the assumed standard normal distribution of inputs (see Fig. 2 A and B and S1-2). The
obtained transfer function (blue circles in Fig. 2) was fitted with the sigmoidal function

φi(ξ) =
r
(i)
m

1 + e−β
(i)
T (ξ−h(i)0 )

(3)

where r
(i)
m is the maximal firing rate, β

(i)
T measures the slope at the inflection point, and h

(i)
0

is the location of this inflection point. h0 is also the current leading to half maximal firing
rate. These parameters were obtained by minimizing the squared error. We thus obtained
for each of the 14 neurons the best estimators r

(i)
m , β

(i)
T and h

(i)
0 with i = 1, 2, . . . , 14 whose

statistics are summarized in Fig. 2D.
The next step is to infer the postsynaptic dependence of the learning rule, f . For this, we

use the difference between the distributions of visual responses to novel and familiar stimuli
(Lim et al., 2015). In the model, learning of a novel stimulus defined by inputs ξki that leads
to firing rates rki = φ(ξki ) leads to changes in recurrent inputs, due to changes in synaptic
inputs

∆Jij =
Acij
cN

f(rki )g(rkj ) (4)

This leads to a change in total inputs to neurons that is proportional to

∆hi = Af(rki )
1

cN

∑
j

cijg(rkj )r
k
j (5)

In the large N limit, Eq. (5) becomes

∆hi = Af(rki )

∫ ∞
−∞
Dzg(φ(z))φ(z). (6)
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where Dz is the standard Gaussian measure, Dz = dze−z
2/2/
√

2π. Eq. (6) give us the rela-
tionship between changes of total inputs to a neuron with learning of a particular stimulus,
and the firing rate of the neuron upon presentation of that stimulus for the first time. This
relationship can be inferred from the data by computing the difference between the quantile
function of visual responses to familiar stimuli and the quantile function of visual responses
to novel stimuli, and by plotting this difference as a function of visual response to novel
stimuli (Lim et al., 2015). We then fitted the input change with a sigmoidal function given
by

∆hfiti (r) =
C(i)

2

[
2q

(i)
f − 1 + tanh(β

(i)
f (r − x(i)f ))

]
. (7)

where C(i) gives the amplitude of the total changes, qif measures the vertical offset of the
curve (for qf = 1, ∆h is non-negative at all rates, while for qf = 0 it is non-positive at all

rates), β
(i)
f measures the slope at the inflection point, and x

(i)
f is the rate at the inflection

point. In the following, we refer to x
(i)
f as the threshold since it is typically very close to the

rate at which ∆h changes sign. For each of the 14 neurons, the parameters C(i), q
(i)
f , β

(i)
f

and x
(i)
f with i = 1, 2, . . . , 14 were estimated by minimizing the squared error. The inferred

function f for each neuron is given by

fi(r) =
∆hfiti (r)

C(i)
=

1

2

[
2q

(i)
f − 1 + tanh(β

(i)
f (r − x(i)f ))

]
. (8)

The parameter A is then obtained as

A(i) =
C(i)∫∞

−∞Dzg(φ̃(z))φ̃(z)
, (9)

where φ̃ is the sigmoidal transfer function in Equation 9 whose parameters are the medians
of the fitted parameters. The function g was also chosen to be a sigmoid, given by

g(r) =
1

2
[2qg − 1 + tanh(βg(r − xg))] , (10)

with qg set such that the average change in connection strength due to learning of a single
pattern is zero, i.e. ∫ ∞

−∞
Dzg(φ̃(z)) = 0. (11)

Note that g is unconstrained by data. For most of the paper, we set the slope and the
threshold for g to the median of the fitted parameters for f , i.e. βg = β̃f and xg = x̃f . We
also explored how the capacity depends on βg and xg, as shown in Fig. 3.

Mean field theory

Here we present the main results of our mean field analysis that quantifies the retrieval of
a particular familiar pattern during the delay period. Detailed calculations for this case are
presented in section 1 of the mathematical note in the SI. The analysis is performed in the
limit p,N →∞ and c� 1.
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In our model, memories are defined as the patterns of external synaptic inputs that were
present when the corresponding stimulus was shown for the first time to the network. These
external synaptic inputs {~ξk}pk=1, where k labels individual memories, are i.i.d. Gaussian
random variables with zero mean and unit variance. These memories are imprinted in the
connectivity matrix using the learning rule described in Equation 2. The firing rates ri(t)
of neurons i = 1, . . . , N evolve according to the rate (Wilson-Cowan) equations (Wilson and
Cowan, 1972), i.e. Eq. 1.

During the delay period, the external stimulus Ii is set to be zero. The steady states or
fixed point attractors for the dynamics are given by the following set of nonlinear equations

ri = φ

(
N∑
i6=j

Jijrj

)
i = 1, . . . , N. (12)

To describe the statistics of the firing rates in a fixed point described by Equation 12, we
first need to compute the statistics of the incoming current to a given neuron, hi =

∑N
i6=j Jijrj,

assuming that the network state is correlated with one of the stored patterns (without loss
of generality, we choose here the first pattern ξ1i ), but uncorrelated with all other patterns.
In the large N limit, the distribution of this current, conditioned on the value of ξ1i , becomes
a Gaussian. The mean µ conditioned on ξ1i is given by

µ(ξ1i ) = Af(φ(ξ1i ))q, (13)

where q is the covariance between a non-linear transformation of the pattern g(φ(ξ1i )) and
the firing rates in the current network state ri,

q =
1

N

N∑
i=1

g(φ(ξ1i ))ri (14)

The ‘overlap’ m described in the main text is the corresponding correlation coefficient,
i.e. normalized by the square root of the variances of g(φ(ξ1i )) and ri.

The variance of input currents (due to the other stored patterns that act as a quenched
source of noise on the retrieval of the pattern of interest) is given by

σ2 = αγM. (15)

Where γ depends on the learning rule and statistics of the patterns as

γ ≡ A2

∫ ∞
−∞
Dzf(φ(z))2

∫ ∞
−∞
Dzg(φ(z))2 (16)

while M is the average squared firing rate

M =
1

N

N∑
i=1

r2i . (17)

The next step is to compute self-consistent equations for the ‘order parameters’ q and M ,
that fully describe the macroscopic behavior of the network. Inserting Eq. (12) in Eq. (14),
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using the fact that hi has a Gaussian distribution with mean µ and variance σ2, and replacing
the sum over i by an integral over ξi, we obtain

q =

∫ ∞
−∞

∫ ∞
−∞
DzDyg(φ(z))φ(qAf(φ(z)) +

√
αγMy) (18)

where the integral over z corresponds to an integral over the distribution of the patterns ξ1i ,
while the integral over y corresponds to an integral over the distribution of the ‘quenched
noise’ due to other stored patterns.

Similarly, inserting Eq. (12) in Eq. (17) and using again the fact that hi is Gaussian
distirbuted, we find

M =

∫ ∞
−∞

∫ ∞
−∞
DzDyφ2(qAf(φ(z)) +

√
αγMy). (19)

For a given value of α, and functions φ, f and g, Eqs. (18,19) are solved numerically by
using a gradient free approach where the equations are iterated as a discrete map from an
arbitrary initial condition (i.e. q0 > 0 and M0 > 0) until convergence. Note that Eq. (18)
always have a solution q = 0, which correspond to a background state which is uncorrelated
with all stored patterns. Solutions of these equations with q > 0 indicate the presence of
retrieval states.

The distribution of firing rates can be obtained as

pr(r) =

∫ ∞
−∞
Dz e

−
(φ−1(r)−Af(φ(z))q)

2

2αγM

√
2παγM

dφ−1(r)

dr
, (20)

where the order parameters q and M are determined by the self-consistent equations (19)
and (18). The overlap m is given by

m =
q

(M −R2)
√∫∞

−∞Dzg(φ(z))2
, (21)

where R is the mean firing rate in the attractor state given by

R =

∫ ∞
−∞

∫ ∞
−∞
DzDyφ(qAf(φ(z)) +

√
αγMy). (22)

Similar analysis can be performed in the presence of an external input (presentation
period), for both familiar and novel stimuli. Details are presented in section 2 of the math-
ematical note in SI. The calculations proceed along the lines of the calculations presented
above, except that (1) During the presentation of a familiar stimulus, the external input
currents are set to Ii = I0ξ

1
i ; (2) During the presentation of a novel stimulus, the external

inputs are set to ~I = I0~η, where ~η is an independent and identical distributed standard

normal pattern of currents (i.e. ηi
iid∼ N (0, 1) with i = 1, 2, . . . , N), uncorrelated with all

learned patterns. For simulations in Figures 3 and 6 I0 was set equal to one during the
presentation period.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2017. ; https://doi.org/10.1101/199521doi: bioRxiv preprint 

https://doi.org/10.1101/199521


Simulations

For most simulations shown in this paper, the probability of connections was set to 0.5%
(i.e. c = 0.005) and the number of neurons to N = 50000, which implies an average number
of connections per neuron of Nc = 250. To investigate finite size effects, we also performed
simulations with various values of N and c (see Fig. S5). The single neuron time constant
was chosen as τ = 20ms, similar to time constants of single neurons (McCormick et al., 1985)
and synapses (Destexhe et al., 1998), and with the decay time constant of cortical activity
as measured in vivo (Reinhold et al., 2015). Open source built-in linear algebra methods
in scipy and numpy Python packages suited for sparse matrices were used to generate the
connectivity matrix. For simulating the networks dynamics, the Euler method was used with
a time step size of 0.5ms. For a few parameter sets, we checked that results are unchanged
when a smaller value of dt = 0.1ms is used. The code is available upon request.
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