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ABSTRACT  13 

One must know the mass of an object to accurately predict how it moves under the effect of an 14 

applied force. Similarly, the brain must represent the arm’s inertia to predict the arm's movements 15 

elicited by commands impressed upon the muscles. Here, we present evidence suggesting that the 16 

integration of sensory information leading to the representation of the arm's inertia does not take 17 

place continuously in time but only at discrete transient events, in which kinetic energy is 18 

exchanged between the arm and the environment.  We used a visuomotor delay to induce cross-19 

modal variations in state feedback and uncovered that the difference between visual and 20 

proprioceptive velocity estimations at isolated collision events was compensated by a change in 21 

the representation of arm inertia. The compensation maintained an invariant estimate across 22 

modalities of the expected energy exchange with the environment. This invariance captures 23 

different types of dysmetria observed across individuals following prolonged exposure to a fixed 24 

intermodal temporal perturbation and provides a new interpretation for cerebellar ataxia. 25 
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INTRODUCTION 26 

In a conference if you cannot understand the speaker due to excessive background noise or poor 27 

acoustics, seeing her face would help you capture what she is saying. The evident explanation for 28 

this experience is that the integration of information from multiple sensory modalities improves 29 

perception (Ernst and Bülthoff 2004). Similarly, the sensorimotor control system combines 30 

different sensory measurements to enhance the perception required to perform accurate 31 

movements and to skillfully manipulate objects. However, because of delays in neural pathways, 32 

the brain cannot rely entirely on sensory feedback to effectively control movements, particularly 33 

when interacting with a dynamical environment. Predicting the consequences of an action is 34 

essential to compensate for the temporal delays of sensory information.  To this end the brain relies 35 

on internal representations, or "internal models" of the body and of the environment in which it 36 

operates (Wolpert, Ghahramani et al. 1995, Miall and Wolpert 1996, Wolpert and Kawato 1998, 37 

Kawato 1999). The predictions of these internal models, often called forward models, generate 38 

expectations for future sensory consequences of the ongoing motor commands before sensory 39 

feedback becomes available (Shadmehr, Smith et al. 2010). These "priors" are combined with 40 

delayed sensory feedback to estimate both the state (e.g. position and velocity) of the body and the 41 

context (e.g. mass of manipulated object) of the movement (Wolpert and Ghahramani 2000, 42 

Wolpert and Flanagan 2001). In a biological system, however, noise and uncertainty spread 43 

through every aspect of sensory perception and motor command generation (Faisal, Selen et al. 44 

2008). Additionally, the environment itself is ambiguous and variable. This makes state and 45 

context estimation probabilistic problems to solve. Over the past decade, Bayesian integration 46 

theory has provided a unifying framework to capture behavior under uncertainty in a wide range 47 

of psychophysical studies on sensory perception (Weiss, Simoncelli et al. 2002, Jazayeri and 48 
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Shadlen 2010), multisensory integration (Ernst and Banks 2002, Alais and Burr 2004, Ernst 2007), 49 

and sensorimotor function (Körding and Wolpert 2004, Miyazaki, Nozaki et al. 2005). However, 50 

the temporal structure of state and context estimation remains largely unknown.  51 

Object manipulation is an effective and natural test bed for sensorimotor integration. It engages 52 

multiple sensory modalities and in contrast to movements in free space, it provides an additional 53 

challenge to the nervous system. Holding an object changes the dynamics of the arm, thereby 54 

successful manipulation requires not only knowledge of the arm dynamics, but also knowledge of 55 

the object dynamics. This knowledge is not solely acquired through proprioceptive and tactile 56 

feedback; vision also provides information about the mechanical properties of the object (Gilden 57 

and Proffitt 1989, Gordon, Forssberg et al. 1991, Jenmalm and Johansson 1997, Salimi, Frazier et 58 

al. 2003, Ingram, Howard et al. 2010, Takamuku and Gomi 2015).  Here we employed an object 59 

manipulation task to investigate the temporal resolution of the sensory integration process that 60 

provides the information for estimating the mechanical properties of the object being manipulated 61 

(i.e. context estimation). We considered two possibilities: a time-dependent structure in which 62 

context estimation takes place continuously or periodically at isochronous intervals and a state-63 

dependent structure in which context estimation occurs sporadically at salient task-relevant events 64 

(e.g. contact events in an object manipulation task).  65 

To test these alternative possibilities, we developed a virtual two-dimensional ping-pong game in 66 

which participants continuously manipulated an object (paddle) to hit a ball (Figure 1A). Visual, 67 

haptic, and auditory feedbacks were provided simultaneously at the time of impact between the 68 

paddle and the ball. This design was ideal for our purpose as it was a continuous object 69 

manipulation task that also included discrete multisensory events.  In this task, the two proposed 70 

temporal structures would provide different mass estimations after adaptation to an artificial delay 71 
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in the sensory feedback (Foulkes and Miall 2000, Miall and Jackson 2006, Farshchiansadegh, 72 

Ranganathan et al. 2015). Figure 1B is a schematic illustration of the changes in the hand position 73 

during stroke and recovery in the pong game with its delayed visual representation. If 74 

proprioceptive and visual information are integrated continuously or periodically to estimate the 75 

mass of the paddle, then the internal representation of the mass should remain unchanged at the 76 

end of adaptation. This is because the mismatch between the two sensory measurements would 77 

integrate to zero (integrating over the region indicated by the gray box in Figure 1B) not only for 78 

position, but also for all the higher derivatives. On the other hand, if sensory integration for mass 79 

estimation occurs only at collision events, then this should result in predictable and systematic 80 

changes in the mass representation depending on the difference between sensory measurements at 81 

the time of events. To assess the changes in representation of mass, we asked participants to 82 

perform reaching movements without feedback (in a feedforward fashion) before and after playing 83 

pong.   84 
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RESULTS 85 

We asked three groups of volunteers to make blind reaching movements to visual targets before 86 

and after playing a simulated pong game holding a robotic manipulandum. After playing pong for 87 

a few minutes without a delay, the game’s response to the player’s movements was delayed and 88 

participants continued playing for ~40 minutes. We investigated the effects of adaptation on the 89 

reaching trajectories.  90 

Experiment I 91 

The first group of participants played a frontal pong (FP, proximal-distal direction, Figure 1A). 92 

With practice, all subjects improved their performance. Since subjects were instructed to maximize 93 

the number of collisions with the ball, hit rate was set as a metric for proficiency. A paired t-test 94 

between the first and the last five minutes of the delayed pong, reveled a significant increase in the 95 

number of hits per minute (𝑝 = 0.04). Notably, playing the delayed pong influenced the reaching 96 

behavior. Figure 1C compares the endpoint of the reaches of a participant in this group before and 97 

after adaptation. A systematic hypermetria in reaching was observed in all subjects after playing 98 

the game (Figure 1D). The magnitude of the movements was significantly larger following 99 

adaptation (paired t-test, 𝑝 = 0.02). To further verify that the changes in reaching trajectories are 100 

not a byproduct of interacting with the robot itself, a subgroup of the subjects in this group also 101 

participated in a control experiment in which the game was not delayed. Expectedly, the 102 

hypermetria was absent in this experiment (paired t-test, 𝑝 = 0.60). 103 
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 104 

Figure 1. Adaptation to delayed feedback in a ping-pong game influences reaching behavior. (A) Subjects 105 
played a planar pong game in frontal direction using a robotic manipulandum. In addition to continuous 106 
visual feedback, auditory and tactile feedbacks were provided simultaneously upon collisions with the ball. 107 
After few minutes of familiarization, the game’s response to the player’s movements was delayed and 108 
subjects continued playing the game in the delayed environment. Participants also performed reaching 109 
movements without any continuous or terminal feedback before and after playing the pong. Objects and 110 
labels in black were not visible to the subjects (B) A cartoon of the changes in the hand position during 111 
stroke and recovery in the pong game and its delayed representation. If sensory integration occurs 112 
continuously, then the reaching trajectories should remain unchanged after adaptation. Because the 113 
difference between visual and proprioceptive information integrates to zero. However, if sensory 114 
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integration occurs only at collisions, this should result in predictable changes in the terminal position of the 115 
reaching movements depending on the sensory measurements at collisions. (C) The endpoints of the 116 
reaching movements of a typical subject before and after adaptation. (D) All subjects showed hypermetria 117 
in the reaching movements after adaption. The hypermetria was absent in a subgroup who additionally did 118 
the same experiment without the delay. Error bars represent one standard error of the mean.  119 

One interpretation of these results would suggest that adapting to the delay changed the 120 

representation of the mass of the object (paddle) being manipulated. In this case, hypermetria 121 

would follow from assigning inertial values to the object that are higher than the actual value. 122 

However, there were multiple alternative interpretations including different kinematic models (see 123 

the discussion section) that were similarly successful to explain this outcome. To consider these 124 

alternative explanations, we designed a lateral pong game. The main objective of the lateral pong 125 

was to create a scenario in which two groups play the game under similar kinematic conditions but 126 

with paddles that possess different mechanical properties. To this end, we took advantage of the 127 

passive dynamics of the robot. 128 

Experiments II & III 129 

In these experiments, we placed two pong courts next to each other and participants played a lateral 130 

pong (LP, medio-lateral direction, Figure 2A). One group played the delayed pong only in the 131 

right court (LPR), while the other group played the delayed pong only in the left court (LPL). The 132 

same pattern of reach targets that was utilized in the experiment I were re-positioned within each 133 

court (Figure 2A). Both groups performed blind reaching movements to all six targets from the 134 

corresponding starting positions in each court before and after adaptation. To ensure that the 135 

difficulty level of playing pong was not different between the courts, initially all participants 136 

played the game with no delay in both courts. Hit rate analysis showed that there was no difference 137 

in performance across the courts (paired t-test, 𝑝 = 0.32). Thus, we could assume that there was 138 

not an inherent gap in difficulty between the two courts. Task performance was drastically affected 139 
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when the delay was introduced. However, with practice both groups improved their performance 140 

significantly at an equivalent level. A mixed-design ANOVA with practice as a within-subject 141 

factor (2 levels) and group as a between-subject factor (2 levels) revealed a main effect of practice 142 

(𝐹(1,14) = 55, 𝑝 < 0.001), no effect of group (𝐹(1,14) = 0.007, 𝑝 =  0.93) and no interaction 143 

effect (𝐹(1,14) = 2.1, 𝑝 = 0.17). 144 

 145 

Figure 2. Hypermetria in reaching depends on the dynamics of the pong. (A) Two separate groups 146 
of subjects played a lateral pong with delay. Each group adapted to the delay only in one of the 147 

two courts that were placed next to each other. Both groups performed blind reaching movements 148 
before and after adaption from starting positions on the two sides of the body midline. Objects and 149 
labels in black were not visible to the subjects. (B) Subjects on the left court showed a very small 150 

average hypermetria on both sides. (C) Subjects on the right court showed a large average 151 
hypermetria on the right side that generalized to a lesser extent to the left side. Error bars represent 152 
one standard error of the mean.  153 

While the learning rates and the level of performance were largely equivalent across the two 154 

groups, the effect of adaptation on the reaching trajectories was strikingly different: the LPR group 155 

demonstrated a large hypermetria on the right side (the training region) that generalized to a lesser 156 
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extent to the other side (Figure 2C), whereas the LPL group showed only a very small hypermetria 157 

on both sides (Figure 2B). A two-way mixed ANOVA on change in the movement magnitude, 158 

with reaching side as a within-subject factor (2 levels) and group as a between-subject factor (2 159 

levels) revealed no significant main effect of reaching side (𝐹(1,14) = 2.1, 𝑝 =  0.17). However, 160 

there was a significant main effect of group (𝐹(1,14) = 5.4, 𝑝 =  0.035). Additionally, there was 161 

no significant interaction effect (𝐹(1,14) = 2.1, 𝑝 = 0.17). Further within group analyses 162 

indicated that there was a significant reduction of the overshoot as the LPR group performed 163 

reaching movements on the left side and away from the training region (paired t-test, 𝑝 = 0.04). 164 

This pattern was not present in the LPL group because this group demonstrated a very small 165 

hypermetria on both sides that was not even significant on the training side (paired t-test, 𝑝 = 1). 166 

Sensory integration at events explains individual differences 167 

We have recently shown that when transporting an object carried by the hand, visual and 168 

proprioceptive information are integrated to optimize the kinetic energy transferred to the object 169 

(Farshchiansadegh, Melendez-Calderon et al. 2016). For the same optimization to occur in a pong 170 

game, it is necessary for the collisions to happen at the time of peak paddle velocity. Analysis on 171 

the relationship between the velocity profile and the collision time in the baseline non-delayed 172 

trials - when vision and proprioception were congruent - reveals that, here as well, participants 173 

adopted the energy-efficient strategy by hitting the ball, on average, at the time of peak velocity 174 

(Figure 3A). 175 

In adaptation trials, haptic (force impulse) and auditory feedback were also delayed. Therefore, as 176 

in the non-delayed game, each hit in the delayed game generated a simultaneous multisensory 177 

response. However, participants effectively played the game with two paddles that were separated 178 

in time: a visual paddle (delayed) and a proprioceptive paddle (not delayed). Figure 3B illustrates 179 
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the schematic velocity profile of the visual and the proprioceptive paddles for a movement in the 180 

hitting direction. For a hit that is happening at time 𝑡1 in this figure, the kinetic energy at collision 181 

is related to the velocity of the proprioceptive and visual paddles as  182 

𝐾𝐸(𝑡1) =  
1

2
𝑚𝑟𝑣𝑣(𝑡1)2 =

1

2
𝑚𝑟𝑣𝑝(𝑡1 − 𝜏)2  ≠

1

2
𝑚𝑟𝑣𝑝(𝑡1)2 (1) 183 

Where 𝑚𝑟, 𝑣𝑣, 𝑣𝑝 and 𝜏 represent the effective mass of the robot, the velocity of the visual paddle, 184 

the velocity of the proprioceptive paddle and the delay, respectively. Also, note that at time 𝑡1 the 185 

estimate of the kinetic energy of the paddle based on visual information would be different from 186 

the estimate based on proprioceptive information because the velocity measurements are different 187 

in the two modalities. We hypothesize that sensory integration for mass estimation does not 188 

happen continuously in time but only at salient multisensory events when there is an exchange of 189 

kinetic energy with the environment, in this case at collisions. Moreover, we hypothesize that the 190 

optimization problem must satisfy the constraint that the estimated kinetic energy transfer remains 191 

invariant across modalities. Therefore, instead of estimating 𝜏 one may rewrite equation (1) 192 

without explicit consideration of the delay, by modifying the effective proprioceptive mass of the 193 

robot (see the methods section for the definition of effective mass and its connection to kinetic 194 

energy):  195 

𝐾𝐸(𝑡1) =  
1

2
𝑚𝑟𝑣𝑣(𝑡1)2 =

1

2
(𝑚𝑟 + 𝑚̂) 𝑣𝑝(𝑡1)2 (2) 196 

Under this hypothesis, discrete sensory integration at isolated collision events leads to a perceptual 197 

illusory mass 𝑚̂, that hereinafter we refer to as "modified mass" and can be derived from equation 198 

(2) at any hitting time: 199 

𝑚̂ =  𝑚𝑟
𝑣𝑣(𝑡ℎ𝑖𝑡)2−𝑣𝑝(𝑡ℎ𝑖𝑡)2

𝑣𝑝(𝑡ℎ𝑖𝑡)2
(3)  200 
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Figure 3. Modified mass explains individual and group differences. (A) Subjects optimized the 202 
energetic cost of their movements in the non-delayed pong game by hitting the ball at the peak 203 
velocity of the paddle. (B) In the delayed pong, visual and proprioceptive measurements were 204 
different at the time of collisions.  Hence, sensory integration at events caused a misperception of 205 

the paddle’s mass. Modified mass is the difference between the actual mass and the perceived 206 
mass. Depending on the timing of the hits, modified mass can have three categorical values: a hit 207 

around time 1 leads to a negative modified mass (𝑣𝑣 < 𝑣𝑝), a hit at time 2 (𝑣𝑣 = 𝑣𝑝) makes the 208 

modified mass to be zero and for a hit around time 3 (𝑣𝑣 > 𝑣𝑝), the modified mass is positive. (C-209 

E) Left panels show the average velocity profile of the hand and the paddle during the last five 210 
minutes of adaptation for three individual subjects, one from each possible outcome category. The 211 
vertical dashed line represents the average time of the hit in the pong game. Right panels show the 212 
adaptation effects on the reaching movements. Error bars represent one standard deviation of the 213 

mean. These results are consistent with the hypothesis that mass estimation occurs at discrete 214 

events. (F) Effective mass of the manipulandum in each direction. Each plot is centered on the 215 
average position of the hits for the corresponding group. Subjects in the LPR group played with a 216 

heavier paddle than the LPL group. In addition, the modified mass is proportional to the mass of 217 

the paddle itself.  Collectively, these two facts explain the group differences in the lateral pong 218 
experiments. (G) Correlation between the extent of hypermetria in the reaching movement and the 219 
average hitting time during the pong for all subjects. Gray areas represent 95% confidence 220 

intervals. 221 

Depending on the time of collision, the modified mass can have three categorical values (Figure 222 

3B): a hit that happens around time 1 leads to a negative modified mass since around this time 223 

𝑣𝑣 < 𝑣𝑝, a hit at time 2 (𝑣𝑣 = 𝑣𝑝) makes the modified mass to be zero and finally if the hit happens 224 

around time 3 (𝑣𝑣 > 𝑣𝑝), the modified mass would be positive.  225 

Previously, we examined the changes in the reaching movements following adaptation at the group 226 

level.  As it is typically the case, there was a substantial variability in the performance of each 227 

participant following adaptation. The hypothesis that estimation of the effective mass depends on 228 

the sensory measurements at contacts allows us to make predictions of individual responses. To 229 

test this prediction, we consider within each group cases that deviated maximally from the average 230 

behavior. Figure 3C corresponds to the subject that exhibited the largest hypermetria in the LPR 231 

group (right panel). Our hypothesis predicts that the timing of the collisions for this individual 232 

should be around time 3 because the large hypermetria indicates a positive estimation of the 233 

modified mass and thereby an increase in the perception of the robot’s effective mass.  Analysis 234 
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on the pong data confirmed this prediction: the left panel of this figure shows the average velocity 235 

profile of the two paddles during the last five minutes of adaptation for this subject and the vertical 236 

dashed line represents the average time of the hit. On the other extreme of the LPR group, the 237 

individual in Figure 3D did not show an effect. Similar analysis on the pong data showed that on 238 

average this subject hit the ball at time 2 where the two velocities were equal. Per our hypothesis 239 

this would cause the modified mass to be zero. The subject that exhibited the largest hypermetria 240 

in the LPL group behaved similarly as their counterpart in the LPR group by timing the strokes in 241 

a same manner to hit the ball at around time 3 (same as Figure 3C). Finally, the other extreme 242 

subject in the LPL group showed a notable hypometria on the right side (Figure 3E). In this case, 243 

the hypothesis predicts a negative estimation of the modified mass which is a consequence of the 244 

impacts that are occurring at around time 1. Subsequent analysis of the velocity profiles and the 245 

average hitting time of this subject corroborated with this prediction as well. Figure 3G is a scatter 246 

plot of all subjects that shows the dependence of their hypermetria on the average hitting time. 247 

Indeed, there was a significant correlation between the timings of the hit in the pong game and 248 

extents of overshoot in the reaching task among all participants (𝐹 =  5.6, 𝑝 = 0.03). Thus far, we 249 

showed that sensory integration at events explains individual differences in all the three possible 250 

categories.  251 

Mass of the manipulated object explains group differences 252 

The lateral groups played the game in the same direction with the same amount of delay and there 253 

were no differences in performance and adaptation rate between the two groups. However, despite 254 

the equivalence of the task in the right and left courts, the effect of adaption on the reaching 255 

trajectories was asymmetric between these two groups at the end of the experiment. This 256 

asymmetry is explained by the change in the dynamics of the task. The effective endpoint mass of 257 
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the five-bar linkage robotic device used in this study depends on the configuration and the direction 258 

of motion. These dependencies can be portrayed by polar plots that are centered at any desired 259 

configuration. Each point on the plot represents the projection of the inertia matrix onto the 260 

direction (unit velocity vector) that connects the center to that point. Figure 3F illustrates two of 261 

these plots that are centered on the average position of the hits with arrows that indicate the average 262 

movement direction across all subjects in each lateral pong group. This analysis reveals that the 263 

subjects in the LPR group played with an apparently heavier paddle with the effective mass of a 264 

1.5kg, compared to the LPL group, whose paddle had the average effective mass of a 1kg. We 265 

know from (3) that the modified mass is directly proportional to the mass of the object being 266 

manipulated and therefore the larger hypermetria in the LPR group can be explained by the fact 267 

that this group played with a paddle that had a larger effective mass than the LPL group.  268 

Model predictions   269 

In the previous subsections, we laid out the elements that explain different outcomes at an 270 

individual and group level. Here, we present and validate a computational model that employs 271 

these concepts to predict the reaching behavior (see the methods section for a detailed description 272 

of the model). For each individual, we extracted the configuration of the robot, velocity of the 273 

visual paddle, and velocity of the proprioceptive paddle (hand’s velocity) at impacts from the pong 274 

data. From these data, we computed the visual effective mass and the proprioceptive effective mass 275 

at hits and combined them by using maximum-likelihood estimation to obtain the modified mass. 276 

Next, we predicted the outcome of blind reaching movements after pong. To this end, we added 277 

the modified mass to the simulated model of the robot and computed the inverse dynamics for 278 

preplanned paths to the targets. We then used the calculated torques as feedforward commands to 279 

the actual model of the robot (without the modified mass) to replicate the blind reaching scenario. 280 
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Figure 4 illustrates the hypermetria in the simulated trajectories averaged across all subject in all 281 

the three groups. These predictions demonstrate the ability of this very simple computational 282 

model with only one free parameter (the modified mass) to capture the variance in the data: it 283 

explains between subject differences, the differences in the magnitudes of the hypermetria across 284 

groups and the reduction of the overshoot in the LPR group on the left side.  285 

 286 

Figure 4. Model predictions. Predicted outcomes for all subjects in all three experimental groups.    287 
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DISCUSSION 288 

We examined the temporal structure of the estimation process that is involved in the representation 289 

of object dynamics. Participants played a virtual pong game under an artificially induced 290 

visuomotor delay and performed reaching movements (without visual feedback) before and after 291 

the game using a robotic manipulandum. We predicted that a continuous or periodic estimation 292 

should result in no change in the internal representation of the robot’s inertia whereas discrete 293 

estimation at contact events should lead to changes in the represented inertia. We found changes 294 

in the reaching trajectories after the game suggesting that participants estimated the mass only 295 

during contact events, at which kinetic energy was exchanged with the environment. These 296 

modifications in mass estimations appeared to conserve the expected exchange of kinetic energy 297 

across sensing modalities. 298 

Alternative Explanations 299 

However, there were other potential accounts for some of our observations. Introducing artificial 300 

delays between an applied force and the resulting motion causes an increase in the apparent mass 301 

of an object, as it alters the action-consequence relationship (Honda, Hagura et al. 2013). Modeling 302 

works has suggested that in the sensorimotor control system, externally imposed visual delays in 303 

the causal link between force and motion may be approximated by equivalent mechanical systems 304 

(Takamuku and Gomi 2015) such as a mass-spring-damper system (Sarlegna, Baud-Bovy et al. 305 

2010). Therefore, an alternative explanation is that here as well the effect is due to an excessive 306 

delay in the visual response. But an important observation in these and other delay adaptation 307 

studies is that the overestimation of the mass fades with adaptation (Botzer and Karniel 2013, 308 

Honda, Hagura et al. 2013) and sudden delays in the visual feedback are necessary for the 309 

perception of additional mass (Takamuku and Gomi 2015). On the contrary, here the effect is a 310 
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consequence of prolonged exposure and adaptation. Another possibility is to interpret the results 311 

by considering the spatial effect of the imposed delay. A successful ball strike requires the paddle 312 

to be at a desired position within a certain time window.  To achieve this objective in a delayed 313 

visual space, the hand needs to travel a longer distance, in the same time, and in the same direction. 314 

Therefore, the spatial distortions brought about by a visual delay can be approximated using a 315 

visuomotor scaling factor (Pine, Krakauer et al. 1996, Krakauer, Pine et al. 2000). Although with 316 

a fixed delay, the spatial expansion of the proprioceptive space is not uniform and the scaling 317 

factor depends on movement speed, it is reasonable to assume that the participants learned the 318 

average of the scaling factors that  they experienced (Scheidt, Dingwell et al. 2001, Braun, Aertsen 319 

et al. 2009).   320 

The results from the lateral pong experiments allowed us to rule out these alternative possibilities. 321 

Two groups of participants played the game with identical kinematics while holding simulated 322 

paddles with different inertial mass. After adaptation, they exhibited a significantly different 323 

pattern of reaching performance suggesting that the mass of the paddle is a factor affecting the 324 

results. This asymmetric outcome eliminates the class of kinematic models including the scaling 325 

model. The free parameters in the mechanical equivalent model are also derived using the 326 

kinematics (position, velocity, and acceleration) of the object and its delayed representation. 327 

Therefore, this model also predicts an equal additional mass to be perceived by the groups. 328 

Moreover, none of these models can account for individual differences among the participants. 329 

Finally, we showed that a simple event-based estimation model can account for all the features of 330 

the experimental data.  331 

Multisensory Events in Object Manipulation 332 
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Many discrete events in the physical world are perceived through multiple sensory modalities 333 

providing us with different types of information regarding those events. Although these sensory 334 

stimuli originate synchronously in the environment, to perceive them as simultaneous the nervous 335 

system should, and in fact does, account for the differences in both physical (Sugita and Suzuki 336 

2003) and neural (Stone, Hunkin et al. 2001) transmission rates.  Additionally, the neural 337 

mechanism of simultaneity perception is subjective (Vroomen and Keetels 2010) and the temporal 338 

intermodal alignment can be recalibrated (Fujisaki, Shimojo et al. 2004). This adaptive mechanism 339 

is proposed to be beneficial for object manipulation purposes (Johansson and Flanagan 2009). 340 

Manipulation tasks often include distinct action phases in which objects are grasped, moved, 341 

brought in contact with other objects and released.  These action phases are confined between 342 

discrete contact events that generate multi-sensory responses which are linked in space and time 343 

(Flanagan, Bowman et al. 2006, Johansson and Flanagan 2009). Therefore, sensory integration at 344 

these events provides a more accurate and reliable perception of the environment. In this study, 345 

we have provided experimental evidence to suggest that the nervous system exploits this 346 

opportunity by limiting the context estimation to sensory information provided at multimodal 347 

events.  348 

When reaching to grasp objects, the brain predicts the sensory consequences of contacts and 349 

estimate the level of the required grip force before they happen (Flanagan and Beltzner 2000, 350 

Flanagan, Vetter et al. 2003) using the experience of the previously manipulated objects (Haruno, 351 

Wolpert et al. 2001). Contact events are rich sources of information to compare the predicted and 352 

actual sensory responses. Therefore, forward models can be updated and aligned using prediction 353 

errors and context estimation at events. Depending on the complexity of the interactions and past 354 

experiences, occasional regulation of the forward models at events could be sufficient to fulfill and 355 
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attain the manipulation objectives. Indeed, this was the observation in the current study.  Research 356 

on eye-hand coordination in sequential object manipulation tasks reported that participants direct 357 

their gaze to successive contact locations that mark the end of a sequence well before the time that 358 

hand reaches them (Johansson, Westling et al. 2001, Flanagan and Johansson 2003). But the gaze 359 

location remains fixed and stationary until the sequence is completed. These results indicate that 360 

the sensorimotor control system is actively seeking for task-relevant events that provide distinct 361 

and simultaneous multi-sensory information to compare and regulate forward model predictions 362 

for the upcoming manipulation sequence, while being confident that the previous event-based 363 

adjustments were adequate to attain the objective of the current sequence without any additional 364 

use for feedback. This event-driven use of state feedback in sensorimotor control has obvious 365 

computational advantages over a control scheme that continuously incorporates feedback.  366 

Generalization 367 

We put forward that the event-driven employment of feedback for context estimation and forward 368 

models calibration is not limited to contacts. External perturbations and inaccurate forward models 369 

lead to performance and prediction errors that require correction. Feedback is then integrated only 370 

after an event indicates that the control error exceeded some threshold.  This threshold is variable 371 

and depends on feedback uncertainty (Wei and Körding 2010), perturbation uncertainty (Izawa, 372 

Rane et al. 2008) and the level of precision that is required by the task itself. Therefore, similar to 373 

the contact events, error events adjust forward models only in task-relevant dimensions. This task 374 

dependent use of feedback allows forward models to drift in the task-irrelevant dimensions 375 

(uncontrolled manifold) over time (Scholz and Schöner 1999, Todorov and Jordan 2002). In novel 376 

object manipulation tasks, when there are no forward models to rely on, feedback is extensively 377 
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utilized at initial stages to train forward models whereas practice reduces reliance on feedback 378 

(Sailer, Flanagan et al. 2005).  379 

We propose that the features that we discussed so far regarding context estimation can be 380 

generalized to state estimation. Ariff and colleagues (Ariff, Donchin et al. 2002) designed an 381 

experiment in which they asked participants to track with their eyes the location of their own 382 

unseen hand during reaching movements and they found a proactive gaze behavior with gaze 383 

leading the hand. In this task, forwards models and proprioceptive feedback were combined to 384 

estimate the state of the hand and eye movements were served as a proxy for the estimation process. 385 

An important observation in this study - for our purposes here - is that rather than pursuit eye 386 

movements, participants made saccades to track the hand (but see (Gauthier and Mussa Ivaldi 387 

1988, Gauthier, Vercher et al. 1988)). Moreover, the position and timing of these saccades were 388 

random. Therefore, even in simple and familiar reaching movements, the task demands for 389 

continuous state estimation could not be satisfied.  390 

The role of cerebellum in event prediction and formation of forward models 391 

The adaptive learning mechanism in the cerebellum (Marr and Thach 1991) makes it an ideal 392 

substrate for generating forward models. There is growing body of evidence from studies on 393 

behavioral deficits in patients with cerebellar dysfunction (Bastian, Martin et al. 1996, Tseng, 394 

Diedrichsen et al. 2007), functional imaging (Blakemore, Frith et al. 2001, Kawato, Kuroda et al. 395 

2003), and transcranial magnetic stimulation (Miall, Christensen et al. 2007, Schlerf, Galea et al. 396 

2012) that links the cerebellum to forward models (Bastian 2006). In a ball catching task, subjects 397 

with cerebellar damage exhibited difficulty in predicting the required muscle forces to compensate 398 

for ball weight before the ball reached the hand, but showed normal force adjustments after impact 399 

(Lang and Bastian 1999). Similarly, in a locomotion study (Morton and Bastian 2006), Subjects 400 
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with cerebellar damage were capable of making reactive changes to a perturbation, but were 401 

impaired at making predictive adjustments. In object manipulation, cerebellar lesions prevented 402 

predictive grip force modulations in anticipation of inertial loads (Nowak, Hermsdörfer et al. 2002, 403 

Rost, Nowak et al. 2005). These results suggest that the integrity of the cerebellum is critical for 404 

preparing motor responses in anticipation of discrete sensory events that mark the transition 405 

between action phases. Damages to the cerebellum impairs adaptation to both kinematic (Martin, 406 

Keating et al. 1996) and dynamic (Smith and Shadmehr 2005) changes in the environment.  407 

Persons with cerebellar ataxia may exhibit dysmetria in their movements. The dysmetria have a 408 

distinctive character in each individual. Some tend to show hypometria, while others are 409 

hypermetric (Manto 2009). It has recently been shown that errors in movement extent in patients 410 

with cerebellar dysmetria is caused by the misrepresentation of arm dynamics (Bhanpuri, Okamura 411 

et al. 2014).  Our findings here suggest that errors in estimating mechanical properties of the arm 412 

could be caused by the cerebellar dysfunction in temporal processing and alignment of multimodal 413 

sensory information. Moreover, each injury to the cerebellum, depending on the location and 414 

severity, leads to a specific temporal calibration error in sensory integration causing a broad range 415 

of patient specific motor deficits.  416 
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METHODS 417 

Participants 418 

Twenty-four right handed volunteers (11 females, ranging in age from 23 to 35) participated in the 419 

study. All participants were neurologically intact with normal or corrected to normal vision and 420 

had no prior knowledge of the experimental procedure. The study protocol was approved by 421 

Northwestern University’s Institutional Review Board and all the participants signed an informed 422 

consent form.   423 

Experimental setup  424 

Participants were positioned in front of a horizontal screen and held the handle of a planar, two 425 

degree of freedom robotic manipulandum with their right hand. The screen prevented the 426 

participant’s view of their arm and the robot. A projector was used to display the visual information 427 

on the screen and it was calibrated so that the position of the handle was overlaid on its true position 428 

with a precision of 1 mm. Position and velocity of the robot were computed from instrumented 429 

encoders at the frequency of 1 kHz to provide sensory feedback during the experiment and the data 430 

were recorded at the rate of 200 Hz.  431 

Experimental design 432 

The experiment consisted of two tasks: playing a pong game and executing reaching movements. 433 

In the pong game, the ball movement was confined to a rectangular court and participants were 434 

instructed to hit the ball towards a side that was distinguished by a different color (green sides in 435 

Figure 1A and Figure 2A) from the remaining sides using a rectangular paddle that represented 436 

the location of the hand. To expand the court coverage and to mimic the presence of an opponent, 437 

the velocity of the ball was changed by a random number upon bouncing from the distinguished 438 

side of the court. This number was drawn from a uniform distribution between ±0.13 𝑚/𝑠 and 439 
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was applied to the velocity component along the bouncing side. Additionally, friction was modeled 440 

as a linear decay in the velocity of the ball.  After a collision with the paddle, the ball velocity was 441 

determined using  442 

[
𝑥̇𝑏𝑎𝑙𝑙

+

𝑦̇𝑏𝑎𝑙𝑙
+ ] =  0.7 [

cos 2𝜃 sin 2𝜃
sin 2𝜃 − cos 2𝜃

] [
𝑥̇𝑏𝑎𝑙𝑙

−

𝑦̇𝑏𝑎𝑙𝑙
− ] + 0.42 [

𝑥̇𝑝𝑎𝑑𝑑𝑙𝑒

𝑦̇𝑝𝑎𝑑𝑑𝑙𝑒
] (4) 443 

Where – and + represent before and after the collision respectively and θ is the orientation of the 444 

paddle with respect to the horizontal axis. A haptic pulse was generated by the robot at the time of 445 

impact for the duration of 5 𝑚𝑠. This force feedback was computed using 𝑓 =  0.01∆𝑣𝑏𝑎𝑙𝑙, where 446 

∆𝑣 is the change in the velocity vector. The sudden activation of the motors to generate this pulse 447 

was creating a sound that made it unnecessary to provide any additional auditory feedback. Each 448 

trial of the pong game lasted for one minute. A timer indicated the elapsed time and a counter 449 

displayed the number of collisions in each trial.  450 

In the reaching phase, the screen turned black and a circular target appeared on the screen. 451 

Participants were instructed to reach the target and stop there. This movement was executed 452 

without a visual feedback of the location of the hand and it was guided only by the proprioceptive 453 

representation of the hand position in relation to the visual target. After the movement was 454 

complete, the hand was passively brought back to the starting position by the robot. Similarly, no 455 

visual feedback of the starting position was present.   456 

Protocol 457 

Participants were divided in three groups. All the experiments consisted of a reaching-pong-458 

reaching sequence. Participants in the first experiment (n = 8), played pong in frontal direction 459 

(Figure 1A). After two minutes, the game was delayed for 𝜏 =  80 𝑚𝑠 and participants played the 460 

delayed game for ~40 minutes. The delay was applied across all the visual, haptic, and auditory 461 
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channels. In reaching tasks, participants performed 45 reaching movement in a random order to 462 

three targets that were placed at 0.14 𝑚 from the starting position and were separated from each 463 

other by 45° (Figure 1A). A subgroup of participants in this experiment (n = 5), also participated 464 

in a control experiment in a separate session where they played the game for ~20 minutes but 465 

without the pong being delayed. The order in which these participants performed the delayed and 466 

non-delayed game was randomized.  467 

In the two other experiments, participants played pong in lateral direction. Two pong courts where 468 

juxtaposed next to each other (Figure 2A) in such a way that their intersection was along the 469 

participants’ body midline. At the beginning, participants played the pong game with no delay in 470 

both courts for the total time of eight minutes that was equally divided and alternating between the 471 

courts. Next, participants in one group (n = 8) played the delayed pong only in the right court for 472 

40 minutes, while the other group (n = 8) played the delayed pong only in the left court for the 473 

same amount of time and with the same amount of delay (𝜏 =  120 𝑚𝑠). However, the reaching 474 

tasks before and after pong were identical across these two groups, we duplicated the same pattern 475 

of targets that was used in the first experiment and placed one in each court (Figure 2A). 476 

Therefore, participants in these two groups performed reaching movements to six targets (three in 477 

each court) from two corresponding starting positions (one in each court). Each movement was 478 

repeated 5 times in a random order. 479 

Computational model 480 

The equations of motion for a five-bar linkage robotic device used in this experiment can be 481 

derived using the Euler-Lagrange equations and expressed in matrix form as 482 

𝑴(𝒒)𝒒̈ + 𝑪(𝒒, 𝒒̇)𝒒̇ = 𝒖 (5) 483 
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Where 𝑀(𝑞), 𝐶(𝑞, 𝑞̇) and 𝑢 represent the inertia matrix, Centripetal/Coriolis matrix and 484 

generalized forces respectively.  The effective mass of the robot is spatially varying and 485 

configuration dependent. The effective mass (𝑚𝑟) is defined as the projection of the inertia matrix 486 

onto the instantaneous direction of motion (Worsnopp, Peshkin et al. 2006).  Therefore, for each 487 

direction of motion at each configuration, the inertia of the robot matches that of a point mass. The 488 

inertia of this equivalent point mass can be derived using the conservation of energy principle: the 489 

kinetic energy of the robot must be equivalent to the kinetic energy of the point mass 490 

1

2
𝒒̇𝑇𝑴(𝒒)𝒒̇ =  

1

2
𝒙̇𝑇𝑚𝑟𝒙̇ (6) 491 

The unit velocity vector is 𝒙̇ = [cos 𝜃  sin 𝜃]𝑇 and 𝜃 is the angle between the direction of motion 492 

and the x-axis. Therefore 493 

𝑚𝑟 = 𝒙̇𝑇(𝑱−1(𝒒))𝑇𝑴(𝒒)𝑱−1(𝒒)𝒙̇ (7) 494 

Where 𝑱 is the Jacobian matrix. To predict the outcome of blind reaching movements after pong 495 

we extracted the configuration of the robot, the velocity of hand (𝑣𝑝) and its delayed representation 496 

(𝑣𝑣) at hits from the pong data during the last five minutes of adaption for each individual. From 497 

these data, we computed the effective visual mass (𝑚𝑣 =  𝑚𝑟) and the effective proprioceptive 498 

mass (𝑚𝑝 =  𝑚𝑟
𝑣𝑣

2

𝑣𝑝
2
 ) of the robot. Next, we integrated these sensory information using maximum-499 

likelihood estimation (Ernst and Banks 2002) to obtain the apparent mass 500 

𝐸(𝑚) =  

1
𝜎𝑣

2⁄

1
𝜎𝑣

2⁄ + 1
𝜎𝑝

2⁄
𝑚𝑣 +  

1
𝜎𝑝

2⁄

1
𝜎𝑣

2⁄ + 1
𝜎𝑝

2⁄
𝑚𝑝 (8) 501 

Where 𝜎𝑣
2 and 𝜎𝑝

2 represent the variance of the effective visual and proprioceptive masses at hits. 502 
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The perceived mass is therefore different from the actual effective mass of the robot. We called 503 

this difference the modified mass (𝑚 ̂ = 𝐸(𝑚) − 𝑚𝑟).  504 

Finally, we added the modified mass to the simulated model of the robot and computed the inverse 505 

dynamics for preplanned minimum jerk (Flash and Hogan 1985) trajectories to the targets. We 506 

then used the calculated torques as feedforward commands to the actual model of the robot 507 

(without the modified mass). The difference in the dynamic model of the robot between inverse 508 

computation and feedforward simulation caused an erroneous trajectory. The magnitude of the 509 

error was used to emulate changes in reaching trajectories after adaptation.  510 

Data and Statistical Analysis  511 

A fifth-order Butterworth low-pass filter with a cutoff frequency of 20 Hz was implemented to 512 

smooth the velocity signals. We fed the hit data from the last five minutes of pong to the 513 

computational model, however the output of the model was not sensitive to this choice. The hits 514 

at which the proprioceptive effective mass was more than ten standard deviations away from the 515 

mean visual effective mass were removed from the analysis. The threshold of significance in all 516 

the statistical analysis was set at 0.05.   517 
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