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Hierarchy provides a unifying principle for the macroscale organization of anatom-12

ical1–4 and functional5–8 properties across primate cortex, yet the microscale bases of13

hierarchical specialization across human cortex are poorly understood. Anatomical hi-14

erarchy is conventionally informed by invasively measured laminar patterns of long-15

range cortico-cortical projections1–4, creating the need for a principled proxy measure16

of hierarchy in humans. Moreover, cortex exhibits a transcriptional architecture char-17

acterized by distinct profiles of gene expression across areas9–12, yet organizing prin-18

ciples for areal transcriptomic specialization remain unclear. We hypothesized that19

functional specialization of human cortical microcircuitry across areas involves hierar-20

chical gradients of gene expression. Here we show that a noninvasive neuroimaging21

measure, the MRI-derived myelin map13, indexes the anatomical hierarchy and closely22

resembles the dominant areal pattern of transcriptomic variation across the human cor-23

tex. We found strong hierarchical gradients in expression of genes related to cortical24

microcircuit function, which we validated with microanatomical data from monkey25

cortex, and in expression of genes related to neuropsychiatric disorders. These find-26

ings establish hierarchy as a general organizing principle, defining an axis shared by27

the transcriptomic and anatomical architectures of human cortex, and suggest that hi-28

erarchical gradients of microscale properties shape the macroscale specialization of29

cortical function.30
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Anatomical hierarchy is defined as a globally consistent ordering of cortical areas31

constrained by characteristic laminar patterns of interareal projections, which have been32

extensively measured in nonhuman primates1–3. The invasive anatomical tract-tracing33

techniques necessary to conventionally index hierarchy have precluded analogous in-34

vestigations of cortical organization in humans. We therefore first sought to establish a35

noninvasive neuroimaging measure that can serve as a proxy for anatomical hierarchy36

in human and nonhuman primate cortex. One candidate we identified was the cortical37

myelin map, which can be defined from structural MRI as the contrast ratio of T1- to T2-38

weighted (T1w/T2w) maps13. The myelin map provides a noninvasive in vivo measure of39

gray-matter intracortical myelin content and reflects borders between cytoarchitecturally40

delineated cortical areas13. Myelin map values are high in primary sensory cortex (vi-41

sual, somatosensory, auditory) and low in association cortex, homologously in human42

and macaque (Fig. 1a–c, Extended Data Fig. 1). Motivated by these empirical observa-43

tions, we hypothesized that the myelin map provides a noninvasive proxy for cortical44

areas’ positions along the hierarchy through an inverse relationship.45

We can quantitatively validate this proxy measure in macaque cortex through anatom-46

ical tract-tracing data of interareal projections with laminar specificity3. Laminar connec-47

tivity data are used to specify a hierarchical ordering of cortical areas such that lower48

areas send feedforward projections to higher areas, and higher areas send feedback pro-49
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jections to lower areas1–3,14 (Extended Data Fig. 2). Feedforward and feedback projections50

primarily originate from the supragranular and infragranular layers, respectively. At the51

level of individual projections, we found that the difference in myelin map values be-52

tween connected areas is correlated with the laminar feedforward/feedback structure of53

the connection (Fig. 1d). Globally, we found a strong negative correlation between hier-54

archy and myelin map values (rs = −0.76, P < 10−5; Spearman rank correlation) (Fig.55

1e,f). The myelin map was more predictive of hierarchy than were two other candidate56

neuroimaging measures15, cortical thickness and distance from primary visual cortex (Ex-57

tended Data Fig. 3). The strong inverse relationship supports the cortical myelin map as58

a noninvasive proxy measure for hierarchy which can be applied to human cortex where59

lack of tract-tracing data prevents direct characterization of hierarchy.60

The organizing principles for the large-scale structure of microcircuit specialization61

across human cortical hierarchy remain unclear. The study of the molecular composition62

of cortical microcircuitry has been revolutionized by large-scale transcriptomics, which63

can map expression levels of genes involved in neurobiological processes9–11. Datasets64

such as the Allen Human Brain Atlas (AHBA) have revealed a transcriptomic architec-65

ture with distinct gene expression profiles across areas of the human brain9,10,12. To test66

for hierarchical microcircuit specialization across human cortex, we examined areal pat-67

terns of cortical gene expression from the AHBA in relation to the myelin map. Due to68
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the strong inverse relationship observed between the myelin map and hierarchy, if the69

spatial pattern of gene expression is negatively correlated with the myelin map, then70

expression level increases along anatomical hierarchy; conversely, a positive correlation71

indicates decreasing expression along hierarchy. To support the validity of interpreta-72

tions, we compared the myelin map correlation (MMC) of microcircuitry-related genes73

in human cortex to more direct anatomical measures in macaque cortex, with focus on74

cytoarchitecture, inhibitory interneuron densities, and synaptic processes (Fig. 2).75

An established feature of microcircuit specialization that varies along cortical hier-76

archy is the degree of laminar differentiation in cytoarchitecture4: primary sensory cortex77

is highly laminated with a well-defined granular layer, whereas association cortex is char-78

acterized by decreasing laminar differentiation and a gradual loss of the granular layer79

with progression along hierarchy. In macaque cortex, we found a very strong correlation80

between myelin map and cytoarchitectural type4 (Fig. 2a). In human cortex, we exam-81

ined average expression profiles of genes reported to be preferentially expressed in spe-82

cific cortical layers16. Consistent with trends observed in macaque, we found a positive83

MMC for granular (L4) layer-specific genes, and negative MMCs for supra- (L1–3) and84

infra-granular (L5/6) layer-specific genes (Fig. 2b,c). These findings demonstrate that85

the noninvasive myelin map captures anatomical gradients related to cortical hierarchy86

in humans and nonhuman primates.87
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To gain further insight into microcircuit bases of hierarchical specialization, we ex-88

amined the spatial distributions of markers for distinct inhibitory interneuron cell types.89

Inhibitory interneuron cell types are biophysically distinct classes which differ in their90

synaptic connectivity patterns, morphology, electrophysiology, and functional roles17. In91

macaque cortex, we found that densities of parvalbumin- and calretinin-expressing in-92

terneurons exhibit positive and negative MMCs, respectively (Fig. 2d). In human cortex,93

we found highly consistent gradients in the expression profiles for the genes which code94

for parvalbumin and calretinin (Fig. 2e). Strong hierarchical gradients were observed95

in transcriptional markers for a number of inhibitory interneuron cell types17 (Fig. 2f), as96

well as for composite gene profiles for specific cell types derived from RNA sequencing in97

individual human neurons18 (Extended Data Figs. 4). These findings suggest that hierar-98

chical gradients in neuronal cell-type distributions contribute to specialization of cortical99

microcircuits.100

Gradients in the composition of synapses may endow cortical areas with functional101

specialization needed for diverse computations. One putative microanatomical correlate102

for the strength of recurrent synaptic excitation in local microcircuits is the number of103

excitatory synapses on pyramidal neurons, which can be quantified by dendritic spine104

counts. In macaque cortex, we found a strong negative MMC for basal-dendritic spine105

counts on pyramidal neurons19 (Fig. 2g). This suggests a gradient of increasing local106
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recurrent strength along cortical hierarchy14. Distinct subunits of synaptic receptor pro-107

teins are expressed differentially across neuronal cell types and produce physiologically108

diverse synaptic properties. To investigate hierarchical gradients in receptor subunit com-109

position in human cortex, we examined expression profiles of genes that code for various110

excitatory and inhibitory synaptic receptor subunits (Fig. 2h–j). The gene GRIN2B, which111

codes for a glutamatergic NMDA receptor subunit mediating local synaptic excitation112

preferentially in association cortex20, exhibited a strong negative MMC, consistent with113

the observed macaque spine count gradient. Gene sets coding for neuromodulator recep-114

tors also contained hierarchical gradients (Extended Data Fig. 5). The positive and neg-115

ative MMCs reported in Fig. 2i,j suggest that gradients in local excitatory and inhibitory116

synaptic machinery contribute to functional specialization of cortical microcircuitry5,14.117

How well does the myelin map capture the transcriptomic architecture of cortex in118

general? We performed principal component analysis (PCA) to identify the dominant119

areal patterns underlying gene expression variation (Fig. 3a–e, Extended Data Fig.6). We120

analyzed categorical sets of genes which are preferentially expressed in human brain,121

neurons, oligodendrocytes, and synaptic processes21, and developed a method to assess122

statistical significance through randomized surrogate data maps that preserve the spatial123

autocorrelation structure of the myelin map (Extended Data Fig. 7, see Methods). First,124

we found that myelin map topography is strongly correlated with the dominant axis of125
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gene expression variation, i.e., the first principal component (PC1) (MMC range: 0.84–126

0.86; P < 10−4 for each set) (Fig. 3b,d). PC1 captures a large fraction of overall gene127

expression variance (range: 22–28%, more than twice PC2 for each set) (Fig. 3c). PC1128

correlated more strongly with the myelin map than with maps of cortical thickness and129

distance from primary visual cortex (Extended Data Fig. 6d–k). For each gene set, the130

myelin map captures roughly two-thirds of the variance captured by PC1, which by con-131

struction captures the maximum variance for a linear combination of maps (Fig. 3e). The132

close alignment between myelin map topography and gene expression variance suggests133

that the dominant axis of human cortical transcriptomic organization relates to hierarchy.134

To examine the functional roles of genes with strong hierarchical variation, we tested135

for their preferential enrichment in gene sets defined by functional and disease ontologies.136

We found that genes with stronger MMCs are enriched in more functional categories, rel-137

ative to genes with weaker MMCs, for all functional gene ontologies tested10,22: biolog-138

ical processes, cellular components, molecular functions, microRNA binding sites, and139

drug targets (Fig. 3f). These findings suggest that diverse key cell-biological processes140

contribute to hierarchical differentiation of cortical microcircuitry. Finally, we examined141

whether hierarchical expression is a preferential property of genes associated with psychi-142

atric and neurological disorders. The genes APOE and SNCA, which are strongly linked143

to Alzheimer’s and Parkinson’s diseases, respectively23, exhibit robust negative MMCs,144
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and therefore higher expression in association cortex (Extended Data Fig. 8). For a sys-145

tematic examination, we statistically quantified the enrichment of genes with strong hier-146

archical variation in disease-related gene sets10, obtained from the DisGeNet database24.147

Genes with strongly negative MMCs were significantly over-represented among multiple148

disease-related gene sets (Fig. 3g). In particular, sets for schizophrenia, bipolar disorder,149

autistic disorders, and depressive disorders are enriched with strongly negative MMC150

genes which are more highly expressed in association cortex. These findings suggest that151

brain disorders involve differential impacts to areas along the cortical hierarchy.152

Taken together, our findings show that cortical hierarchy provides an organizing153

principle for the transcriptomic architecture of human cortex. Our results support the154

myelin map as a noninvasive neuroimaging proxy for hierarchical index in the absence155

of tract-tracing data. Hierarchy, as captured by the myelin map, defines an axis of micro-156

circuit specialization involving synapses and cell types, with relevance to brain disease.157

Manipulation of hierarchically expressed drug targets would allow regions of sensory158

or association cortex to be preferentially modulated through pharmacology. Large-scale159

mapping of the cortical transcriptome at finer spatial resolution will further elucidate160

the microcircuit basis of hierarchical specialization with laminar16 and cell-type12,18 speci-161

ficity. Furthermore, characterization of the developmental trajectory of hierarchical tran-162

scriptomic specialization25–27 may inform the progression of neurodevelopmental disor-163
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ders. Our findings add to a growing understanding of how transcriptomic specialization164

shapes cortical function, including the spatiotemporal structure of intrinsic activity10,28,29
165

and anatomical connectivity11,30. Hierarchical gradients of microcircuit properties across166

the human cortex may play key roles in functional specialization across large-scale corti-167

cal networks.168
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Figure 1: Cortical myelin maps noninvasively capture the hierarchical organization of
primate cortex. a, The parcellated human myelin map (T1w/T2w MRI signal) in the left
cortical hemisphere exhibits high values in primary sensory cortical areas relative to asso-
ciation areas. b, Human myelin map values are significantly lower in functionally defined
association networks than in sensory networks (P < 10−3; Wilcoxon signed-rank test)
(see Extended Data Fig. 1c) for network labels). Error bars mark the std. dev. across areas
within a network. c, The parcellated macaque myelin map topography is similar to that
of the human, suggesting that a homologous pattern of intracortical myelination across
primate species. d, Myelin map variation predicts feedforward (FF) and feedback (FB)
interareal projections in macaque cortex, as quantified by the fraction of labeled supra-
granular layer neurons (SLN) in the source area. High and low SLN correspond to FF
and FB projection motifs, respectively. SLN significantly correlates with the difference in
myelin map values between target and source areas (rs = −0.44, P < 10−5; Spearman
rank correlation). e, Hierarchy levels across cortical areas are estimated by fitting a gen-
eralized linear model to predict SLN from pairwise hierarchical distance. f, Hierarchy
levels are reliably predicted by the myelin map values in macaque cortex (rs = −0.76,
P < 10−5), demonstrating that myelin maps provide a noninvasive neuroimaging proxy
measure for anatomical hierarchy in primate cortex.
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Figure 2: Myelin maps capture specialization of cortical microcircuitry in humans and
nonhuman primates, for cytoarchitecture, inhibitory cell types, and synaptic composi-
tion. a, Cytoarchitectural type is reliably predicted by the myelin map in macaque cortex
(τ = 0.87, P < 10−5; Kendall’s tau correlation coefficient). Cortical areas were classified
into one of eight cytoarchitectural types according to laminar thickness, laminar differ-
entiation, and neuronal density. b, The average expression map of genes preferentially
expressed in human granular layer 4 (L4) is positively correlated with myelin map values
(rs = 0.74, P < 10−5; Spearman rank correlation), consistent with a more prominent gran-
ular L4 in sensory than association cortex. c, Average expression maps of laminar-specific
genes, which are preferentially expressed in specific cortical layers in humans, show sig-
nificant myelin map correlations (MMCs). L1-3: supragranular layers 1-3; L5/6: infra-
granular layers 5 and 6. d, The macaque cortical myelin maps capture areal variation in
the relative proportions of calretinin- and parvalbumin-positive inhibitory interneurons.
e, The genes CALB2 and PVALB, which respectively code for calretinin and parvalbu-
min, exhibit hierarchical gradients in human cortex that are consistent with anatomical
gradients in the macaque. f, Expression maps of established genes coding for markers
of specific inhibitory interneuron cell types exhibit hierarchical gradients across human
cortex. g, Basal-dendritic spine counts on pyramidal cells are significantly anti-correlated
with myelin map values (rs = −0.71, P < 10−4). h, The gene GRIN2B, which codes for
the NMDA receptor subunit NR2B, exhibits a negative MMC (rs = −0.62, P < 10−4). i, j,
Expression maps for genes coding for distinct subunits of the excitatory NMDA receptor
and inhibitory GABAA receptor exhibit both positive and negative hierarchical gradients.
For bar plots, statistical significance is calculated through a spatial autoregressive model
to account for spatial autocorrelation in maps: *, P < 10−1; **, P < 10−2; ***, P < 10−3.
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Figure 3: The myelin map captures the dominant spatial axis of gene expression variation
across human cortex, as defined by principal component analysis (PCA), and hierarchical
variation relates to enrichment in neurobiological function and brain disorders. a, The
first spatial principal component (PC1), shown here for a set of brain-specific genes, is by
definition the spatial map that linearly captures the maximum variation in gene expres-
sion. b, PC1 for this set is highly correlated with the myelin map (MMC = 0.86; P < 10−4).
c, PC1 captures a large fraction of total gene expression variance. Inset: Variance captured
by PC1 for five gene sets: all genes in our dataset; genes preferentially expressed in brain
relative to other human tissues; genes preferentially expressed in either neurons or oligo-
dendrocytes relative to other brain cell types; and genes related to synaptic processes. d,
Across all gene sets, PC1 exhibits a highly similar areal topography to the myelin map
(MMC range: 0.84–0.86; P < 10−4 for each). e, The amount of gene expression variance
captured by the myelin map (σ2

Myelin) is roughly two-thirds of the theoretical maximum
established by PC1 (σ2

PC1). For panels (d,e), statistical significance is calculated through
permutation testing with surrogate maps that preserve the spatial autocorrelation struc-
ture of the myelin map (see Methods): *, P < 10−1; **, P < 10−2; ***, P < 10−3. f, Gene on-
tology enrichment analysis, using quantiles of absolute MMC. Genes with strong MMCs
are overrepresented in functional annotations across multiple gene ontologies (GO). BP,
biological process; CC, cellular component; MF, molecular function; MiRNA, microRNA
binding site. g, Genes with strong negative MMCs are overrepresented in multiple gene
sets associated with brain disorders. Left panel: Interquartile ranges of MMC for gene sets.
Right panel: Enrichment is quantified by the hypergeometric test, which assesses the sta-
tistical significance of overlap between each gene set and the top (red) or bottom (blue)
20% MMC genes. DO, disorder; DI, disease; ALS, amyotrophic lateral sclerosis; OCD,
obsessive-compulsive disorder. Inset: Distribution of MMCs across genes. The dotted
line marks the mean of the population (0.006).
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Methods246

Parcellated cortical myelin maps (T1w/T2w). Cortical myelin maps were defined as247

the ratio of T1- to T2-weighted (T1w/T2w) MRI maps as previously characterized13,31,248

using the surface-based CIFTI format32. The T1w/Tw2 map has been shown to corre-249

late with grey-matter intracortical myelination and to reflect architectonic boundaries be-250

tween cortical areas13,31. Of note, it may not index myelin content in white matter. The251

group-averaged (N = 69) human myelin map was obtained from the publicly available252

Conte69 dataset, which was reported previously to study myelin maps13. The group-253

averaged (N = 334) cortical thickness map was obtained from the Human Connectome254

Project (HCP)33. Human myelin map values for the left cortical hemisphere were parcel-255

lated into 180 areas using the Multi-Modal Parcellation (MMP1.0) from the HCP32. As-256

signment of MMP1.0 parcels to functional networks (Fig. 1b, Extended Data Fig. 1c) was257

performed through community detection analysis[34] on time-series correlation from the258

HCP resting-state fMRI dataset.259

The group-averaged macaque myelin and thickness maps were obtained from the260

publicly available BALSA database35 (N = 19) (https://balsa.wustl.edu/study/261

show/W336). Macaque myelin map values for the left cortical hemisphere were par-262

cellated into 91 areas using the M132 parcellation which was used for the anatomical263

tract-tracing dataset35. Geodesic distance between two parcels i and j is calculated as the264
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average of all pairwise surface-based distances between grayordinate vertices in parcel i265

and vertices in parcel j.266

Anatomical hierarchy levels in macaque. To assess whether macaque cortical myelin267

maps could reliably capture the laminar-specific interareal projection patterns conven-268

tionally used to define anatomical hierarchy, we fit a generalized linear model (GLM)269

to quantitative laminar projection data, yielding ordinal hierarchy values in 89 corti-270

cal areas, following the procedure of ref. [3]. Anatomical tract-tracing data, derived271

from retrograde tracers, was obtained from the publicly available Core-Nets database272

(http://core-nets.org). Retrograde tracer was injected into a target area i, and the273

number of labeled neurons in source area j were counted. The fraction of external la-274

beled neurons, FLNe ij , is a quantitative measure of connection strength defined as the275

number of labeled neurons in the source area normalized by the total number of labeled276

neurons in all external cortical source areas for a given injection36. Labeled neurons in277

the source areas are classified by location in either supragranular or infragranular lay-278

ers. For a given projection, the proportion of supragranular labeled neurons, SLN ij , is279

defined as the ratio of Nsupra to Nsupra + Ninfra for neurons labeled in source area j. As280

feedforward and feedback connections preferentially originate in supragranular and in-281

fragranular layers, respectively1–3, SLN is a quantitative measure of hierarchical distance282

between two cortical areas3: under this paradigm for laminar-specific projection motifs, a283

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199703doi: bioRxiv preprint 

http://core-nets.org
https://doi.org/10.1101/199703
http://creativecommons.org/licenses/by-nc-nd/4.0/


pure feedforward connection from source area j to target area i would originate entirely284

in the superficial layers, resulting in an SLN of 1. Conversely, a pure feedback projection285

originating entirely in deep infragranular layers would result in an SLN of 0.286

The GLM procedure for fitting hierarchy from SLN data is described in detail in287

ref. [3]. In brief, the hypothesis that SLN is indicative of hierarchical distance can be ex-288

pressed as g(SLNij) = Hi −Hj , where Hi corresponds to the hierarchical position of area289

i, and g is an arbitrary and possibly nonlinear function linking SLN values on the unit290

interval (0, 1) to their corresponding hierarchical distance. We used a logit link function291

to map SLN values from the unit interval to the entire real number line following the pro-292

cedure of ref. [14]. Fitting linear predictors (i.e. hierarchical levels) to logit-transformed293

SLN values formulates a type of generalized linear model, with maximum likelihood294

estimation assuming a binomial family probability distribution for the supra- and infra-295

granular neuron counts. To assign more weight to stronger connections during model296

estimation of hierarchical levels, we also weight each pathway in the model by the nega-297

tive logarithm of the FLNe value. We clip SLN values to lie in the interval (0.01, 0.99) so298

the logit-transformed SLN value is well-defined for all pathways used to fit the model.299

Furthermore, to reduce the impact of noise on model parameter estimation, we only in-300

cluded pathways which contained at least 100 projection neurons when fitting the GLM;301

we confirmed that results were generally robust to the choice of neuron count threshold.302
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Maximum likelihood estimation of model parameters was done in the R program-303

ming language using the glm function. The model-estimated hierarchy levels, invariant304

under linear transformations, were rescaled to span the unit interval [0, 1]. To assess the305

statistical relationship between myelin map value and hierarchy level, we calculated the306

Spearman rank correlation between the 89 ordinal hierarchy values and their correspond-307

ing parcellated myelin map values (Fig. 1f). For visual clarity in Fig. 1c,d we remove this308

nonlinear transformation by displaying model-estimated hierarchy levels after applying309

the inverse-logit (i.e., logistic) transformation. This rescaling preserves the ordering of310

areas and therefore does not affect the reported Spearman rank correlations.311

Macaque anatomical data: cytoarchitectural types, inhibitory interneuron densities,312

and pyramidal neuron spine counts. To quantify the statistical relationship between313

myelin map value and categorical cytoarchitectural type (Fig. 2a), we compared myelin314

map values to structural classification values reported for 29 regions of primate visual cor-315

tex, obtained from ref. [4]. To characterize hierarchical distributions of cortical inhibitory316

interneuron cell types (Fig. 2b), we compiled, from multiple immunohistochemical stud-317

ies, the relative densities of inhibitory interneurons which are immunoreactive (ir) to the318

three calcium-binding proteins parvalbumin (PV), calretinin (CR), and calbindin (CB)37–40.319

To characterize hierarchical variation in pyramidal neuron excitatory synaptic connectiv-320

ity (Fig. 2c), we compiled, from multiple studies by Elston and colleagues41–46, the number321
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of spines of basal-dendritic trees of layer-3 pyramidal neurons.322

For each of these three analyses, we produced a mapping between the 91 areas in the323

M132 atlas parcellation, where the myelin map values are calculated, to the architectonic324

areas reported in these collated studies (Supplementary Table 1). Where the anatomical325

mapping was not a one-to-one correspondence, we mapped the reported anatomical area326

onto the set of all M132 parcels with nonzero spatial overlap, and the myelin map value327

was calculated as the average across these M312 parcels.328

Gene expression preprocessing. The Allen Human Brain Atlas (AHBA) is a publicly329

available transcriptional atlas containing gene expression data, measured with DNA mi-330

croarrays, that are sampled from hundreds of histologically validated neuroanatomi-331

cal structures across six normal post-mortem human brains9. After no significant inter-332

hemispheric transcriptional differences were observed in the first two bilaterally profiled333

brains9, the remaining four donor brains were profiled only in the left cortical hemi-334

sphere10. To construct parcellated group-averaged expression maps, we therefore re-335

stricted all analyses to microarray data sampled from the left cortical hemisphere in each336

of the six brains. Microarray expression data and all accompanying metadata were down-337

loaded from the AHBA (http://human.brain-map.org)9,10. The raw microarray ex-338

pression data for each of the six donors includes expression levels of 20,737 genes, pro-339

filed by 58,692 microarray probes. These data were preprocessed according to following340
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procedure:341

1. Gene probes without a valid Entrez Gene ID were excluded.342

2. Cortical samples exhibiting exceptionally low inter-areal similarity were excluded. We343

first computed the spatial correlation matrix of expression values between samples us-344

ing the remaining 48,170 probes, then summed this matrix across all samples. Samples345

whose similarity measure was more than five standard deviations below the mean346

across all samples were excluded. At most, this step excluded three samples within a347

subject.348

3. Samples whose annotations did not indicate that they originated in the left hemisphere349

of the cerebral cortex were excluded. To focus analysis to neocortex, we also excluded350

samples taken from cortical structures that are cytoarchitecturally similar to the hip-351

pocampus, including the rhinal sulcus, piriform cortex, parahippocampal gyrus, and352

the hippocampal formation.353

4. The remaining cortical samples were mapped from volumetric space onto a two di-354

mensional cortical surface by minimizing the pairwise 3D Euclidean distance between355

the stereotaxic MNI coordinates reported for each sample, and each grayordinate ver-356

tex in the group-averaged surface mesh of the midthickness map in the Conte69 brain357

atlas. Cortical samples whose Euclidean distance to the nearest surface vertex was358

more than two standard deviations above the mean distance computed across all sam-359

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199703doi: bioRxiv preprint 

https://doi.org/10.1101/199703
http://creativecommons.org/licenses/by-nc-nd/4.0/


ples were excluded (excluding between 4 and 13 samples per subject). An average360

of 203 ± 32 samples per subject, yielding 1219 total samples across all six subjects,361

remained at this stage.362

5. Expression profiles for samples mapped onto the same surface vertex were averaged.363

Then expression profiles for each remaining sample were z-scored across gene probes.364

6. Expression profiles for each of the 180 unilateral parcels in the HCP’s MMP1.0 cortical365

parcellation32 were computed in one of the two following ways. (I) For parcels which366

had at least one sample mapped directly onto one of their constituent surface vertices,367

parcellated expression values were computed by averaging expression levels across368

all samples mapped onto the parcel. (II) For parcels which had no samples mapped369

onto any of their constituent vertices, we first created densely interpolated expression370

maps, in which each surface vertex was assigned the expression level associated with371

the most proximal surface vertex onto which a sample had been mapped (i.e., a Voronoi372

diagram), determined using surface-based geodesic distance along the cortical surface;373

the average of expression levels across parcels’ constituent vertices was then computed374

to obtain parcellated expression values.375

7. A coverage score was also assigned to each gene probe, defined as the fraction of 180376

parcels that had at least one sample mapped directly onto one of its constituent surface377

vertices. Probes with coverage below 0.4 (i.e., probes for which fewer than 72 of the378
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180 parcels contained samples) were excluded.379

8. For each gene profiled by multiple gene probes, we selected and used the expression380

profile of a single representative probe. If two probes were available, we selected the381

probe with maximum gene expression variance across sampled cortical structures, in382

order to more reliably capture spatial patterns of areal heterogeneity. If three or more383

probes were available, we selected a probe using a procedure similar to the one de-384

scribed in step 2: we computed a correlation matrix of parcellated gene expression385

values across the available gene probes, summed the resultant matrix along one of its386

dimensions to obtain a quantitative similarity measure for each probe, relative to the387

other gene probes, and selected the probe with the highest similarity measure, as it is388

most highly representative among all available gene probes.389

9. Each subject-level gene expression profile was z-scored before we computed group-390

level expression profiles, which were obtained by computing the mean across subjects391

which were assigned a probe for that gene. Genes were excluded if fewer than four392

subjects were assigned a probe. Finally, group-level expression profiles were z-scored393

across areas for each gene.394

These steps yielded group-averaged expression values for 16,040 genes across 180 cortical395

areas, which were used for all analyses reported here. The myelin map correlation (MMC)396

for each gene is reported in Supplementary Table 2.397

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2017. ; https://doi.org/10.1101/199703doi: bioRxiv preprint 

https://doi.org/10.1101/199703
http://creativecommons.org/licenses/by-nc-nd/4.0/


Categorical gene sets. We conducted analyses on biologically and physiologically mean-398

ingful gene sets extracted from existing databases and neuroscientific literature, reported399

below (Supplementary Table 2):400

1. Brain-specific. Genes with expression specific to human brain tissue, relative to401

other tissues, were obtained from supplementary data set 1 of ref. [47]. Following402

ref. [21], brain-specific genes were selected for which expression in brain tissue was403

four times higher than the median expression across all 27 different tissues.404

2. Neuron- and oligodendrocyte-specific. Brain genes with expression specific to neu-405

rons or oligodendrocytes, relative to other central nervous system (CNS) cell types,406

were obtained from supplementary data set S3b of ref. [48]. Following ref. [21],407

neuron-specific genes were selected for which log-expression in neurons of P7n cell408

type in the mouse was 0.5 greater than the median log-expression across 11 CNS cell409

types.410

3. Synaptome. Four synaptic gene sets encoding proteins in the presynaptic nerve411

terminal, presynaptic active zone, synaptic vesicles, and postsynaptic density, were412

obtained from SynaptomeDB, an ontology-based database of genes in the human413

synaptome49.414

4. Neuron subtype-specific. Gene sets representing distinct classes of neuronal sub-415

types were obtained from ref. [18], in which clustering and classification analyses416
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yielded 16 distinct neuron subtypes, on the basis of differential gene expression417

measured by RNA sequencing from single neurons in human cortex. The fraction418

of positive values using exon-only derived transcripts per million (TPM) associated419

with each subtype-specific gene were obtained from supplementary table S5; within420

each neuronal subtype cluster, the TPM values for the cluster genes were normal-421

ized and used to create a weighted gene expression profile representative of each422

subtype’s spatial topography (Extended Data Fig. 4).423

5. Layer-specific. Sets of laminar-specific genes localized to different layers of hu-424

man neocortex were obtained from supplementary table S2 of ref. [16]. Genes were425

broadly grouped into sets representative of supragranular (L1–3), granular (L4), and426

infragranular (L5/6) layers.427

Spatial autoregressive modeling. Significance values as indicated by the number of428

stars reported on barplots for myelin map correlations were corrected to account for spa-429

tial autocorrelation structure in parcellated myelin map and gene expression values. Be-430

cause physical quantities like cortical myelination and gene expression must vary smoothly431

and continuously in space, measurements recorded from proximal cortical areas tend to432

be more similar than measurements recorded from distal areas of cortex. This depar-433

ture from the assumption of independent observations biases calculations of statistical434

significance. To model this spatial autocorrelation, we used a spatial lag model (SLM)435
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commonly applied in the spatial econometrics literature50, of the form y = ρWy+Xβ+ν,436

where W is a weight matrix implicitly specifying the form of spatial structure in the data,437

and ν is normally distributed.438

To implement a spatial lag model in the python programming language, we used the439

maximum likelihood estimation routine defined in the Python Spatial Analysis Library440

(pysal)51. We first determined the surface-based spatial separation between each pair of441

cortical parcels by computing the mean of the pairwise distances between a vertex in442

parcel i and a vertex in parcel j, from which we constructed a pairwise parcel distance443

matrix, D.444

Similarity of gene expression profiles was well-approximated by an exponential de-445

caying spatial autocorrelation function (Extended Data Fig. 7), as was found in mouse446

cortex11. We fitted the correlation of gene expression profiles between two areas with the447

exponential function Corr(xi, xj) ∼ exp(−Dij/d0), where xi and xj are vectors contain-448

ing the parcellated gene expression values at parcels i and j, Dij is the geodesic distance449

between the parcels, and d0 is the characteristic spatial scale of autocorrelation. We em-450

pirically determined d0 by first constructing the pairwise gene co-expression matrix Cij =451

Corr(xi, xx), where xi and xj are vectors containing the parcellated gene expression values452

at parcels i and j. We then fit the free parameter d0 using ordinary least squares (OLS)453

regression on the off-diagonal (upper-triangular) elements of the gene co-expression and454
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parcel distance matrices, so as to minimize the sum-of-squared-residuals between em-455

pirical and model-estimated gene co-expression values over all pairs of cortical parcels,456

S =
∑
i>j

r2ij =
∑
i>j

[Cij − exp(−Dij/d0)]
2. This empirical fit was performed on a set of brain-457

specific genes. Using the OLS estimate of the spatial autocorrelation scale from the fit to458

the empirical gene expression data, we calculated the elements of the spatial weight ma-459

trix, Wij = exp(−Dij/d0). Finally, we fit the SLM to parcellated gene expression profiles,460

using the maximum likelihood estimator routine (pysal.spreg.ml_lag.ML_Lag) in461

pysal. P-values indicated by the number of stars in the bar plots of myelin map correla-462

tion correspond to p-values for model parameter β defined above.463

Of note, spatial autoregressive model parameters do not have the same interpreta-464

tion as they do in OLS regression. The parameter β reflects the direct (i.e. local) impact on465

the dependent variable y due to a unit change in the independent variable x. In addition,466

because of the underlying spatial structure, the direct impact of xi on yi results in an indi-467

rect effect of yi on neighboring yj . Therefore β cannot be interpreted as a corrected, global468

correlation coefficient, and we restrict our use of the SLM to correcting for the biasing469

effect of spatially autocorrelated samples on reported significance values.470

Theil-Sen estimator. Trend lines in figures are calculated by the Theil-Sen estimator,471

which is a nonparametric estimator of linear slope, based on Kendall’s tau rank correla-472

tion, that is insensitive to the underlying distribution and robust to statistical outliers52.473
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It is defined as the median of the set of slopes computed between all pairs of points.474

Principal components analysis. We used principal component analysis (PCA) to iden-475

tify the dominant modes of spatial variation in the transcriptional profiles of gene ex-476

pression in the human cortex. For a set of N genes, each with group-averaged expres-477

sion values for P cortical parcels, we constructed a gene expression matrix G with one478

row for each cortical parcel and one column for each unique gene (i.e. with dimen-479

sions P × N ). The P × P spatial covariance matrix C was constructed by computing480

the covariance between vectors of gene expression values for each pair of cortical parcels:481

Cij = Cov(Gi, Gj), whereGi is the i-th row in the matrix G, corresponding to the vector of482

N gene expression values for the i-th cortical parcel. Eigen-decomposition is performed483

on the spatial covariance matrix to obtain the matrix eigenvectors (i.e., the principal com-484

ponents, PCs) and their corresponding eigenvalues, which are the amount of variance485

captured by the corresponding PC. To enumerate each principal component, eigenvalues486

are ranked in descending order of absolute magnitude, with larger magnitudes indicating487

a greater proportion of the total variance captured by the associated PC (i.e., the associ-488

ated mode of spatial covariation). PCA therefore allows for simultaneous identification489

of spatial patterns of covariation and quantification of the extent to which these spatial490

modes capture variance in cortical gene expression profiles.491

To quantify the overlap of these spatial PCs with the cortical myelin map vector, we492
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compute the Spearman rank correlation coefficient between each P -dimensional PC and493

the P -dimensional vector of myelin map values for each cortical parcel. We can quantify494

the amount of gene expression variance that is captured along any given spatial map, such495

as the myelin map (Fig. 3e, Extended Data Fig. 6g,k). From the spatial covariance matrix496

C, the variance captured along a unit-length vector a, here a demeaned and normalized497

map, is given by a>Ca.498

Surrogate data generation. To nonparametrically determine significance values in our499

PCA results, in Fig. 3 and Extended Data Fig. 6, we generated surrogate maps with a500

spatial autocorrelation structure matched to the empirical data (Extended Data Fig. 7b).501

Parameters characterizing the empirical spatial autocorrelation were determined numer-502

ically for the cortical myelin map, cortical thickness map, and the map of surface-based503

geodesic distance from area V1; in each case, we fit the data using a spatial lag model of504

the form y = ρWy, where y is a vector of mean-subtracted map values. W is the weight505

matrix with zero diagonal and off-diagonal elementsWij = exp(−Dij/d0), whereDij is the506

surface-based geodesic distance between cortical areas i and j. Two free parameters ρ and507

d0 are estimated by minimizing the residual sum-of-squares50. Using best-fit parameter508

values ρ̂ and d̂0, surrogate maps ysurr are generated according to ysurr =
(
I− ρ̂W[d̂0]

)−1
u,509

where u ∼ N (0, 1). From these surrogate maps we construct null distributions for the ap-510

propriate statistics, and report significance values as the proportion of samples in the null511
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distribution whose absolute value is equal to or greater than the absolute value of the test512

statistic.513

Functional enrichment analyses. Functional enrichments were determined using the514

ToppGene (https://toppgene.cchmc.org/) web portal22, including gene ontology515

annotations (biological process, cellular component, and molecular function); microRNA516

targets (from all sources indicated on https://toppgene.cchmc.org/navigation/database.jsp);517

and drug annotations (from DrugBank, Comparative Toxicogenomics Database, includ-518

ing marker and therapeutic, and Broad Institute CMAP). Significant genes in each cate-519

gory were identified using the ToppFun utility. Disease annotations were determined us-520

ing curated disease gene associations in the DisGeNet database24 (http://www.disgenet.521

org/web/DisGeNET/menu/home). Hypergeometric testing was used to determine sig-522

nificant over-representation of brain-related disease genes in the top and bottom gene523

quintiles (20%, 3208 genes) ranked by myelin map correlation, following ref. [10].524
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Human myelina
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Extended Data Figure 1: Cortical myelin maps exhibit inter-species homology and inter-
hemispheric symmetry. a, Unparcellated bilateral myelin map (T1w/T2w) in human
cortex visualized on an inflated cortical surface. b, Unparcellated bilateral myelin map
(T1w/T2w) in macaque cortex visualized on an inflated cortical surface. Primary sen-
sory areas (visual, V1; somatosensory, S1; auditory, A1) exhibit high myelin map values,
as do their homologues in human cortex. c, Functional networks derived from resting-
state functional connectivity from the Human Connectome Project (HCP). Cortical areas
are parcellated using the HCP multi-modal parcellation (MMP1.0). We assigned each
region to a functional network using a community detection method applied to resting-
state fMRI data from the HCP, and designated functional labels to networks, including
three sensory and five association, that align with previously reported functional net-
works (with abbreviations labeled in Fig. 1b): Auditory (AUD), Visual (VIS), Somato-
motor (SOM), Dorsal Attention (DAN), Frontoparietal (FPN), Ventral Attention (VAN),
Default (DMN), and Cingulo-Opercular (CON).
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Extended Data Figure 2: Anatomical cortical hierarchy derived from laminar-specific
interareal projections. a, Fraction of external labeled neurons (FLNe). Target area i is
injected with a retrograde tracer that labels neurons in many source areas; the FLNe in
source area j is then defined as the fraction of all external labeled neurons terminating
in area i that originated in source area j. Each row of the FLN matrix is therefore nor-
malized to 1. Measurements which yielded no labeled neurons are marked in grey. b,
Fraction of supragranular layer neurons (SLN ), defined as the fraction of neurons in an
interareal projection (to target area i from source area j) originating in supragranular lay-
ers. An SLN of 1 indicates that all labeled projection neurons were of supragranular
origin, reflecting a pure feedforward connection; an SLN of 0 indicates that all projection
neurons originated in deep infragranular layers, reflecting a pure feedback connection.
Measurements which yielded no labeled neurons are marked in grey. c, Model-estimated
hierarchy values for 89 cortical regions. The blue line indicates hierarchy levels estimated
by the model after shifting and re-scaling them to lie on the unit interval. The red in-
dicates hierarchy values passed through a logistic function to remove the nonlinearity
introduced by the logit link function in the GLM fitting procedure. The monotonicity of
this transformation preserves the order of the cortical regions and therefore does not af-
fect the Spearman rank correlations reported in the main text. d, Myelin map values for
89 cortical regions.
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Extended Data Figure 3: Hierarchy in macaque cortex is better captured by the myelin
map (T1w/T2w) than by other candidate proxy measures derived from structural MRI.
a, Correlation between hierarchy and cortical thickness. b, Correlation between hierarchy
and geodesic distance from primary visual cortex (V1). c, Comparison of hierarchy corre-
lation values for the myelin map, thickness map, and distance from V1. The myelin map
is much more strongly correlated with hierarchy than the other two maps (P < 10−3).
Statistical significance is calculated by a test of the difference between dependent correla-
tions: P < 10−1; **, P < 10−2; ***, P < 10−3.
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Extended Data Figure 4: Expression maps and MMCs for genes that code for markers
of distinct inhibitory interneuron cell types, and for weighted profiles characteristic of
distinct neuronal cell types derived from single-cell RNA sequencing of human cortical
neurons. a, Markers for inhibitory interneuron cell types. b, Weighted gene sets for ex-
citatory neuronal cell types, derived from single-cell RNA sequencing. c, Weighted gene
sets for inhibitory neuronal cell types, derived from single-cell RNA sequencing.
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Extended Data Figure 5: Expression maps and MMCs for genes coding for synaptic re-
ceptor subunits and neuromodulator receptors. a, NMDA receptor subunits. b, GABAA

receptor subunits. c, Muscarinic acetylcholine receptors (CHRM). d, Nicotinic acetyl-
choline receptors (CHRN). e, Norepinephrine receptors (ADR). f, Dopamine receptors
(DRD). g, Serotonin receptors (HTR).
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Extended Data Figure 6: Principal component analysis (PCA) shows that the dominant
mode of gene expression (PC1) is better captured by the myelin map than by other can-
didate proxies. a–c, The first three PCs for brain-specific genes. d, The parcellated map of
human cortical thickness. e, The Spearman rank correlation between the thickness map
and PC1 for five gene sets. f, The difference in correlation with PC1 between the thickness
map and the myelin map, i.e., (rs(Myelin,PC1)− rs(Thickness,PC1)). Positive values in-
dicate that the myelin map is more strongly correlated with PC1 than is the thickness map.
Statistical significance is calculated by a test of the difference between dependent corre-
lations (P < 10−1; **, P < 10−2; ***, P < 10−3). g, Amount of gene expression variance
captured by the thickness map, relative to PC1. h, The parcellated map of geodesic dis-
tance from primary visual cortical area V1. i, The Spearman rank correlation between the
V1 distance map and PC1. j, The difference in correlation with PC1 between the V1 dis-
tance map and the myelin map, i.e., (rs(Myelin,PC1)− rs(Distance,PC1)). The myelin
map is more strongly correlated with PC1 than is the V1 distance map. k, Amount of
gene expression variance captured by the thickness map, relative to PC1. l–p, Percent-
age of gene expression variance captured by the top 10 PCs, out of 179 total PCs. For all
five gene sets, PC1 captures between 22% and 28% of the variance, which is more than
twice the amount captured by PC2. q–u, Distribution of myelin map correlations (MMCs)
across five gene sets. Dashed lines mark the mean of the distribution. For all five gene
sets, the distributions are broad, containing large fractions of strong positive and negative
MMCs, and centered near zero, with a range of means (−0.06,+0.04).
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Extended Data Figure 7: Autocorrelation structure in gene expression and myelin maps.
a, Spatial autocorrelation structure in the parcellated cortical gene expression data is well-
approximated by a decaying exponential. Gene co-expression is defined as the pairwise
Spearman rank correlation between cortical parcels’ gene expression values, here for the
brain-specific gene set. Proximal cortical parcels exhibit more similar gene expression
values compared to distal parcels. All pairs of parcels with geodesic distance less than
100 mm were used to fit the characteristic scale of spatial autocorrelation, illustrated in
red (i.e., exp(−d/d0)), where d is geodesic distance and d0 = 29 mm. Each data point
corresponds to the co-expression of a pair of cortical parcels. Top: Mean co-expression
value as a function of geodesic distance bin. b, Gene co-expression values after correcting
for spatial autocorrelation structure by subtraction of the fitted exponential decay. After
correction, the mean co-expression value is near zero across all geodesic distance bins. c,
Example randomized surrogate maps with spatial autocorrelation structure matched to
the cortical myelin map (see Methods). Autocorrelation structure-preserving surrogate
myelin maps are used for nonparametric calculation of statistical significance for PCA
results in Figs. 3 and 6. d, Distribution of pairwise Spearman rank correlations between
pairs of surrogate myelin maps.
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Extended Data Figure 8: Two key risk genes for neurodegenerative disorders, APOE for
Alzheimer’s disease and SNCA for Parkinson’s disease, exhibit strongly negative MMCs,
with higher expression levels in association cortex relative to sensory cortex (APOE: MMC
= −0.64, P < 10−15; SNCA: MMC = −0.80, P < 10−42). a, APOE is a leading risk gene
for Alzheimer’s disease. The ε4 allele of APOE is the largest genetic risk factor for late-
onset Alzheimer’s disease. b, SNCA (PARK1/PARK4) is a key risk gene for Parkinson’s
disease. Duplication of SNCA is risk factor for familial Parkinson’s disease with dominant
inheritance. SNCA codes for the alpha-synuclein protein which is the primary component
of Lewy bodies, which are a biomarker of Parkinson’s disease.
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