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Figure 5, sustained acto-myosin vortices on SLBs: A) Example of an acto-myosin vortex visualized by 

a minimum projection of a 120 s image sequence (Video 5; scale bar 1 μm. B) Corresponding velocity 

map averaged over 120 s computed with PIV. C) Radial profile of the vortex velocity field shown in 

(G) (black: individual data points, red: averaged data). Experimental conditions in (C-H): [actin] = 

300nM, [myosin II] = 80 nM.  

 

Sup Figure 1, detection and identification of actin and myosin II filaments: A) Histogram of myosin II 

filament length measurements with the 635 nm and 445 nm laser iSCAT set-ups; blue line depicts fit 

of normal distribution; N = 269. B) Single actin filaments landing afresh on the glass slide or moving 

inside the actin network are visualized by subtracting the median of the image sequence from the 

raw images; 445 nm laser set-up, scale bar: 1 μm. C) Histogram of actin filament contrast 

measurements with the 445 nm laser iSCAT setup, and fit of the first peak corresponding to the 

single actin filament signal. D) Image sequence of an actin filament landing on top of another imaged 

with the 445 nm iSCAT setup. E) Corresponding measurement of the interferometric contrast of the 

region depicted by the white box in (D) showing a step-wise increase of the signal corresponding to 

the actin filament landing on top of another. F) Histogram of the actin layer thickness in a typical 

experiment based on back ground subtracted, local interferometric contrast measurements divided 

by the average contrast value of an individual actin filament (C) (N=149). 

 

Sup Figure 3, myosin filament dynamics: A) Image sequence showing the run of two myosin II 

filaments (black) on actin filaments; 635nm laser iSCAT setup, scale bar: 1 μm. B) Corresponding 

kymograph obtained along the red line in (A), black regions correspond to myosin II filaments that 

are moving along actin filaments; time color bar: 36 s, scale bar: 1 μm. C) Rescaled frequency plot of 

run length vs binding time from (Fig. 3DF) to highlight the short run lengths at 100 μM ATP. 

 

Video 1 Movie showing the increase in interferometric scattering when one actin filament lands on 

top of another depicted in Sup Fig 2A, B 

Video 2 Movie showing the actin filament depicted in Fig 2C 

Video 3 Movie showing myosin II filament motion along actin filaments as analyzed in Fig3 and Sup 

Fig 3 

Video 4 Movie showing the transition of the acto-myosin network from a remodeling to a contractile 

state as analyzed in Fig 4A, B. 

Video 5 Movie showing the myosin II filament dynamics forming a vortex analyzed in Fig 4F-H; 

interferometric scattering signal was inverted and images were converted into 8-bit format for 

analysis in PIVlab.    

Video 6 A second example of vortex formation of myosin II filaments. 

Video 7 Movie showing the dynamics of myosin II filaments during transient and partial vortex 

formation followed by their fusion into a larger, contractile structure.  
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Sup Figure 1
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