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Abstract. Genomic datasets are often associated with sensitive pheno-
types. Therefore, the leak of membership information is a major privacy
risk. Genomic beacons aim to provide a secure, easy to implement, and
standardized interface for data sharing by only allowing yes/no queries on
the presence of specific alleles in the dataset. Previously deemed secure
against re-identification attacks, beacons were shown to be vulnerable de-
spite their stringent policy. Recent studies have demonstrated that it is
possible to determine whether the victim is in the dataset, by repeatedly
querying the beacon for his/her single nucleotide polymorphisms (SNPs).
In this work, we propose a novel re-identification attack and show that
the privacy risk is more serious than previously thought. Using the pro-
posed attack, even if the victim systematically hides informative SNPs
(i.e., SNPs with very low minor allele frequency -MAF-), it is possible to
infer the alleles at positions of interest as well as the beacon query results
with very high confidence. Our method is based on the fact that alle-
les at different loci are not necessarily independent. We use the linkage
disequilibrium and a high-order Markov chain-based algorithm for the
inference. We show that in a simulated beacon with 65 individuals from
the CEU population, we can infer membership of individuals with 95%
confidence with only 5 queries, even when SNPs with MAF less than 0.05
are hidden. This means, we need less than 0.5% of the number of queries
that existing works require, to determine beacon membership under the
same conditions. We further show that countermeasures such as hiding
certain parts of the genome or setting a query budget for the user would
fail to protect the privacy of the participants under our adversary model.

1 Introduction

Exciting times are on the horizon for the genomics field with the an-
nouncement of the precision medicine initiative [4] which was followed by
the $55 million funding by NIH for the sequencing of a million individuals
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and AstraZeneca’s project of sequencing two million individuals [9]. Even
though such million-sized genomic datasets are invaluable resources for
research, sharing the data is a big challenge due to re-identification risk.
Several studies in the last decade have shown that removal of personal
identifiers from genomic data is not enough and that individuals can be
re-identified using allele frequency information [6, 12,8, 15,3].

Genomic data-sharing beacons (referred to as beacons from now on)
are the gateways that let users and data owners exchange information
without -in theory- disclosing any personal information. A user who wants
to apply for access to the dataset can learn whether individuals with
specific alleles of interest are present in the beacon through an online
interface. More specifically, the user submits a query, asking whether a
genome exists in the beacon with a certain nucleotide at a certain po-
sition, and the beacon answers “yes” or “no”. Beacons are easy to set
up systems that provide very restricted access to the stored data. The
Beacon Project is an initiative by the Global Alliance for Genomics and
Health (GA4GH) which creates policies to ensure standardized and secure
sharing of genomic data.

Beacons were considered safe as allele frequencies are not involved
in the query result and the binary answers for allele presence seem far
from being informative for an attack. However, in 2015, Shringarpure and
Bustamante introduced a likelihood-ratio test (LRT) that predicts if an
individual is in the beacon or not, by repeatedly querying the beacon for
SNPs of the victim (dubbed the SB attack) [13]. The method does not use
the allele frequencies and can compensate sequencing errors. They show
that they could re-identify an individual in a beacon with 65 European
individuals from the 1000 Genomes Project [14] with 250 queries (with
95% confidence). In their scheme, both the queries posed and the answers
received from the beacon are assumed to be independent, therefore the
hypothesis is tested based on a binomial test. Very recently, the work by
Raisaro et al. showed that if the attacker has access to the MAFs of the
population, s/he can sort the victim’s SNPs and query the SNPs starting
from the one with the lowest MAF (dubbed the Optimal attack) [10].
Unlike the SB attack, queries are not random in this case. As low MAF
SNPs are more informative, Raisaro et al. show that fewer queries are
needed to re-identify an individual. Furthermore, Raisaro et al. proposed
countermeasures against re-identification attacks such as adding noise to
the beacon results and assigning a budget to beacon members which limits
the number of informative queries that can be asked on each member.
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In this paper, we introduce two new inference-based attacks that (i)
carefully select the SNPs to be queried and predict query results of the
beacon, and (ii) infer hidden or missing alleles of a victim’s genome. First,
we show that if the queried locus is in linkage disequilibrium1 with others,
it is enough to query for that particular allele, as the attacker can infer
the answers of the other alleles with high confidence [7]. We refer to this
method as the QI-attack (query inference attack). Second, we introduce
the GI-attack (genome inference attack) which recovers hidden parts of a
victim’s genome by using a high-order Markov chain [11].

We show that in a simulated beacon with 65 European individuals
(CEU) from the HapMap Project [5], our QI-attack requires 282 queries
and our GI-attack requires only 5 queries on average to re-identify an
individual, whereas the SB attack requires 19,525 queries and the Op-
timal attack requires 415 queries, all at the 95% confidence level when
the victim’s SNPs with MAFs < 0.03 are hidden. Therefore, the attacker
models presented here can efficiently work when certain regions in the
genome of the victim are systematically hidden as a security countermea-
sure. The number of queries required by the SB and the Optimal attacks
substantially increase as more SNPs are concealed, while the GI-attack
still requires only a few queries on average. Finally, we show that the QI-
attack can still re-identify individuals despite the stringent query budget
countermeasure proposed by [10] and the beacon censorship countermea-
sure proposed by [13].

We demonstrate that the beacons are more vulnerable than previously
thought and that the proposed countermeasures in the literature still fail
to protect the privacy of the individuals. The contributions of this paper
can be summarized as follows:

– By inferring query results and alleles at certain positions, we show
that it is possible to significantly decrease the number of required
queries compared to other attacks in the literature [13,10].

– We show that beacons are vulnerable even under a weaker adversary
model, in which informative parts of a victim’s genome are concealed
(such as all SNPs with an MAF less than a threshold).

– We discuss the feasibility and the effectiveness of the proposed coun-
termeasures in the literature and show that using the presented attack
models, the participants are still under risk.

1 Linkage disequilibrium (LD) is a measurement for SNP correlations that shows which
SNP positions are likely to be inherited together.
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The rest of the manuscript is organized as follows: We describe the
methods in Section 2 and then present the results in Section 3. Section
4 discusses the results and the effectiveness of countermeasures proposed
in the literature. Finally, we conclude in Section 5.

2 Material and Methods

In this section, we first describe attacker models in the literature (i.e.
SB attack [13] and the Optimal attack [10]), and then describe our pro-
posed attacks. In our first proposed model, the attacker not only has
access to MAFs of the victim’s population, but also can access or calcu-
late the corresponding linkage disequilibrium values from public resources
(QI-attack). In the second model, the attacker has the same background
knowledge as the QI-attack, and also has access to VCF files of people
from the victim’s population from public sources (GI-attack). The four
different attacker models (SB attack [13], Optimal attack [10], QI-attack,
and GI-attack) are described in Figure 1. We consider two scenarios. Sce-
nario 1 assumes the attacker has access to the full genome of the victim2.
Scenario 2 considers a more realistic and weaker attacker model. As pub-
licly available genomic data is typically found partially, in this scenario,
some SNPs are systematically hidden. That is, SNPs with MAF < t are
not available to the attacker.

2.1 Background: SB attack & Optimal attack

Shringarpure and Bustamante proposed the SB attack, which queries a
beacon for the victim’s heterozygous SNP positions. Queried SNPs are
picked randomly and a likelihood ratio test (LRT) statistic is calculated.
The null hypothesis (H0) refers to the query genome not being in the
beacon. Under the alternative hypothesis (H1), the query genome is a
member of the beacon. The attacker model is visualized in Figure 2(a).
The log-likelihood under the null hypothesis has been defined as

LH0(R) =

n∑
i=1

xilog(1−DN ) + (1− xi)log(DN ), (1)

where R is the response set and DN the probability that no individual in
the beacon has the queried allele at that position. xi is the answer of the

2 In this case “full” means that part of the DNA of the victim (e.g. a chromosome) is
available in full and no locus is systematically hidden.
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Fig. 1. Four attacker models: SB attack [13], Optimal attack [10], QI-attack, and GI-
attack and their background knowledge for two scenarios are shown. In the first scenario
t = 0 and in the second scenario t > 0, where t is the threshold up to which SNPs
of the victim with an MAF < t are hidden as a countermeasure. In Scenario 1, the
attacker has access to the full genome of the victim (no hidden SNPs). In Scenario 2,
SNPs with an MAF < t are hidden and the attacker has partial access to the genome
of the victim.

beacon to the query at position i (1 for yes, 0 for no), and n is the total
number of posed queries. Accordingly, the log-likelihood of the alternative
hypothesis has been stated as

LH1(R) =
n∑
i=1

xilog(1− δDN−1) + (1− xi)log(δDN−1), (2)

where DN−1 represents the probability of no individual except for the
queried person having the queried SNP. δ represents a possible sequencing
error. Finally, the LRT statistic is stated as follows:

Λ = nB + C
n∑
i=1

xi, (3)
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where B and C are defined as B = log(DN/δDN−1) and
C = log(δDN−1(1 − DN/DN (1 − δDN−1)), respectively. The null
hypothesis is rejected for any Λ that is less than a certain threshold.

The Optimal attack introduced by Raisaro et al. integrates publicly
available MAF information into the attacker’s background knowledge [10].
In this attack, the victim’s SNPs are sorted with respect to their MAFs.
The beacon is queried starting from the first heterozygous SNP with the
lowest MAF. The model of this attack is illustrated in Figure 2(b). In
this setting, the computations of DN−1 and DN depend on the queried
position i and change at each query as shown as follows:

Di
N−1 = (1− fi)2N−2, (4)

Di
N = (1− fi)2N , (5)

where fi represents the MAF of the SNP at position i. Accordingly, Λ
changes as follows:

Λ =
n∑
i=1

log

(
Di
N

δDi
N−1

)
+log

(
δDi

N−1(1−Di
N )

Di
N (1− δDi

N−1)

)
xi. (6)

2.2 Query Inference Attack

The QI-attack uses pairwise SNP correlations (LD) in order to infer the
answers of unasked queries from previously answered queries. In this
model, the attacker uses the LD value of a SNP pair to calculate the
correlation of two minor alleles at the corresponding loci. The correlation
is equal to the probability of the two minor alleles occurring together. Let
p2 be the MAF of SNP A (with minor allele a) and q2 be the MAF of SNP
B (with minor allele b). Assuming A and B are in LD, the probability of
two major or two minor alleles in these loci occurring together increases.
This can be calculated as Pr(ab) = p2q2 + D, where D represents the
strength of the correlation of the two SNPs (see Appendix A for details).
On this basis, the attacker constructs a SNP network that uses weighted,
directed edges between SNPs in high LD (see Figure A.1 in Appendix A).
The weight corresponds to the probability of two minor alleles occurring
together. Figure 2(c) illustrates this model. First, the attacker selects the
SNPs to be queried. This step is identical to the Optimal attack and leads
to a set of candidate SNPs S to be queried, starting from the lowest MAF
SNPi. Second, if any non-queried SNPj in S is a neighbor of SNPi in
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Fig. 2. System models of the four attacker models (a) SB attack [13], (b) Optimal
attack [10], (c) QI-attack and (d) GI-attack. Upper-case letters represent the major
allele at a SNP position and the lower-case letters the corresponding minor allele. The
SB attack randomly selects the minor allele from heterozygous SNP positions of the
victim and queries those. The Optimal attack first sorts the heterozygous SNPs regard-
ing their MAFs and queries for the minor alleles starting with the lowest frequency.
Depending on the threshold t, SNPs with MAF < t are hidden and are not available to
the attacker. The QI-attack extends the Optimal attack by inferring beacon answers
using LD correlations between SNP pairs. The GI-attack infers the hidden SNPs with
MAFs < t, using a high-order Markov chain and queries the beacon for the minor
alleles of those positions.
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the SNP network, the attacker infers the result of the query and does
not pose a query for SNPj . In the following, we present the null and the
alternative hypotheses in this model which also integrates the inference
error.

LH0(R) =
n∑
i=1

(
xilog(1−Di

N ) + (1− xi)log(Di
N )

+
m∑
j=1

γxilog(1−Dj
N ) + γ(1− xi)log(Dj

N )

) (7)

LH1(R) =

n∑
i=1

(
xilog(1− δDi

N−1) + (1− xi)log(δDi
N−1)

+

m∑
j=1

γxilog(1− δDj
N−1) + γ(1− xi)log(δDj

N−1)

)
,

(8)

where n is the number of posed queries, m is the number of neighbors
that can be inferred for each posed query xi, and γ corresponds to the
confidence of the inferred answer, obtained from the SNP network. Λ is
then determined as

Λ =

n∑
i=1

(
log

(
Di
N

δDi
N−1

)
+log

(
δDi

N−1(1−Di
N )

Di
N (1− δDi

N−1)

)
xi

+

m∑
j=1

log

(
Dj
N

δDj
N−1

)
+log

(
δDj

N−1(1−D
j
N )

Dj
N (1− δDj

N−1)

)
γxi

)
.

(9)

By not querying the beacon for answers that can be inferred with high
confidence, this model requires less number of queries compared to the
Optimal attack, while achieving the same response set. For more detail,
see Appendix B.

2.3 Genome Inference Attack

Individuals may publicly share their genomes by taking necessary pre-
cautions, such as hiding their sensitive SNP positions with MAFs < t
(Scenario 2 in Figure 1). The GI-attack performs allele inference to re-
cover hidden SNP positions and infers alleles at the victim’s hidden loci.
Note that Scenario 1 (in Figure 1) is not applicable to the GI-attack,
since in that scenario, the attacker can access SNPs with low MAFs. The
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attacker uses a high-order Markov chain to model SNP correlations as
described by Samani et al. [11].

The model of this attack is illustrated in Figure 2(d). Depending on
the threshold t, the attacker infers SNP positions with MAF < t that
are not available in the victim’s VCF file. Based on the victim’s genome
sequence, the attacker calculates the likelihood of the victim having a
heterozygous position at the chosen SNP position i as follows

Pk(SNPi) = P (SNPi|SNPi−1, SNPi−2, ..., SNPi−k), (10)

where k is the order of the Markov chain. In order to use a high-order
Markov chain to infer hidden SNPs, genome sequences from public sources
such as the 1000 Genomes project or HapMap can be used to train the
model.3 Accordingly, Samani et al. define the kth-order model as

Pk(SNPi) =

(
0 if F (SNPi−k,i−1) = 0
F (SNPi−k,i)
F (SNPi−k,i−1)

if F (SNPi−k,i−1) > 0 ,
(11)

where F (SNPi,j) is the frequency of occurrence of the sequence that con-
tains SNPi to SNPj . The SNPs are ordered according to their physical
position on the genome. The model works by comparing the SNPs in
SNPi,j which are prior to SNPi on the genome sequence to the same
SNP positions in the training dataset. If the training set contains other
genomes with the same SNP sequence and these sequences are followed by
a heterozygous position, we can calculate the probability of SNPi being
heterozygous for our victim. As an example, the victim’s 4th-order SNP
sequence is [AA, AT, CC, TT]. We would now like to determine whether
the following SNPi, that is hidden in the VCF file at hand, is likely to
be a heterozygous position. Therefore, we identify other genomes in the
training dataset with the same sequence and compute the frequency of
this sequence being followed by a heterozygous position. That is, [AA,
AT, CC, TT] → [AG]. As a result, we can determine the probability of
the four SNPs being followed by a heterozygous position, which we can
use to query the beacon.

If the calculated likelihood of the victim having a heterozygous po-
sition is high enough (in this case equal to 1), the attacker queries the

3 Such publicly available genome datasets are typically available with the population
information about its anonymized participants. In such a case, we use a dataset that is
consistent with the victim’s population to build our high order model. If the population
information is not available in a dataset, it can be extracted by using ancestry inference
techniques.
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beacon for the inferred SNP position, starting from the SNP with the
lowest MAF.

3 Results

To evaluate our attacks, we tested our methods on (i) a simulated beacon
and compared our results with the SB attack [13] and the Optimal attack
[10] (Section 3.1), and (ii) the beacons of the beacon-network4 operated
by GA4GH Beacon Network and compared our results with the Optimal
attack [10] (Section 3.2).

3.1 Re-identification on a Simulated Beacon

(a)     (b)

Fig. 3. (a) Close-up of the power curves, where number of queries < 10. (b) Power
curves of the Optimal attack [10], the QI-attack, and the GI-attack for different thresh-
olds of t on a beacon with 65 members constructed with individuals from the CEU
dataset of the HapMap project. t indicates the threshold up to which SNPs with an
MAF < t are hidden as a countermeasure.

In this section, we evaluated the performance of the four attacks
on a simulated beacon with 65 people from the CEU population of the

4 http://www.beacon-networg.org.
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HapMap dataset. While testing for the alternative hypothesis, we used 20
randomly-picked people from the beacon. For the null hypothesis, we used
40 additional people from the same population of the HapMap project.
The CEU population is the population of choice because previous works
(SB attack [13] and Optimal attack [10]) have also been evaluated on this
population. The LD scores, allele frequencies, and genotype data were
also obtained from the CEU dataset of the HapMap project [5]. For the
GI-attack, we used a 4th-order Markov chain (see Appendix C for details
of selecting the order).

Table 1. Average number of queries needed to receive the first negative response for the
SB attack [13], the Optimal attack [10], the QI-attack, and the GI-attack for different
thresholds of t on a beacon with 65 members constructed with 40 case individuals from
the CEU dataset of the HapMap project. t indicates the threshold up to which SNPs
with an MAF < t are hidden. As the GI-attack concentrates on inferring hidden parts
of the genome, we do not consider t = 0 (nothing is hidden) for the GI-attack.

# of queries

t SB attack Optimal attack QI-attack GI-attack

0 1,418 3 3 NA

0.03 19,525 270 160 2

0.05 56,759 1,495 1,031 2

We show the power curves for the Optimal, the QI-attack and the GI-
attack each at 5% false positive rate in Figure 3 and the number of queries
needed to receive the first negative response in Table 1. We empirically
build the null hypothesis. That is, we determine the distribution of Λ
under the null hypothesis using the 40 people who are not in the beacon.
When Λ is less than a threshold, the null hypothesis is rejected. Similar
to Raisaro et al. [10], we reject the null hypothesis when Λ < tα. We find
the threshold tα from the null hypothesis with α = 0.05 (corresponding
to 5% false positive rate). The power 1 − β is then the proportion of
the individuals in the control set having a Λ value, where Λ < tα. See
Appendix D for more information on the power calculation.

We observed that the SB attack requires the highest number of queries
(1,400 - 56,800). The QI-attack requires 30% less number of queries on
average compared to the Optimal attack. The GI-attack requires only 5
queries for all tested thresholds of t.

Compared to the monotonically increasing behavior of the power
curves for the Optimal attack, the power curve for the QI-attack shows a
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zig-zag behavior. This is because tα is recalculated at each posed query
and the Λ values change based on the number of inferred queries.

The threshold t of hidden SNPs significantly affects the performance
of the attacks. As t increases, more common SNPs are available to the
attacker which means that the likelihood of another individual in the
beacon having the same allele increases. When the beacon was queried
for each of the 40 people who are not in the beacon, the SB attack was
not able to receive a “no” response with 100,000 queries, (i) for 4 people
when SNPs with an MAF < 0.04 were hidden and (ii) for 12 people
when SNPs with an MAF < 0.05 were hidden. Therefore, it was not
possible to correctly determine beacon membership for all test individuals
to reach 100% power for larger t values. Compared to the GI-attack,
the Optimal and the QI-attack required a significantly higher amount
of queries to determine beacon membership and reach 100% power. The
GI-attack successfully determined the correct status for all 40 individuals
despite the high threshold of t with only a few queries.

3.2 Re-identification on Existing Beacons

We tested our methods on the beacons of the beacon-network. We selected
an individual from the Personal Genomes Project (PGP) (Person’s id:
PGP180/hu2D53F2) [2] as the victim. To determine if this person is a
member of the beacons, we applied the SB attack as ground truth as
detailed in Appendix E. For the QI-attack, we used the same SNP network
as for the simulated beacon in Section 3.1 (based on the CEU population
of HapMap). The Markov chain of the GI-attack was trained on the CEU
population of the HapMap [5] dataset. We again used a 4th-order Markov
chain (see Appendix C for details of selecting the order).

The beacons can return an empty response, that is, the beacon has no
information at that position, a “no”-response, and a “yes”-response.We
consider two cases for the evaluation of the query results. In the first case,
an empty answer is treated as a “no” (results shown in Table 3.2), in the
second case an empty answer is not treated as a “no”, as it is also possible
that the beacon has a different copy of the victim’s genome (results shown
in Table F.1 in Appendix F). As the results are similar, we concentrate
on the first case in the following.

Unlike all other beacons, the 1000 Genome Project beacon required
fewer number of queries for re-identification as t is increased. Note that
the victim’s SNPs are sorted based on the CEU population’s allele fre-
quencies. Thus, SNPs that we query are not necessarily the rarest in the
queried beacon, which can explain this behavior. Furthermore, the SNP
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network used is also based on the CEU population and therefore, does
not include all SNPs of the victim’s genome.

The GI-attack performed as expected, that is constant over the two
tested thresholds of t and outperformed the Optimal attack [10] as well
as the QI-attack for t > 0. For the 1000 Genomes Beacon the GI-attack
required the same amount of queries as the other attacks, as the number
of queries needed are already very low.

Table 2. Number of queries required to receive a “no” within 1000 queries to existing
beacons using an individual from PGP [2] when t = {0, 0.03, 0.05} for the Optimal
attack [10], the QI-attack, and the GI-attack. Here, empty answers (i.e., the beacon
has no information about the queried locus in the underlying dataset and returns
neither a “no” nor a “yes”) are not considered as a “no” response. “-” means in no
“no” was found in 1000 queries.

Optimal attack QI-attack GI-attack
Beacon Name t = 0|0.03|0.05 0|0.03|0.05 0.03|0.05

Known VARiants −| − |− −| − |− −|−
Broad Institute 2|2|2 2|2|2 1|1

1000 Genomes Project 4|3|2 4|3|2 3|3
Cafe CardioKit −| − |− −| − |− −|−
Wellcome Trust
Sanger Institute 1|1|1 1|1|1 1|1

NCBI −| − |− −| − |− −|−
ICGC 1| − |− 1| − |− 1|1

AMPLab 20|45|73 20|40|73 39|39

1000 Genomes
Project phase 3 20|130|250 20|116|250 48|48

In summary, for 6 of the 9 tested beacons, we were able to determine
that the victim is not a member of the beacons. For the Known VARiants
(Kaviar), the Cafe CardioKit, and the NCBI, it was not possible within
1,000 queries (Figure 3.2). Overall, we observed that the experiments on
real beacon support our findings in Section 3.1. That is, the Optimal and
the QI-attack need more queries as t increases, the GI-attack is stable over
all thresholds, and the QI-attack requires less queries than the Optimal
attack.

4 Discussion

Recent works by Shringarpure and Bustamante [13] and Raisero et al. [10]
have shown, that beacon servers fail at protecting their members’ privacy.
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As beacons are often associated with a certain phenotype, the member-
ship identification of an individual could leak sensitive information. They
proposed countermeasures such as (i) user budget, (ii) adding noise, and
(iii) increasing beacon size to improve the security level of existing bea-
cons.

In this work, we have shown that beacon membership can be detected
with even a lower number of queries and with high confidence, despite
strict countermeasures. Overcoming the proposed countermeasures is pos-
sible by including publicly available information such as MAF, LD, and
VCF files (from e.g., HapMap [5] or 1000 Genomes Project [14]) into
the attacker model. Previous works in the field of genomics and privacy
have shown that it is possible to increase the success rate of genomic
re-identification attacks by including LD information into the attacker
model. Namely, Wang et al. showed in 2009 that individuals can be re-
identified by using (i) publicly available SNP-to-disease correlation infor-
mation, and (ii) SNPs in LD [16]. In 2013, Humbert et al. showed how LD
can be used to build a framework to reconstruct the genomes of people
using the genome of a family member [7].

The success of our QI-attack depends significantly on the structure of
the underlying SNP network. The larger and denser the network becomes,
the more query responses can be inferred. Additionally, the strength of
the SNP correlations is an important factor. In this work, we included
SNP pairs that are in strong LD (i.e. r2 > 0.7) in our SNP network to
limit inference error.

The GI-attack shows that even if genomes do not contain any SNPs
with low MAFs, individuals’ privacy is not ensured, as it is possible to
infer these loci using information from publicly available datasets (e.g.,
HapMap [5] or 1000 Genomes Project [14]). As shown in Appendix G,
the GI-attack still performs as good even when the attacker trains the
high-order Markov chain on a different population than the victim’s.

Our experiments on a simulated beacon (Section 3.1) and existing
beacons (Section 3.2) show that as the threshold up to which SNPs of the
victim with an MAF < t are hidden (t) increases, our attacks require fewer
queries than existing attacks (SB attack [13] and Optimal attack [10]).
Table 3.2 shows that for the existing beacons the number of queries needed
increases as t increases and that the margins are even larger compared to
the simulated beacon (Table 1).

Shringarpure and Bustamante discussed different countermeasures,
such as (i) increasing the beacon size, (ii) sharing only small genomic
regions, (iii) using single population beacons, (iv) not publishing the

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2017. ; https://doi.org/10.1101/200147doi: bioRxiv preprint 

https://doi.org/10.1101/200147
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

metadata of a beacon, and (v) adding control samples to the beacon
dataset [13]. Lately, Aziz et al. proposed two algorithms which are based
on randomizing the response set of the beacons with the goal of protect-
ing beacon members’ privacy while maintaining the efficacy of the beacon
servers [1]. Raisaro et al. have analyzed the behavior of the beacon when
applying three different countermeasures [10]. First, they propose the bea-
con should only respond “yes” for an allele if multiple samples have it.
The second countermeasure adds noise to the responses. However, this
countermeasure significantly reduces the utility of the dataset and is un-
acceptable for researchers working on data-sharing beacons. Instead, the
beacon could return an empty answer. Final countermeasure is assign-
ing a query budget per sample. That is, every member of the beacon is
assigned with a certain budget that is reduced if a query to the beacon
matches the sample. As an example, if a user queries the beacon for allele
A in position 1000 of chromosome 21, then the budget of every member
with an allele A in that position is reduced. The amount of the budget
reduction is determined based on the risk of the query, where the lower
the allele frequency of the queried allele is, the higher the risk becomes.
The budget is calculated as bi = log(p), where Raisaro et al. use p = 0.05.
The risk then is calculated as ri = −log(1−Di

N ). If the budget of a bea-
con member is depleted, the beacon stops including the member into the
beacon responses.

An attacker using the QI-attack can overcome this countermeasure.
For instance, in our simulated beacon as described in Section 3.1, an at-
tacker using the Optimal attack needs 7 queries to re-identify the victim
(individual “NA12272” of the HapMap project [5]), when no SNPs are
hidden. However, the beacon would start giving false responses after 6
queries as the budget would be depleted, which means the attack would
fail. By using the QI-attack, an attacker would only need 5 queries. There-
fore, a query budget that is merely based on the SNPs’ MAFs and that
does not consider SNP correlations would fail to protect an individual’s
privacy. An attacker using the QI-attack would not exhaust the budget
but still be able to determine the victim’s beacon membership.

As the countermeasures of the literature fail to protect beacon mem-
bers privacy, we will concentrate on developing new countermeasures
based on SNP correlations and allele frequencies as future work.
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5 Conclusion

Throughout the course of this work, we showed that data-sharing bea-
cons are sensitive to re-identification attacks. Additionally, we showed
that countermeasures that do not consider the MAFs and correlations of
SNPs fail to protect the beacon members’ privacy. Furthermore, even if
individuals apply countermeasures before releasing their genome, such as
systematically hiding SNPs with low MAFs, their privacy still could be
at stake. Therefore, new countermeasures are needed to ensure privacy of
individuals.
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Appendices

A SNP Network

When two SNPs A and B are in LD, the probability of two major or two
minor alleles occurring together increases or decreases by D. As shown in
Table A.1 this leads to the formula: Pr(ab) = p2q2 + D, where p2 is the
minor allele frequency of SNP A (with minor allele a) and q2 is the minor
allele frequency of SNP B (with minor allele b). D is calculated as follows:
D =

√
r2(q1q2p1p2), where q1 and p1 are the major allele frequencies and

r2 is a common measure of LD. To determine whether the LD correlation
increases or decreases the probability of the two loci occurring together
D′ is needed. D′ > 0.5 implies D is added, whereas D′ < 0.5 leads to a
subtraction of D.

Table A.1. Relationship between Linkage Disequilibrium (LD) measured by D be-
tween the SNPs A and B and their allele frequencies.

Pr(A) = p1 Pr(a) = p2

Pr(B) = q1 p1q1 +D p2q1 −D

Pr(b) = q2 p1q2 −D p2q2 +D

The SNP network that is used to determine correlated SNPs is build as
a directed graph. The edges are labeled with the probability of two minor
alleles occurring together in the considered SNP positions as shown in the
lower right field of Table A.1. In order to ensure high correlation between
the SNPs, only LD relationships between SNP pairs with an r2 value of
more than 0.7 were considered. The average of the correlation between
SNP pairs and therefore the labels on the edges of the SNP network is
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0.9511. An example of a SNP network with 5 nodes is shown in Figure
A.1.

rs6461994

rs10250444

rs7785994

rs4722663rs12234397                 
            

                
            

                
            

                
            

0.97307

0.90413

0.97558

0.98772

Fig.A.1. A SNP network that contains 5 nodes (i.e., SNPs). The SNP network is a
directed graph, where the weight of edges correspond to the correlation between SNPs.
No edge between a pair of SNPs means the correlation is less than the r2 threshold.
The correlation is in the most cases not symmetric, since it depends on the minor allele
frequencies of the SNP pair. This example shows a fully connected graph, which is not
necessarily the case for all SNP networks.

B LRT - Query Inference Attack

The likelihood of the null hypothesis is calculated as follows:

LH0(R) =
n∑
i=1

(
xilog(1−Di

N ) + (1− xi)log(Di
N )

+
m∑
j=1

γxilog(1−Dj
N ) + γ(1− xi)loglog(Dj

N )

) (12)

where, xi is the response of queried SNPi, n the number of posed queries,
m the number of queries that were inferred with query SNPi, and γ the
confidence of the inferred responses.
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Accordingly, the likelihood of the alternative hypothesis is found as
follows:

LH1(R) =
n∑
i=1

(
xilog(1− δDi

N−1) + (1− xi)log(δDi
N−1)

+
m∑
j=1

γxilog(1− δDj
N−1) + γ(1− xi)log(δDj

N−1)

) (13)

Using (12) and (13), Λ can be calculated as shown in Equation 14.

Λ =LH0(R)− LH1(R)

=
n∑
i=1

(
xilog(1−Di

N ) + (1− xi)log(Di
N )

+
m∑
j=1

γxilog(1−Dj
N ) + γ(1− xi)log(Dj

N )

)

−
[ n∑
i=1

(
xilog(1− δDi

N−1) + (1− xi)log(δDi
N−1)

+
m∑
j=1

γxilog(1− δDj
N−1) + γ(1− xi)log(δDj

N−1)

)]

=
n∑
i=1

(
xilog

(
1−Di

N )

1− δDi
N−1)

)
+(1− xi)log

(
Di
N

δDi
N−1

)

+
m∑
j=1

γxilog

(
1−Dj

N )

1− δDj
N−1)

)
+γ(1− xi)log

(
Dj
N

δDj
N−1

))

=
n∑
i=1

(
log

(
Di
N

δDi
N−1

)
+log

(
δDi

N−1(1−Di
N )

Di
N (1− δDi

N−1)

)
xi

+
m∑
j=1

log

(
Dj
N

δDj
N−1

)
+log

(
δDj

N−1(1−D
j
N )

Dj
N (1− δDj

N−1)

)
γxi

)

(14)

C High-Order Markov Chain

Individuals may hide certain loci on their genome before publishing their
VCF files. It is possible to infer these hidden positions by applying a
high-order Markov chain as introduced by Samani et al., 2015 [11]. The
probability of a certain allele occurring at a specific position can then be
determined as
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Pk(SNPi) = P (SNPi|SNPi−1, SNPi−2, ..., SNPi−k), (15)

where k is the order of the Markov chain. Accordingly, Samani et al.,
2015 define the kth-order model by:

Pk(SNPi) =

(
0 if F (SNPi−k,i−1) = 0
F (SNPi−k,i)
F (SNPi−k,i−1)

if F (SNPi−k,i−1) > 0 ,
(16)

where F (SNPi,j) is the frequency of occurrence of the sequence that
contains SNPi to SNPj .

To build a high-order Markov chain to infer hidden SNPs, genome se-
quences from public sources such as the 1000 Genomes project or HapMap
can be used to train the model. Our Markov chain is build of 100 individ-
uals of the CEU population HapMap dataset. The SNPs are represented
as 0, 1, or 2 depending on the number of minor alleles at the specific posi-
tion of the genome. That is, major homozygous, heterozygous, and minor
homozygous, respectively. If the VCF file of the victim has too much miss-
ing data we cannot infer beacon membership of the victim. That is, there
is not enough SNP information to build the necessary k-order Markov
chain to infer the hidden SNPs with low MAFs. Missing data can occur
due to sequencing errors or can be intentionally hidden by the victim.

Table C.1. Comparison of different values for k (order of the high-order Markov chain).
# of same markers shows how many markers that were inferred by the Markov chain
were also asked in the Optimal attack. Distance to real response shows the amount of
queries the inferred response differs from the Optimal attack’s response (on average).
# of people not inferred shows the amount of people that could not be inferred for
that k.

k (order) # of same markers distance to real response # of people not inferred

3 13 0.6 2

4 15 0.62 1

5 14 0.79 5

In order to select k, we considered three criteria: (i) the number of
markers that are inferred by the GI-attack and also asked by the Optimal
attack, (ii) the euclidean distance between the number of queries needed
by the Optimal attack and the GI-attack for all tested individuals, and
(iii) the number of people whose SNPs could not be inferred due to missing
data.

As shown in Table C.1, we picked k = 4, which provides the largest
number of markers, with minimum number of missed people. The distance
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to the real response is similar to k = 3 and is less than the case when k
= 5. As our Markov chain is build on 100 individuals, we determined k
= 5 as the maximum order to be tested to prevent over-fitting.

D LRT - Power Calculation

The power (1− β) of the LRT is determined as the proportion of control
individuals (that are in the beacon) for which we can reject the null
hypothesis when Λ < tα. The threshold tα is found by building the null
hypothesis with the 40 case individuals (that are not in the beacon),
where α = 0.05 (corresponding to 5% false positive rate).

For each individual and query xi, we calculate the value of Λ, where
Λ changes according to the attack being performed. As t increases, the
power of the QI-attack shows a zig-zag behavior unlike the Optimal attack
and the GI-attack. That is because as t increases, more queries are needed
to determine beacon membership, and more SNPs are in inferred in the
QI-attack. The more neighbors a posed query can infer from the SNP
network, the more extreme the value of Λ changes.

Figure D.1 shows, for three example case and three example control
individuals, how Λ steadily decreases for control individuals and clearly
increases for “no” responses of case individuals (i.e., at queries 24, 26
and 84) for the Optimal attack. Here, Λ decreases by a similar value for
all individuals that receive a “yes” response, as only one query is asked
and the queries have similar MAFs. Therefore, if Control 1 had a lower
Λ value at query x10 than Case 2, Case 2 will not have a lower Λ value
than Control 1 for the following queries, unless Control 1 receives a “no”
response (which leads to a significant increase in Λ but is highly unlikely
for an individual in the control set).

On the contrary, Figure D.2 shows an irregular behavior of Λ, that
is Λ does not steadily decrease unlike the Optimal attack in Figure D.1.
This can be explained by the different amount of neighbors in the SNP
network that can be inferred at the different loci. Considering Control
1 and Case 2 again, Control 1 can have a lower Λ value than Case 2
for query position x10. Nevertheless, if query x11 of Case 2 has a high
number of neighbors to be inferred from x11 and the inferred responses
are all “yes” responses, the Λ value of Case 2 decreases significantly and
is now lower than the Λ value of Control 1 for x11, as x11 of Control 1
has fewer neighbors in the SNP network.
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Fig.D.1. Example Λ distributions for 3 of the 40 case and 3 of the 20 control in-
dividuals of the experiments with a simulated beacon in Section 3.1 for the Optimal
attack.

Fig.D.2. Example Λ distributions for 3 of the 40 case and 3 of the 20 control individ-
uals of the experiments with a simulated beacon in Section 3.1 for the QI-attack.

E Ground Truth for the Tests on Existing Beacons

In order to determine if the selected PGP(Personal Genomes Project)
individual (PGP180/hu2D53F2) is in a beacon or not, we applied the SB
attack on all the beacons used in Section 3.2. Thus, the decision made by
the SB attack is independently used as the ground truth. The null hypoth-
esis (the individual is not in the beacon) is rejected if p value is smaller
than 0.05. The p value is calculated as P (x ≥ k;x binomial(n, 1−DN ))).
Here, N is the size of the beacon, k is the number of “yes” responses to n
asked queries, x is the response and DN is the probability of no individual
in the beacon having the queried allele. The tested individual had p value
= 1 for all beacons and we concluded that s/he is not a member of any of
the beacons we tested. In addition, the meta-data of the Kaviar beacon
does not list this person as a member.

F Experiments on Existing Beacons

Here, we show the evaluation results of our tests on the beacons of the
beacon-network when an empty answer is not treated as a “no”. The
results are shown in Table F.1. In summary, We could not detect the
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correct membership status for only 1 of the 9 beacons. The main difference
of this case from the case in which an empty answer is treated as a
“no” is that if empty answers are considered as a “no” response, the
number of queries needed to determine beacon membership decreases
significantly for some beacons. Nevertheless, if the empty answers are a
result of two different genome copies (one in the beacon and one at hand)
this conclusion would be incorrect.

Table F.1. Number of queries required to receive a “no” within 1000 queries to existing
beacons using an individual from PGP [2] when t = {0, 0.03, 0.05} for the Optimal
attack [10], the QI-attack, and the GI-attack. Here, empty answers (i.e., the beacon
has no information about the queried locus in the underlying dataset and returns
neither a “no” nor a “yes”) are considered as a “no” response. “-” means in no “no”
was found in 1000 queries.

Beacon Name Optimal attack QI-attack GI-attack
t 0|0.03|0.05 0|0.03|0.05 0.03|0.05

Known VARiants −| − |− −| − |− −|−
Broad Institute 1|1|1 1|1|1 1|1

1000 Genomes Project 4|3|2 4|3|2 3|3
Cafe CardioKit 1|1|1 1|1|1 1|1
Wellcome Trust
Sanger Institute 1|1|1 1|1|1 1|1

NCBI 1|1|1 1|1|1 1|1
ICGC 1|1|1 1|1|1 1|1

AMPLab 20|45|73 20|40|73 39|39

1000 Genomes
Project phase 3 20|130|250 20|116|250 48|48

G GI-Attack without Population Information

In this section, we used a different training dataset to train the high-order
Markov chain. The case and control individuals are the same as in the
results shown in Section 3.1, that is from the CEU population. The high-
order Markov chain was trained on the 77 individuals from the HapMap
dataset “Mexican ancestry in Los Angeles” (MEX).

We observed that the GI-attack still performs very well, even when
the population of the training dataset for the high-order Markov chain
does not match the victim’s population as shown in Figure G.1.
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Fig.G.1. The GI-attack for t = 0.03 with the high-order Markov chain trained on the
victim’s population (CEU) in comparison to the high-order Markov chain trained on a
different population (here MEX) from the HapMap dataset.
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