
Detection of complex structural variation from
paired-end sequencing data

Joseph G. Arthur∗ Xi Chen∗ Bo Zhou† Alexander E. Urban†

Wing Hung Wong∗‡

Abstract

Detecting structural variants (SVs) from sequencing data is a key problem in
genome analysis, but the full diversity of SVs is not captured by most methods.
We introduce the Automated Reconstruction of Complex Structural Variants (ARC-
SV) method, which detects a broad class of structural variants from paired-end whole
genome sequencing (WGS) data. Analysis of samples from NA12878 and HuRef sug-
gests that complex SVs are often misclassified by traditional methods. We validated
our results both experimentally and by comparison to whole genome assembly and
PacBio data; ARC-SV compares favorably to existing algorithms in general and gives
state-of-the-art results on complex SV detection. By expanding the range of detectable
SVs compared to commonly-used algorithms, ARC-SV allows additional information
to be extracted from existing WGS data.

Since the observation of microscopically visible aneuploidies and gene duplications, large-
scale genomic alterations have been of interest in studies of disease, comparative genomics,
and population genetics [1–4].

Microarrays and sequencing technologies have since enabled the detection of submicro-
scopic variants, and structural variants are defined as mutations affecting at least 50 bp
of sequence. While sequencing technologies may eventually yield a complete description of
genomic variation, there are currently significant experimental and computational challenges.

The vast majority of sequencing-based SV callers detect deletions, duplications, inver-
sions, insertions, and/or translocations [5]. Aside from insertions, any of these “simple” SVs
is defined by a single novel adjacency in the sample genome, making detection theoretically
straightforward given accurate read mapping and high coverage. Misaligned reads make SV
detection difficult in practice, and investigators typically apply multiple methods together
with heuristic filters to achieve high accuracy [2, 4, 6, 7]. Structural variants with complex-
ity beyond the scope of most detection algorithms have also been observed in a variety of
phenotypic contexts [2, 8–10]. As concerns this work, our definition of a complex SV (cxSV)
is any rearrangement not reducible to non-overlapping deletions, tandem duplications, novel

∗Department of Statistics, Stanford University
†Department of Psychiatry and Behavioral Sciences and Department of Genetics, Stanford University

School of Medicine
‡Department of Biomedical Data Science, Stanford University

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

insertions, and inversions; we focus here on the localized cxSVs commonly observed in the
germline.

Identification of cxSVs requires both detection and phasing of breakpoints, but methods
targeting simple SVs generally equate individual breakpoints with SV detections (Figure 1D),
which can significantly affect interpretation. While several previous methods are capable of
cxSV detection with varying degrees of generality [9, 11–13], cxSVs have primarily been
identified through manual inspection of paired-end mapping patterns, local assemblies, and
long sequencing reads [2, 8, 10]. Thus, we have developed ARC-SV, a tool for detecting a
broad class of simple and complex SVs from standard WGS data.

There are numerous possible cxSV structures, each producing a signature of read depth,
mapped read orientations, insert sizes, and split alignments. The observed signature will
depend on both sequencing library characteristics (especially insert size) as well as the SV.
Some previous authors [9, 12, 13] take the approach of classifying cxSV structures using pre-
defined mapping signatures. To achieve more general detection of cxSV structures, ARC-SV
proposes candidate diploid rearrangements and scores each one using a probabilistic model for
the data that incorporates all available reads, as illustrated in Figure 1 and in our Methods.
Notably, ARC-SV simultaneously detects and genotypes SVs using all relevant reads, instead
of relying only on discordant reads. Previous work most similar to ours includes SVelter [11],
which detects complex SVs using another “propose and score” approach, and SWAN [14],
which uses a detailed probabilistic model for insertion and deletion detection.

Comprehensive gold sets of complex SVs are not available, and it is not a priori clear
how to compare general rearrangements. To comprehensively evaluate SV calling accuracy,
we aligned each variant’s rearranged sequence against a published assembly or long read
sequencing. Validation of an SV requires that the best such alignment spans the entire
rearrangement aligns each rearranged segment with high sequence identity, and aligns across
simple deletion breakpoints. Additionally, we require that the same validation criterion is
not met by alignment to the original reference (Methods). This validation procedure is
similar to a previous method [11], though we additionally incorporate the SV structure into
our scoring function.

We applied ARC-SV and 5 other SV callers to WGS data derived from two healthy
human samples — Venter and NA12878 — chosen so we could validate predictions against
a diploid assembly [15] and Pacbio data [16], respectively (Methods). In what follows, we
have excluded variants with 85% overlap to tandem repeat regions, removed near-duplicate
SV calls within each call set, and removed NA12878 variants with very low PacBio read
coverage (Methods).

We first compare validation rates between our alignment-based method and the usual
50% reciprocal overlap criterion, using sets of known NA12878 and Venter deletions [6, 7].
In terms of the relative sensitivity and specificity of different callers, our alignment-based
validation gives nearly identical results to those based on the gold sets (Supp. Figures 4 and
5). Across all size ranges below 10 kb, we observed high concordance between the sets of
true positives from each validation method; concordance among false positives was somewhat
lower but may reflect incompleteness in the gold sets (Supp. Figure 6).

In order to evaluate the performance of SV callers, we compared the accuracy of the initial
call sets (Supp. Table 1) as well as calls after filtering for quality (Figure 2A; stratified by
SV size in Supp. Figures 7, 8, 9). Each call set was filtered by a random forest classifier

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

SINE
MRPL42

s
a

m
p

le
 g

e
n

o
m

e
 (

H
u

R
e

f
c
h

r1
2

)

LINE

chr12:93,890,420-93,900,058

s
a

m
p

le
 g

e
n

o
m

e
 (

H
u

R
e

f
c
h

r1
2

)

(1)

(2)

(3)

A B C D E

(1)

(2)

(3)

A B C EB

ARC-SV

predicted rearrangement

A B
REF ALT

Figure 1: A: Sequence comparison between the reference genome and a corresponding region
in the sample (ground truth sequence from HuRef assembly). Discordant alignments are
consistent with both (1) a tandem duplication of BC; and (2, 3) a deletion of C or CD. B:
Comparison using ARC-SV’s predicted rearrangement instead of the reference. The reads
producing discordant alignments are more likely given this alternative structure.

trained on validation results from the opposite sample, using the relevant features from each
algorithm’s output (Supp. Table 5; Methods).

Before random forest filtering, ARC-SV achieves the highest precision in both samples
and across all variant types except Tandem Duplications in NA12878, where LUMPY is
more accurate (FDR of 28% vs 29% in ARC-SV) but much less sensitive. The sensitivity-
precision curves suggest that, after filtering, ARC-SV and DELLY are most competitive for
deletions, ARC-SV and Pindel for Tandem Duplications. There are too few validated simple
inversions for a thorough comparison, though we note that ARC-SV’s potential to resolve
complex inversions probably contributes to its relatively high precision in simple inversion
detection. ARC-SV sacrifices sensitivity in some variant classes. Notably, LUMPY detects
25% more deletions > 1 kb across both samples (1227; ARC-SV detects 984), though with
a drop in precision compared to ARC-SV (63% vs 91%).

Complex SVs make up 2.5% (130/5229) of all validated ARC-SV predictions: there are
55 validated complex events in Venter, 75 in NA12878, and 16 calls in NA12878 excluded
for low Pacbio coverage. At 129/130 (99%) of these complex sites, one or more simple SVs
was called by other methods on the same sample (with at least 50% overlap to the complex
call). Many of the overlapping simple SVs were validated by our alignment method, but the

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

Complex Deletion Inversion Tandem dup

NA12878

Venter

0 20 40 60 0 1000 2000 0 5 10 0 100 200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Number of validated SVs (Sensitivity)

P
re

ci
si

on
 (

1
−

 F
D

R
) caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

B
Complex SV type ARC-SV SVelter

Interspersed DUP [+ DEL] 35 (49%) 15 (12%)
Inverted DUP [+ DEL] 36 (59%) 23 (19%)

INV + DEL 32 (71%) 13 (23%)
Other 27 (25%) 3 (1%)

Figure 2: (A) Precision and sensitivity results based on raw SV calls (points) and cross-
sample random forest-based filtering (curves). (B) Types of cxSVs discovered across
NA12878 and Venter (combined results, validation rates in parentheses).

results from ARC-SV suggest that additional complexity was missed.
Most validated complex events fall into three categories: interspersed (non-tandem) du-

plications, inverted duplications (mostly non-tandem), and inversions flanked on one or both
sides by deletions (Figure 2B, Supp. Fig. 11, Supp. Tables 3 and 4). A number of complex
SV structures were also observed (Supp. Fig. 12, illustrating one advantage of a highly
general cxSV caller.

Complex SVs containing duplicated segments make up a significant portion of all vali-
dated ARC-SV duplications (249 tandem vs 55 complex duplications in NA12878; 285 vs
38 in Venter). Out of 71 interspersed duplications correctly called by ARC-SV across our
two samples (without any merging or deduplication of events), 51% involve an inversion of
the duplicated segment, and 70% have an accompanying deletion at the insertion site. The
median sizes of these variants were 187 bp duplicated, an insertion site 1155 bp away, and,
among cases with deletions, 13.5 bp of deleted sequence (Supp. Figure 13).

Consistent with recent surveys of complex variation [2, 9], we find few validated simple
inversions compared to complex events with inverted segments (ARC-SV: 6 simple vs 49
complex in NA12878; 5 vs 36 in Venter). The most common structures seen among com-
plex inversions are inverted duplications and inversions with deletions at one or both flanks
(Figure 2B, Supp. Table 3).

We used targeted sequencing to experimentally interrogate several Venter SV calls. The
validation rate was 80% (4/5) for simple SVs and 80% (4/5) for complex SVs; genotype calls

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

were correct for 7 of the 8 validated SVs (Methods; Supp. Table 6). We also investigated
SVs called from whole genome sequencing of HepG2 cells, whose abnormal karyotype does
not match ARC-SV’s modeling assumption of a diploid genome (Supp. Tables 7, 8). Se-
quencing across predicted breakpoints yielded validation rates of 93% (40/43) for deletions
and 80% (16/20) for tandem duplications; testing 5 non-tandem duplications confirmed both
breakpoints for 3 variants and a single breakpoint of another variant.

ARC-SV and SVelter each required approximately 110 CPU hours per sample, compared
to LUMPY’s 9 hours and DELLY’s 18 hours. Future versions of the ARC-SV software will
likely incorporate computational speedups, but for now, our detection of cxSV structures
comes at an increased computational cost.

Limitations of our current methodology include a lack of novel insertion detection or
non-reference sequence determination in general. Also, unambiguously resolving some SVs
(e.g., large homozygous tandem duplications) requires phasing information not available in
paired-end reads from a single sample.

The promises of genome sequence analysis may only be fulfilled by ubiquitous long read
sequencing. However, there is a wealth of data from paired-end sequencing experiments, and
new methodologies such as ARC-SV may bring new insights.

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

Breakpoint detection

Soft-clipped and split alignments. Soft-clipped and split alignments produced by BWA–
MEM are both used for breakpoint detection. Split alignments are assigned a type (deletion,
duplication, left/right side of inversion) and a breakpoint interval based on the orientation
and mapped positions of the primary and secondary alignment. Soft-clipped reads without
split alignments are also used. We require the soft-clipped portion is at least 5 bases long
and has median base quality 15 or higher. For increased sensitivity on soft-clipped reads, we
require a MAPQ score of 10 rather than the threshold of 20 used elsewhere in ARC-SV.

Soft-clipped reads within 5 bp and with the same clip orientations are merged; the break-
point position whose supporting reads have the highest total MAPQ is used as a candidate
breakpoint. Also, microhomology can lead to two soft-clip clusters at a single insertion or
inversion breakpoint. We thus merge each pair of soft-clip clusters with overlapping aligned
bases and opposite clip orientations whenever the two breakpoints are within 25 bp; the
region between the breakpoints is then used as a breakpoint interval.

Discordant read pair extraction. Discordant read pairs (DRPs) are read pairs whose
abnormal alignment suggests the presence of structural variation. Pairs with abnormal in-
sert sizes suggest deletions and insertions, and pairs with abnormal mapping orientation
suggest tandem duplications and inversions. We treat DRPs from the left and right sides of
inversions separately.

Deletion and insertion read pairs are defined according to insert size cutoffs. Conven-
tionally, discordant insert sizes are those outside of (µ− nσ, µ+ nσ), where µ and σ are the
mean and standard deviation of the estimated insert size distribution f , and the multiplier
n is commonly set to 3 [17, 18]. To allow for a variety of different insert size distributions,
we instead use cutoffs based on a likelihood ratio. Because discordant reads are extracted
during the first pass of the data, the insert size distribution is estimated beforehand using a
random subsample of reads (1 million by default). To avoid including read pairs that clearly
span large deletions, we truncate the insert size distribution at 3 times the median insert
size. We define deletion pairs as those with insert sizes exceeding z∗, where z∗ is the smallest
value such that, for all z > z∗,

max
S≥0

f(z − S)

f(z)
> C.

The ratio above involves the probability of observing an insert size z under the refer-
ence genome versus a genome with a homozygous deletion of maximal likelihood. We set
C = exp(32/2) so that, if f is a normal distribution, the cutoff z∗ is the commonly-used
value µ + 3σ. Insertion read pairs are defined by insert sizes smaller than z∗, where z∗ is
defined analogously to z∗ but with maximization over {S ≤ 0}.

Discordant read pair clustering. For discordant pair i, we denote the mapped in-
sert size as zi and the 3′-most mapped read positions as ai (leftmost read in the reference)
and bi (rightmost). After extracting DRPs, we construct a graph with nodes corresponding

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

to DRPs. Two DRPs i and j are connected if they are of the same type, if their ai and bi
positions are no farther apart than µ+3σ, and if max{ai, aj} < min{bi, bj}. (For insertions,
we adjust this maximum length µ+3σ downward by a conservative estimate of the insertion
size.) The third condition guarantees some possible SV can be defined spanned by the two
read pairs. (For insertions, we require max{ai, aj}−h < min{bi, bj} to allow for up to h = 20
base pairs of microhomology at the insertion site.) The parameters µ and σ are estimated
from the insert size distribution using the median and 1.35 times the interquartile range,
respectively. After constructing the graph of compatible read pairs, we cluster the read pairs
by taking the largest clique(s) in each connected component (ignoring singleton components).

Discordant read pair FDR. We select “significant” clusters using a procedure that
adapts to the coverage of the data and only requires a target false discovery rate (FDR).
For a given DRP type with M total clusters, we assign each cluster j a heuristic score sj
indicating the strength of evidence. For inversions and tandem duplications, sj is the cluster
size. For insertions and deletions, sj is a log-likelihood ratio statistic. For deletion clusters,

we first estimate the deletion size D̂j:

Dj = min

 1

|Cj|
∑
i∈Cj

zi − µ,min
i∈Cj

bi −max
i∈Cj

ai

 ,

where Cj is the set of read pairs within the cluster. The cluster score is

sj =
∏
i∈Cj

ϕ(zi;µ+Dj, σ)

ϕ(zi;µ, σ)
,

where ϕ(·;µ, σ) is the density function for the normal distribution. The case for insertions
is completely analogous.

To find an appropriate cutoff for cluster scores sj, the observed discordant read pairs are
shuffled throughout the interval [0, L), where L is the length of the reference sequence with
any assembly gaps removed. Clustering these permuted DRPs yields M0 clusters with scores
tj, j = 1, . . . ,M0. The distribution of these scores is used to estimate a null distribution

of cluster scores: F̂0(t) ≈ P (null score ≤ t). We use π̂0 = min{1,M0/M} to estimate the
proportion of null clusters in the unshuffled sample. If FDR control at level α is desired, we
use a cluster score cutoff

s∗ = min
j

{
sj :

Mπ̂0(1− F̂0(sj))

#{k : sk ≥ sj}
≤ α

}
.

Then all clusters i of the appropriate type with scores si ≥ s∗ are kept as significant.

Breakpoint intervals. Discordant read clusters alone do not give precise breakpoint
locations, so we provide an estimated breakpoint location along with a confidence interval.
A natural estimate for the breakpoint position uses the locations of the 3′-most aligned bases
among all reads in the cluster. For example, a deletion cluster with 3′ positions {ai} and {bi}
yields breakpoint estimates maxi ai and mini bi. The true distribution of 3′ positions around

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

each breakpoint will depend on the insert size distribution. For simplicity, we approximate
using a uniform distribution on an unknown but fixed genomic interval [θ, θ) and use a 95%
confidence interval for the breakpoint position (see Supplementary Note for a derivation).

Breakpoint merging. After the above steps, we have breakpoint locations derived from
soft-clipped reads, split reads, and discordant read pairs. We merge all overlapping break-
point intervals and exact breakpoints (represented as intervals of length 1); we keep merged
intervals with a supporting DRP cluster or at least 2 supporting split/clipped reads. Given
merged breakpoint intervals {Ij = [aj, bj)}

nbp

j=1, along with I0 = [0, 1) and Inbp+1 = [L,L+1),
where L is the length of the chromosome, we define blocks Bj = [bj−1 − 1, aj) for j =
1, . . . , nbp + 1. (Note that if there is breakpoint uncertainty, i.e., if bj − aj > 1 for some
j, then there will be gaps between some adjacent blocks.) These blocks are the genomic
segments that will be rearranged during SV detection.

Insertion breakpoint detection. In order to mitigate some false positives, ARC-SV
internally detects novel insertions (though the current version does not output them). Be-
fore the main inference procedure, at breakpoints derived from an insertion-type read cluster
or from both orientations of soft-clipped reads, we compute the likelihood (model described
below) of heterozygous and homozygous insertions over a range of lengths. If the likelihood
surpasses that of no insertion then we add an insertion block Si of the inferred length.

Adjacency graph

Graph creation. The adjacency graph is an undirected graph with two nodes for each
block, Bin

j and Bout
j , corresponding to the start and end relative to the reference coordinates;

insertion blocks Si are treated likewise. “Block edges” are added between each block’s pair
of nodes. Other edges in the graph represent adjacencies between genomic segments and
are called “adjacency edges.” We do not include any adjacency edges across gaps in the
reference.

Adjacency edges Bout
j −Bin

j+1 implied by the reference sequence are added automatically,
as are edges connecting candidate insertions Si to their flanking blocks. Other adjacency
edges must be supported by the data. For example, a read pair aligned to the forward strand
of Bi and to the reverse strand of Bk is considered to support the edge Bout

j − Bin
k if the

implied insert size under that adjacency falls within the expected range (middle 95% of the
insert distribution). An exception is made for adjacencies Bout

i −Bin
i , i.e., those supporting a

duplicated block. In this case paired-end support requires that the implied insert size under
no tandem duplication falls outside the expected range. Split reads whose splits occur at
candidate breakpoints automatically add support to the implied novel adjacencies. The final
adjacency graph is formed by removing edges with only 1 supporting read, as well as edges
spanning more than 2 Mb. This distance is longer than, for example, the largest deletion in
the Venter gold set [19].

Graph partitioning. Paths through the adjacency graph will correspond to candidate
SVs. To limit computational costs, we consider a set of subgraphs formed as follows. A
reference block Bj as “spanned” by the adjacency graph if there is some edge connecting Bi

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

to Bk, where i < j < k. Define a “back edge” from Bout
j as any edge connecting to a block

Bi with i ≤ j; similarly, a back edge from Bin
j connects Bin

j to some block Bk with k ≥ j. We
call j a cut point in case Bj is not spanned and there are no back edges connected to Bin

j or
Bout

j . Additionally, the first and last reference blocks, as well as blocks adjacent to assembly
gaps, are considered cut points. Thus, we have cut points 1 = j1 < j2 < · · · < jP = J within
the graph. For each 2 consecutive cut points jm and jm+1, we will consider the subgraph
formed by blocks Bjm , . . . , Bjm+1 as well as any insertion blocks contained within that ge-
nomic region. Subgraphs consisting of only a pair of reference blocks are discarded. Finally,
each subgraph is extended on either side to ensure that some minimal amount of sequence
flanks any structural variants, and subgraphs that overlap as a result are merged.

Subgraph traversal. Given two nodes s and e, a valid traversal through the graph is
a path from s to e that alternates between block edges and adjacency edges, beginning and
ending with block edges. Any valid traversal is equivalent to some sequence of oriented
blocks, i.e., a genomic rearrangement. For tractable computation, we limit the number of
times (by default, 2) each node may be exited using any back edges.

Probabilistic model

Suppose a subgraph R consists of reference blocks Bstart, . . . , Bend and generates a set of
traversals Θ. Each traversal θ corresponds to some haplotype of the region R having ge-
nomic positions Rθ. Our goal is to maximize the likelihood of the observed paired-end
alignments, P (data; θ1, θ2), as a function of the sample’s (diploid) genotype (θ1, θ2) ∈ Θ2.

Fragment and alignment model. The probability model has two levels. First, DNA
fragments are assumed to be generated from the region R in the target genome with proba-
bilities proportional to the insert size density. In other words, the fragment [x, y) is sampled
with probability

P (x, y; θ) =
f(y − x)∑

u,v∈Rθ,u<v

f(u− v)
.

The second level of the probability model deals with the observed alignments to the refer-
ence, as the true coordinates of the sampled molecules are unknown. A single DNA fragment
derived from the region R can be described as a sequence of oriented blocks along with base
pair offsets for the first and last blocks. Mathematically, we represent each observed align-
ment a as a tuple, a = (s, o,m), where s is the sequence of oriented blocks contained in the
read, o is the offset for the 5′ end of the read, and m indicates whether the read was mapped.
Read pairs are written as a = (a1, a2). Note that, since s is directly observed, we assume
alignments are perfect, including split alignments. For simplicity, we do not explicitly model
soft-clipping; clipped bases on the 3′-end are ignored, and reads with clipped 5′ ends have
their offsets o adjusted so the fragment length is calculated correctly.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hanging read model. The alignment status of a read is encoded by an indicator m:

m =

−1 mapped distantly from mate

0 unmapped

1 mapped to R.

A normal paired-end alignment a = (a1, a2) has m1 = m2 = 1. If exactly one of m1,m2 is
equal to 1, we say the non-mapped read is “hanging.” The case m1 = m2 = 0 occurs when
neither end is mapped to the region R, e.g., when both ends fall within a novel insertion; we
will perform inference conditional on (m1,m2) ̸= (0, 0).

In our hanging read model, the distribution of (m1,m2) depends on the unobserved
variable I = (I1, I2), where Ij = 1 if read j is derived from a novel insertion. (Specifi-
cally, Ij = 0 if at least 20 contiguous bases are aligned to the reference.) The distribu-
tion P (m1,m2|I = (0, 0)) is estimated using the observed frequencies; we make these es-
timates during our initial sampling of reads to determine insert size cutoffs. Note that,
when two reads in a pair map distantly from one another, say to regions R1 and R2,
that pair is counted twice since the reads will appear in the likelihood model once for
each region. To handle the case in which one read falls in an insertion, we assume that
the reference derived read is mapped with the same marginal probability as before, i.e.,
P (m1|I = (0, 1)) = P (m1|I = (0, 0)); conditional on the reference-derived read mapping,
the insertion-derived read is either unmapped or mapped distantly with equal probability.
If the one reference-derived read is unmapped, or if both reads derive from insertions, then
necessarily m1 = m2 = 0.

Likelihood evaluation. We define Cθ(a) to be the set of all fragments compatible with
the paired-end alignment a = (a1, a2). Specifically, a fragment is ϕ = (x, y, ξ) ∈ R2

θ ×{1, 2},
where ξ indicates whether position x corresponds to read 1 or 2. Compatibility means that
the oriented block sequences and offsets contained in a1 and a2 are identical to those obtained
by sequencing the given read lengths from the interval [x, y).

We assume that the read pair a is observed conditional on the mapped read/reads falling
within the region R. Recall that Rθ is the set of locations within the region R under a
given rearrangement. Let ηθ(ϕ) ∈ {0, 1}2 indicate whether read 1 and/or read 2 fall within
insertions. Then the likelihood of a is

Pθ(a|mapped ends in Rθ) =

∑
(x,y,ξ)∈Cθ(a)

f(y − x)P (m|I = ηθ((x, y, ξ)))∑
x,y∈Rθ:x<y

∑
ξ∈{1,2}

f(y − x)P (m ̸= (0, 0)|I = ηθ((x, y, ξ)))

≡ pθ(a)

Gθ

,

where ηθ(ϕ) ∈ {0, 1}2 indicate whether read 1 and/or read 2 fall within insertions. Indepen-
dence is assumed between all reads, and the likelihood of the data is

Pθ(data) =
1

Gn
θ

n∏
i=1

pθ(ai).

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

Note that pθ(ai) = 0 if ai has no compatible fragments under θ, allowing a single read
to make the full likelihood 0. This is expected to occur whenever, e.g., there is a spuri-
ous split alignment or incorrect mapping orientation. Thus, we use the following “robust”
likelihood,

P̃θ(data) =
1

Gn
θ

n∏
i=1

(π + (1− π)pθ(ai)).

This modified likelihood gives a small probability to all possible mappings, eliminating the
effect of extreme outliers. Similar techniques for classical statistical problems are discussed
in [20] — see, e.g., “redescending M-estimators”. For this work we used a fixed value of
π = 10−6, but future versions of ARC-SV will adjust this parameter based on the scale of
the insert size distribution.

Diploid rearrangements. Since we are working with diploid genomes, ARC-SV attempts
to maximize the likelihood over diploid rearrangements (θ1, θ2) ∈ Θ2

R:

P̃θ1,θ2(data) =
1

(Gθ1 +Gθ2)
n

n∏
i=1

(2π + (1− π)(pθ1(ai) + pθ2(ai)).

Specifically, we use the following procedure:

1. Enumerate rearrangements θ ∈ ΘR based on traversals through the current subgraph
R. If the size of ΘR is greater than 1000, skip this subgraph.

2. Rank each θ by its homozygous likelihood, P̃θ,θ(data), and let ΘR ⊆ ΘR contain the
best 50 rearrangements.

3. Maximize the diploid likelihood P̃θ1,θ2 over (θ1, θ2) ∈ Θ
2

R to produce the final SV call.

Implementation details. Recall that there may be gaps between some blocks due to
breakpoint uncertainty. It is possible (though rare in practice) that an alignment falls entirely
into one of these gaps; these reads are ignored. Also, when rearranging blocks, we take the
median of any breakpoint gap to be the best guess for the breakpoint location. For example,
a deletion of B from ABC will leave behind half of any gaps between A and B, B and C.

ARC-SV only uses mapped reads with a MAPQ score of at least 20, except when deter-
mining candidate breakpoints from soft-clipped reads. The unmapped or “distantly mapped”
ends of hanging reads are not subject to a MAPQ constraint.

Split reads with breakpoint positions that do not agree with our merged, filtered break-
points are ignored. (Breakpoint filtering requires two supporting reads, so isolated split reads
do not contribute to the final breakpoints.)

Computational validation of SVs

Motivation. In the validation of many previous methods, a simple SV call is often la-
beled a correct detection if it has high overlap to a known SV [7, 11, 17, 21]. Complex SVs

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

do not generally correspond to unique sequences of operations on intervals, even in unique
portions of the genome. For example, may obtain B1B

′
3B4 from the reference B1B2B3B4 by

deleting B2 then inverting B3, or by inverting B2B3 and deleting B2. Thus, we validate SV
predictions by direct sequence comparison to a ground truth, either a high-quality assembly
or long reads. The SV is considered validated if the predicted sequence matches the truth;
additionally, we check that the predicted sequence is significantly different than the original
reference when subjected to the same comparison.

Altered reference and ground truth sequences. We construct a predicted sequence
for each SV call by rearranging the reference genome accordingly and including 1000 bp of
flanking sequence on each side. This altered sequence is annotated with the locations and
sizes of any deletions as well as the boundaries of the rearranged reference blocks. We say
block Bk is deleted if Bk is absent in the rearrangement and the subsequence Bk−1Bk+1 is
present in either orientation.

If an assembly is used as ground truth, SV predictions from each chromosome are aligned
to the assembled versions, as well as all unplaced contigs. When validating against a set
of long reads, each SV prediction is aligned to the set of long reads mapping discordantly
(i.e., with an indel ≥ 50 bp, a split alignment, or at least 100 soft-clipped bases) to the
appropriate chromosome.

Alignment and heuristics. For SV validation, the following options are used with BWA–
MEM [22]:

bwa mem -a -D 0 -w 1000 -x intractg {ground truth} {altered seq}

These options are chosen to obtain a large, sensitive set of alignments that include large
indels.

Sometimes BWA–MEM will produce multiple alignments to a single ground truth se-
quence. We find the single best alignment chain according to the same scoring function used
by BWA–MEM. Formally, we have alignment segments with coordinates [sqi , e

q
i) in the query

(i.e., predicted SV) sequence and coordinates [sri , e
r
i) in the reference (ground truth). Seg-

ment j can follow i in the alignment chain if their orientations are the same and if j appears
after i in both query and reference: eqi ≤ sqj and eri ≤ srj (for positive strand alignments).
In order to properly chain together large segments with small amounts of overlap — e.g., a
pair of segments with query coordinates [0, 100) and [95, 200) — we split each segment at
all points of overlap (in reference or query coordinates) with other segments.

Finding the best alignment chain from N segments costs O(N2) time with the standard
dynamic programming solution (though speedups are possible [23]), so we incorporate several
heuristics. We may ignore alignment gaps longer than the length L of the entire query
sequence since, with our choice of penalties, such an alignment chain would be inferior to
any single aligned segment. We also ignore segments smaller than 0.5% of the smallest
non-flanking reference block’s length.

It is possible that the predicted SV is correct, but (say) a long read that matches the
prediction is too short to align across the entire flanking sequence. The best overall align-
ment may be to a read covering both flanking sequences in the query but not matching the
predicted SV. Thus, when an alignment extends at last 200 bp out into the query’s flanking

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

sequence but cannot continue because the reference sequence ends, we adjust the alignment
score upward as if the alignment continued to the end of the query. This adjustment is
only to select the best alignment chain and does not otherwise affect the validation score
(described below) for that SV.

Finally, if the ground truth sequence is an oriented assembly contig, we ignore alignments
to negative strand. We will fail to validate any variants contained within large inversions,
but in general using negative strand alignments tends to validate many incorrect inversions,
as in Figure 3.

Figure 3: An inversion called by LUMPY in the HuRef sample and incorrectly validated by
alignment to the reverse strand (best alignment chain in red).

Block-wise SV validation score. Using the best alignment, we compute a score for
each simple deletion (i.e., a block not present but whose adjacent segments remain in stan-
dard orientation) and non-flanking block in the predicted SV. Validation requires that the
minimum blockwise score is at least 0.5 and that at least 100 bp of flanking sequence is
aligned on both sides of the SV region; validation of the complex SV ABCBE, for example,
requires that the inner 3 blocks are aligned well, and that the alignment spans 100 bp into
the flanking blocks. We additionally require the validation fails when comparing the SV to
the original reference.

Our score for query blocks is

#aligned bases−#assigned gapped bases

block size
.

The score for a deletion is 0 if not spanned at least 50 bp on each side by the alignment;

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

otherwise the score is

deletion size−#assigned gapped bases

deletion size
.

Alignment gaps may span multiple blocks or deletions, but are assigned conservatively
to the smallest such spanned region. If segment j follows directly after i in the optimal
alignment chain, we say there is a reference gap if rij = sjr − eir > 0, and a query gap if
sjq − eiq > 0. The reference gap’s location in the query sequence is the interval Qij = [eiq, s

j
q).

We assign the gap error rij to the smallest non-flanking query block or predicted deletion
within 1 bp of Qij. For this purpose, a length D deletion is represented by a window of total
width 2max{50, D}. Query gaps are assigned in the same way, but only to deletions. An
exception is made for query gaps within flanking sequence but within max{50, block size} of
the outermost non-flanking block, in which case the gap may be assigned to that block.

Analysis of validation data. Our validation analysis excludes certain SV calls. As stated,
variants with significant overlap to simple and tandem repeat regions were considered sepa-
rately (Supp. Table 2); note these validation results are likely less reliable. We remove all
variants affecting fewer than 50 bp, having predicted sequences exceeding 2 Mb, or overlap-
ping gaps in the reference genome. We also excluded NA12878 calls for which the relevant
region of the reference is covered by fewer than 5 long reads, in order to avoid bias against
large inversions and duplications. To avoid overcounting both true and false positives, we
remove duplicates (same SV type and 90% reciprocal overlap) within each call set, keeping
the calls with higher validation scores; only simple SV calls are filtered in this way, primarily
from Pindel, but also from LUMPY, DELLY, and SoftSV.

Finally, we did not consider breakend (BND) type events as reported by lumpy and delly,
as they represent single breakpoint and not complex SV structures. Neither do we consider
replacement (RPL) events from Pindel, as Pindel does not distinguish between inserted se-
quences that are de novo and those that derive from reference sequence.

Compound SV calls. Some calls from ARC-SV and SVelter consist of multiple non-
overlapping simple SVs; these were termed compound events. Both the number of calls and
the validation rate were slightly lower than for complex SVs (Supp. Fig. 10).

Random forest filtering. Random forest filtering was performed on all SV calls. We
fit a separate random forest for each SV type, caller, and sample. The model predicts SV
validation (a binary outcome) given features taken from the SV caller’s output (see Supp.
Table 5). We used the randomforest1 package in R with 5000 trees per forest. Filtering was
performed on each call set using the classifier trained on the opposite (independent) sample.

Experimental validation of SVs

Venter SVs. We experimentally tested 2 deletions, 3 tandem duplications, and 5 complex
SV calls, as well as two control regions containing no ARC-SV calls (Supp. Table 6). First,

1https://cran.r-project.org/package=randomForest

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

we applied long range PCR with multiplexed sequencing on an Oxford Nanopore MinION
device (flowcell version R7). Passing 2D reads were aligned to the reference with bwa mem

-w 1000 -x ont2d, alignments with MAPQ ≥ 20 were divided into two groups based on
the presence or absence of any large errors: split alignments, indels ≥ 50 bp, or soft-clipping
≥ 200 bp. We inspected a sample of 50 dotplots within each group to estimate the total
number of reads supporting the reference, the variant call, some other structure, or else
ambiguous. Sanger sequencing was also applied in cases where the long range PCR failed
to amplify the alternative allele. For detailed experimental procedures, see Supplementary
Note 3.
HepG2 SVs. For the HepG2 SV calls we conducted Sanger sequencing across the break-
points of 43 deletions, 20 tandem duplications, and 5 non-tandem duplications (Supp. Tables
7, 8). We required breakpoints to be verified both by PCR and Sanger sequencing (with
70% identity to the expected sequence).

Reproducibility

Read alignment. Reads used for SV calling were aligned to the GRCh37 reference genome
using bwa mem [22] version 0.7.12-r1044 with default parameters, and PCR duplicates were
marked using Picard tools (http://broadinstitute.github.io/picard).

Other SV software. The following SV calling tools were used (with default parame-
ters unless noted):

• DELLY [17]; version 0.7.3, using the default list of excluded regions

• LUMPY [18]; version 0.2.13, using the lumpyexpress command

• Pindel [24]; version 0.2.5b8, using the options -x 4 -M 3 -B 0

• SoftSV [25] version 1.4.2; we require both paired end and split read support

• SVelter [11]; Git commit deb24b5 (July 8 2016); we remove calls with score ≤ 0

Data availability. The Venter/HuRef was sequenced to approximately 40× coverage
by 2 × 100 bp paired-end reads (SRA accession SRX1016818) [7]. The NA12878 paired-
end sequences were obtained from the Illumina Platinum Genomes Project (ENA accession
ERR194147) and amount to 50× coverage by 2× 100 bp reads [26].

For validation we have used the HuRef diploid assembly of Levy et al.:

https://www.ncbi.nlm.nih.gov/assembly/GCA 000252825.1/

and error-corrected PacBio reads derived from NA12878 by Mt. Sinai School of Medicine
fror the Genome in a Bottle Consortium [16]:

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878 PacBio MtSinai/

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

http://broadinstitute.github.io/picard
https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

We also used two sets of high-quality deletions from previous literature: the Venter gold
set from [7] and the NA12878 deletion call set from [6]. The NA12878 set was created with
preliminary 1000 Genomes Project results, so we augment the calls with NA12878 deletions
from Phase 3 of the Project [2] (excluding deletions overlapping ≥50% reciprocally with the
original call set).

Software availability

The ARC-SV software will be available soon as a Python3 package.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

[1] Alkan, C., Coe, B. P., and Eichler, E. E. Genome structural variation discovery and
genotyping. Nature reviews. Genetics, 12(5):363–76, 2011. ISSN 1471-0064. doi:10.
1038/nrg2958.

[2] Sudmant, P. H., et al. An integrated map of structural variation in 2,504 human
genomes. Nature, 526(7571):75–81, 2015. ISSN 0028-0836. doi:10.1038/nature15394.

[3] Escaramı́s, G., Docampo, E., and Rabionet, R. A decade of structural variants: De-
scription, history and methods to detect structural variation. Briefings in Functional
Genomics, 14(5):305–314, 2015. ISSN 20412657. doi:10.1093/bfgp/elv014.

[4] Hehir-Kwa, J. Y., et al. A high-quality human reference panel reveals the complexity
and distribution of genomic structural variants. Nature Communications, 7:12989, 2016.
ISSN 2041-1723. doi:10.1038/ncomms12989.

[5] Guan, P. and Sung, W.-K. Structural variation detection using next-generation se-
quencing data: A comparative technical review. Methods, 102:–, 2016. ISSN 1046-2023.
doi:http://dx.doi.org/10.1016/j.ymeth.2016.01.020.

[6] Parikh, H., et al. Svclassify: a Method To Establish Benchmark Structural Variant
Calls. BMC genomics, 17(1):64, 2016. ISSN 1471-2164. doi:10.1186/s12864-016-2366-2.

[7] Mu, J. C., et al. Leveraging long read sequencing from a single individual to provide
a comprehensive resource for benchmarking variant calling methods. Scientific reports,
5(August):14493, 2015. ISSN 2045-2322. doi:10.1038/srep14493.

[8] Quinlan, A. R. and Hall, I. M. Characterizing complex structural variation in germline
and nihms339318. Trends in Genetics, pages 1–19, 2012.

[9] Collins, R. L., et al. Defining the diverse spectrum of inversions, complex structural
variation, and chromothripsis in the morbid human genome. Genome biology, pages
1–21, 2017. ISSN 1474-760X. doi:10.1186/s13059-017-1158-6.

[10] Yalcin, B., et al. The fine-scale architecture of structural variants in 17 mouse genomes.
Genome Biol, 13(3):R18, 2012. ISSN 1465-6914. doi:10.1186/gb-2012-13-3-r18.

[11] Zhao, X., et al. Resolving complex structural genomic rearrangements using a
randomized approach. Genome Biology, 17(1):126, 2016. ISSN 1474-760X. doi:
10.1186/s13059-016-0993-1.

[12] Yang, L., et al. Diverse mechanisms of somatic structural variations in human cancer
genomes. Cell, 153(4):919–929, 2013. ISSN 00928674. doi:10.1016/j.cell.2013.04.010.

[13] Iakovishina, D., et al. SV-Bay: Structural variant detection in cancer genomes using a
Bayesian approach with correction for GC-content and read mappability. Bioinformat-
ics, 32(7):984–992, 2016. ISSN 14602059. doi:10.1093/bioinformatics/btv751.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

[14] Xia, L. C., et al. A genome-wide approach for detecting novel insertion-deletion variants
of mid-range size. Nucleic acids research, 44(15):e126–e126, 2016.

[15] Levy, S., et al. The diploid genome sequence of an individual human. PLoS Biology,
5(10):2113–2144, 2007. ISSN 15449173. doi:10.1371/journal.pbio.0050254.

[16] Zook, J. M., et al. Integrating human sequence data sets provides a resource of bench-
mark SNP and indel genotype calls. Nature Biotechnology, 32(3):246–251, 2014. ISSN
1087-0156. doi:10.1038/nbt.2835.

[17] Rausch, T., et al. DELLY: Structural variant discovery by integrated paired-end and
split-read analysis. Bioinformatics, 28(18):333–339, 2012. ISSN 13674803. doi:10.1093/
bioinformatics/bts378.

[18] Layer, R. M., Chiang, C., Quinlan, A. R., and Hall, I. M. LUMPY: a probabilistic
framework for structural variant discovery. Genome Biology, 15(6):R84, 2014. ISSN
1465-6914. doi:10.1186/gb-2014-15-6-r84.

[19] Mu, J. C., et al. Leveraging long read sequencing from a single individual to provide
a comprehensive resource for benchmarking variant calling methods. Scientific reports,
5(August):14493, 2015. ISSN 2045-2322. doi:10.1038/srep14493.

[20] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. Robust statistics:
the approach based on influence functions. John Wiley & Sons, 2011.

[21] Hormozdiari, F., Alkan, C., Eichler, E. E., and Sahinalp, S. C. Combinatorial algorithms
for structural variation detection in high-throughput sequenced genomes. Genome Re-
search, 19(7):1270–1278, 2009. ISSN 10889051. doi:10.1101/gr.088633.108.

[22] Li, H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem.
arXiv preprint arXiv:1303.3997, 2013.

[23] Zhang, Z., Raghavachari, B., Hardison, R. C., and Miller, W. Chaining multiple-
alignment blocks. Journal of Computational Biology, 1(3):217–226, 1994.

[24] Ye, K., et al. Pindel: A pattern growth approach to detect break points of large deletions
and medium sized insertions from paired-end short reads. Bioinformatics, 25(21):2865–
2871, 2009. ISSN 13674803. doi:10.1093/bioinformatics/btp394.

[25] Bartenhagen, C. and Dugas, M. Robust and exact structural variation detection with
paired-end and soft-clipped alignments: SoftSV compared with eight algorithms. Brief-
ings in Bioinformatics, 17(1):51–62, 2016. ISSN 14774054. doi:10.1093/bib/bbv028.

[26] Eberle, M. A., et al. A reference data set of 5.4 million phased human variants validated
by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome
Research, 27(1):157–164, 2017.

[27] DasGupta, A. Finite sample theory of order statistics and extremes. In Probability for
Statistics and Machine Learning, pages 221–248. Springer, 2011.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figures

Venter

(alignment−based validation)

Venter

(comparison to gold set)

NA12878

(alignment−based validation)

NA12878

(comparison to gold set)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

FDR

N
um

be
r

of
 v

al
id

at
ed

 S
V

s caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

Deletions

Figure 4: False discovery rate and sensitivity of deletion detections in Venter and NA12878,
as evaluated by both validation methods. Results are prior to filtering by random forests.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

NA12878

Venter

250 500 750 1000 1250

500

1000

500

1000

validated deletions (gold set)

va

lid
at

ed
 d

el
et

io
ns

 (
al

ig
nm

en
t−

ba
se

d) Deletion size

50−200 bp

200−1000 bp

> 1000 bp

caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

B

NA12878

Venter

0 250 500 750 1000

0

200

400

600

800

0

200

400

600

800

false positive deletions (gold set)

fa

ls
e

po
si

tiv
e

de
le

tio
ns

 (
al

ig
nm

en
t−

ba
se

d) Deletion size

50−200 bp

200−1000 bp

> 1000 bp

caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

Figure 5: Comparison of (A) true positive and (B) false positive deletion counts based on
our alignment-based validation and gold set overlap. Results are stratified by SV caller and
SV size range. Results are prior to filtering by random forests.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

NA12878

Venter

50−100 100−200 200−500 500−1k 1k−10k 10k−100k

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Deletion size (bp)

P
(v

al
id

at
ed

 b
y

al
ig

nm
en

t |
 g

ol
d

se
t o

ve
rla

ps
)

caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

Concordance of true positive deletions

B

N
A

12878
V

enter

50−100 100−200 200−500 500−1k 1k−10k 10k−100k 100k−1M 1M−10M > 10M

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Deletion size (bp)

P
(n

ot
 v

al
id

at
ed

 b
y

al
ig

nm
en

t |
 n

o
go

ld
 s

et
 o

ve
rla

p)

caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

Concordance of false positive deletions

Figure 6: Concordance of (A) true positive and (B) false positive deletions between our
alignment-based validation and gold set overlap (higher is better). Results are stratified by
caller and SV size range, and only bins with more than 10 deletions are displayed. Results
are prior to filtering by random forests.

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

50−200 bp 200−1000 bp > 1000 bp

NA12878

Venter

0 200 400 0 500 1000 0 200 400 600

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

Number of validated SVs (Sensitivity)

P
re

ci
si

on
 (

1
−

 F
D

R
) caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

Simple Deletions

Figure 7: Sensitivity and precision of deletion calls across each size range. Curves are
constructed from random forest filtering.

50−200 bp 200−1000 bp > 1000 bp

NA12878

Venter

0 100 200 0 20 40 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Number of validated SVs (Sensitivity)

P
re

ci
si

on
 (

1
−

 F
D

R
) caller

ARC−SV

DELLY

LUMPY

Pindel

SoftSV

SVelter

Tandem duplications

Figure 8: Sensitivity and precision of tandem duplication calls across each size range. Curves
are constructed from random forest filtering. (Note the lack of data in the “> 1000 bp”
category — the most sensitive callers achieve only 5 true detections across both samples.)

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

50−200 bp 200−1000 bp > 1000 bp

NA12878

Venter

0 10 20 0 10 20 30 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Number of validated SVs (Sensitivity)

P
re

ci
si

on
 (

1
−

 F
D

R
)

caller

ARC−SV

SVelter

Complex events

Figure 9: Sensitivity and precision of complex SV calls across each size range. Curves are
constructed from random forest filtering.

NA12878 Venter

0 10 20 30 40 0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Number of validated SVs

P
re

ci
si

on caller

ARC−SV

SVelter

Figure 10: Sensitivity and precision of compound SV calls (see Methods). Curves are con-
structed from random forest filtering.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

hg19 to HuRef comparison

ARC-SV call:

(Complex type: ddup)

A B C D

H
u
R
e
f
 C
M
0
0
0
4
7
7
.
1:

1
0
,
6
8
8
,
16
7
-
1
0
,
6
9
2
,1
7
3

chr16: 10,769,341-10,773,094

231 bp

A B C DB

B

hg19 to NA12878 comparison

ARC-SV call:

(Complex type: invddup.del)

A B C D E

P
a
c
b
i
o
6
e
e
c
8
1
5
0
_5
0
5
7
_
0
:

1
,0
1
5
-
8
,
0
0
6

chr5: 115,345,216-115,352,564

160 bp

A C D ED'

C

hg19 to NA12878 comparison

ARC-SV call:

(Complex type: inv.2del)

P
a
c
b
i
o
2
a
f
b
d
e
1
3
_2
1
7
5
3
_
0
:

3,
1
6
9
-
5
,
4
4
4

chr4: 116,165,364-116,178,144

A B C D E

80 bp

A C'E

Figure 11: Validated complex ARC-SV calls: (A) interspersed duplication; (B) inverted
interspersed duplication with deletion; (C) inversion with two flanking deletions

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

hg19 to NA12878 comparison

A BC

ARC-SV call:

(Complex type: other)

74 bp

P
a
c
b
i
o
3
b
0
2
f
b
c
3
_4
9
9
9
4
_
0
:

2,
3
9
1
-
4
,
6
4
1

chr2: 88,428,265-88,431,653

D E F

A BC E FB

B

hg19 to HuRef comparison

H
uR
ef
 C
M
0
0
0
4
6
6
.
1:

7
4
,
2
5
2
,
17
8
-
7
4
,
2
6
1
,4
0
9

chr5: 79,044,632-79,053,431

A B C D E F G

ARC-SV call:

(Complex type: other)

A B C E F GB'F

270 bp

C

hg19 to NA12878 comparison

ARC-SV call:

(Complex type: other)

A BC D

69 bp

A B DB'

P
a
c
b
i
o
1
4
5
8
f
1
6
6
_5
5
6
3
6
_
0
:

2,
2
3
2
-
5
,
3
6
7

chr21: 22,779,678-22,782,831

Figure 12: Examples of validated complex ARC-SV calls not fitting into our named cate-
gories.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

duplicated sequence deleted sequence distance from source
to insertion site

ARC−SV SVelter ARC−SV SVelter ARC−SV SVelter

10

35

100

350

1000

3500

10000

35000

100000

350000

le
ng

th
 (

bp
)

caller

ARC−SV

SVelter

Validated interspersed duplications (including inverted)

B

duplicated sequence deleted sequence distance from source
to insertion site

ARC−SV SVelter ARC−SV SVelter ARC−SV SVelter

10

35

100

350

1000

3500

10000

35000

100000

350000

le
ng

th
 (

bp
)

caller

ARC−SV

SVelter

False positive interspersed duplications (including inverted)

Figure 13: Sizes of interspersed (non-tandem) duplications. Only nonzero deletion sizes are
shown.

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

ARC-SV SVelter DELLY LUMPY Pindel SoftSV
TP Prec

Complex 75 59% 32 9%
Compound 43 60% 3 9%

NA12878 Deletion 2331 92% 1735 81% 2481 77% 2407 84% 2311 70% 1812 85%
Inversion 6 50% 9 26% 14 3% 11 15% 9 1% 10 22%

Tandem dup 249 71% 28 4% 42 51% 121 72% 285 55% 28 56%
Complex 55 34% 22 5%
Compound 30 46% 4 8%

Venter Deletion 2150 80% 1692 71% 2100 58% 2226 67% 2068 57% 1844 68%
Inversion 5 71% 6 11% 11 3% 10 15% 8 1% 8 8%

Tandem dup 285 66% 79 8% 18 6% 76 20% 228 20% 14 6%

Table 1: Overall SV calling results. TP = # validated SVs; Prec = precision = 1 - FDR.
Results are before random forest filtering, and excluding simple and tandem repeat regions.
Blank cells indicate that no calls were made.

ARC-SV SVelter DELLY LUMPY Pindel SoftSV
TP Prec

Complex 22 13% 13 5%
Compound 9 15% 3 9%

NA12878 Deletion 741 61% 488 54% 529 46% 407 42% 1822 29% 242 37%
Inversion 0 0% 0 0% 0 0% 4 13% 4 2% 0 0%

Tandem dup 246 40% 116 22% 105 29% 112 19% 915 17% 53 24%
Complex 21 17% 33 9%
Compound 28 20% 5 8%

Venter Deletion 944 57% 637 54% 548 40% 721 48% 1834 34% 347 33%
Inversion 1 50% 0 0% 2 3% 3 7% 3 1% 5 5%

Tandem dup 304 40% 288 30% 29 7% 53 7% 671 14% 87 11%

Table 2: Results for SV calls within the excluded tandem and simple repeat regions.

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

ARC-SV SVelter
TP N Prec TP N Prec

ddup 8 9 88% 8 50 16%
ddup.del 14 23 60% 1 11 9%
dup.del 3 7 42% 0 14 0%
dup.dup 0 32 0%
inv.2del 14 14 100% 1 5 20%
inv.del 3 6 50% 7 21 33%

NA12878 invddup 3 4 75% 12 23 52%
invddup.del 18 23 78% 1 4 25%

invddup.del.inv 4 4 100% 0 1 0%
invddup.inv

invdup 1 39 2%
other 8 36 22% 1 130 1%
trans 0 6 0%

trans.inv 0 1 0%
ddup 6 10 60% 4 48 8%

ddup.del 7 29 24% 2 14 14%
dup.del 1 5 20% 0 28 0%
dup.dup 1 1 100% 0 56 0%
inv.2del 7 14 50% 0 1 0%
inv.del 8 11 72% 5 28 18%

Venter invddup 4 8 50% 8 19 42%
invddup.del 11 26 42% 1 8 12%

invddup.del.inv 0 6 0% 0 2 0%
invddup.inv 0 3 0% 0 1 0%

invdup 0 27 0%
other 10 47 21% 2 190 1%
trans 0 11 0%

trans.inv 0 3 0%

Table 3: Complex SV calling results. TP = # validated SVs; N = # calls; Prec = precision
= 1 - FDR. Results are before random forest filtering, and excluding tandem repeat regions.
Blank rows indicate that no SV calls were made. See Table 4 for examples of each complex
SV type.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

SV type abbreviation structure
reference ABCDE
deletion ACDE

tandem duplication ABBCDE
INV AB′CDE

interspersed duplication (ddup) ABCBDE
interspersed duplication + deletion (ddup.del) ABCBE

tandem duplication + deletion (dup.del) ABBDE
double tandem duplication (dup.dup) ABBCCDE

inversion + 2 flanking deletion (inv.2del) AC ′E
inversion + flanking deletion (inv.del) AC ′DE

interspersed inverted duplication (invddup) ABCB′DE
invddup + intermediate inversion (invddup.inv)† ABC ′B′DE

invddup + deletion (invddup.del) ABCB′E
invddup + deletion + intermediate inversion (invddup.del.inv) ABC ′B′E

inverted tandem duplication (invdup) ABB′CDE
translocation (trans)† ACBDE

inverted translocation (trans.inv)† ACB′DE
other complex SV AEBDE

AD′B′E
ABC ′BCD
...

compound SV ACDDE
ABBCD′E
ACDE
...

Table 4: Example genomic structures for different simple, complex, and compound SVs.
† No validated calls of this SV type.

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

ARC-SV (simple SV) SV size; genotype; SR support; PE support; SV score; runner-up score;
difference between best and runner-up scores; # paths (haplotypes) con-
sidered; # candidate breakpoints not used in call†; total breakpoint un-
certainty

ARC-SV (complex SV) in addition to the above: # affected base pairs; size of largest affected
block; lowest split support across breakpoints; lowest paired-end support
across breakpoints; number of breakpoints in SV

SVelter (simple SV) SV size; genotype; # candidate breakpoints not used in call†; SV score
SVelter (complex SV) in addition to the above: # affected base pairs; size of largest affected

block; # breakpoints in SV
LUMPY SV size; SR support; PE support; start/end position 95% confidence in-

terval lengths; VCF tags INV PLUS, INV MINUS
DELLY SV size; SR support; PE support; genotype; start/end position confidence

interval lengths; VCF tags MAPQ, SRQ, CE, CT, FT, GQ, RC, RCR,
RCL, CN, DR, DV, RR, RV

Pindel SV size; SR support; genotype; length of microhomology (HOMLEN);
Number of bases inserted in place of deleted code (NTLEN)

SoftSV SV size; SR support; PE support

Table 5: Features used in random forest classification.
† For example, a deletion of B reported as ACDE has 2 unused candidate breakpoints:
between C and D; and between D and E

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Note: Uniform distribution inference

Let X1, . . . , Xn be drawn iid from a Uniform distribution on [a, b) ⊂ R. We construct a
confidence interval for a having the form

[X(1) − c(X(n) −X(1)), X(1)],

where c > 0 depends on n and the confidence level 1− α.
To solve for c we reduce the problem to one based on Uniform(0, 1) order statistics

U(1), . . . , U(n). Defining

Zj =

∑j
i=1Ei∑n+1
i=1 Ei

,

where Ei are independent Exponential(1) random variables, it is known that (U(1), . . . , U(n))
and (Z1, . . . , Zn) have the same joint distribution [27]. Now we have

1− α =P
(
a ≥ X(1) − c(X(n) −X(1))

)
=P

(
a−X(1)

X(n) −X(1)

≥ c

)
=P

(
−U(1)

U(n) − U(1)

≥ c

)
=P

(
−E1∑n
i=2Ei

≥ c

)
.

The final term concerns Exp(1) divided by an independent Gamma(n − 1, 1), which by
definition follows a scaled F-distribution: 2

2n−2
F2,2n−2. The confidence interval for b is given

by the same argument.

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Note: Affected sequence calculation

A simple SV is defined by a single position and length in the reference genome. Complex
SVs, however, may span large regions but make only small modifications to the sequence.
In our analysis of complex SV calls, we keep the usual requirement that SVs must affect at
least 50 bp of sequence. We propose a simple method that defines which reference segments
are “affected” by an SV.

Suppose the reference region (separated into segments by the breakpoints) is given by
B0

1B
0
2 . . . B

0
n, and the rearranged version is Bo1

r1
Bo2

r2
. . . Bom

rm , where oi is 1 if the segment is
in reverse orientation. We find a pairwise alignment between these two strings of genomic
segments (not the nucleotide sequences), treating blocks Boi

i and B
oj
j as equal if i = j and

oi = oj. Alignments were computed using a very large score (1000) for matches and equally
small penalties (-1) for mismatches and gap extensions. After finding an optimal alignment,
blocks that are mismatched or opposite gaps in either sequence are considered “affected.”
The affected length is then computed as the sum of affected reference block lengths. Note that
used the Biostrings::pairwiseAlignment function in R [1], which returns only a single
optimal alignment. To partially mitigate the problem of non-unique optima, we computed a
second alignment by switching the subject and query sequences and adding any additional
affected blocks.

References

1. Pags H, Aboyoun P, Gentleman R and DebRoy S (2017). Biostrings: String objects
representing biological sequences, and matching algorithms. R package version 2.44.2.

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/200170doi: bioRxiv preprint

https://doi.org/10.1101/200170
http://creativecommons.org/licenses/by-nc-nd/4.0/

