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Abstract

Detecting structural variants (SVs) from sequencing data is key to genome analysis,
but methods using standard whole-genome sequencing (WGS) data are typically inca-
pable of resolving complex SVs with multiple co-located breakpoints. We introduce the
ARC-SV method, which uses a probabilistic model to detect arbitrary local rearrange-
ments from WGS data. Our method performs well on simple SVs while surpassing
state-of-the-art methods in complex SV detection.

Since observations of microscopically visible aneuploidies and gene duplications, the study
of large-scale genomic alterations has been a key component of genome analysis [1]. Struc-
tural variants, typically defined as mutations affecting at least 50 bp of sequence, are more
rare than single-nucleotide variants (SNVs), but SVs are known to account for a much larger
portion of sequence difference between human individuals [2, 3]. Functionally, SVs are also
more likely than SNVs to impact gene expression, with larger effect sizes on average [4, 5].
The rapid improvements to sequencing technologies have prompted development of numer-
ous SV detection methodologies [6], some of which have been applied in population-scale
sequencing projects [4, 7].

The vast majority of sequencing-based SV callers detect deletions, duplications, inver-
sions, and /or translocations [6]. If only these SV types are present, any SV can be identified
by a single breakpoint, or pair of bases adjacent in the sample but not the reference. De-
tection of these breakpoints is theoretically straightforward given high coverage data and
accurate alignments. Misaligned reads make SV detection difficult in practice, and inves-
tigators typically apply multiple methods together with heuristic filters in order to achieve
high accuracy [4, 7-10]. Structural variants with complexity beyond the scope of most detec-
tion algorithms have also been observed in a variety of phenotypic contexts [4, 11-13]. Our
definition of a complex SV (cxSV) is any rearrangement not reducible to non-overlapping
deletions, tandem duplications, novel insertions, and inversions; we focus here on the local-
ized ¢xSVs commonly observed in the germline.
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Identification of cxSV structures requires both detection and phasing of breakpoints.
However, methods targeting simple SVs generally equate breakpoint detection with SV
detection. Thus c¢xSVs are either inadequately represented by a single SV or incorrectly
detected as multiple overlapping SVs. While ¢xSVs have been studied more carefully by
inspection of paired-end mapping patterns [13] and the use of long sequencing reads or mate
pairs [4, 12, 14, 15], methods and software for standard WGS data [16—-18] are scarce and still
fairly untested. Thus, we have developed the Automated Detection of Complex SVs (ARC-
SV) method, which can detect a broad class of localized rearrangements from paired-end
WGS data.

There are numerous possible cxSV structures, each producing a signature of read depth,
mapped read orientations, insert sizes, and split alignments. The observed signature will
depend on both sequencing library characteristics (especially insert size) as well as the SV.
Several previous methods [12, 17, 18] classify ¢xSV structures by direct comparison to these
mapping signatures. To achieve more general detection of cxSV structures, ARC-SV pro-
poses candidate diploid rearrangements and scores each one using a probabilistic model that
incorporates all available reads, as illustrated in Figure 1 and described in our Methods. No-
tably, ARC-SV simultaneously detects and genotypes SVs using all relevant reads, instead
of relying only on discordant reads. Previous work most similar to ours includes SVelter [16],
which detects ¢cxSVs using another “propose and score” approach, and SWAN [19], which
uses a detailed probabilistic model for insertion and deletion detection.

In assessing cxSV detection methods, a major difficulty is that comprehensive gold sets of
cxSVs are not available; it is also not a prior: clear how to define similarity between general
rearrangements. To comprehensively evaluate SV calling accuracy, we aligned each variant’s
rearranged sequence against a published assembly or long read sequencing. Validation of
an SV requires that the optimal alignment spans the entire rearrangement, aligns each rear-
ranged segment with high sequence identity, and aligns across simple deletion breakpoints.
Additionally, we require that the same validation criterion is not met by alignment to the
original reference (Methods). This validation procedure is similar to a previous method [16],
though we additionally incorporate the SV structure into our scoring function.

We applied ARC-SV and 5 other SV callers to WGS data derived from two healthy
human samples — Venter and NA12878 — chosen so we could validate predictions against a
diploid assembly [3] and PacBio data [20], respectively (Methods). In what follows, we have
excluded variants with 85% overlap to tandem repeat regions, removed near-duplicate SV
calls within each call set, and removed NA12878 variants with very low PacBio read coverage
(Methods).

We first compare validation rates between our alignment-based method and the usual
50% reciprocal overlap criterion, using sets of known NA12878 and Venter deletions [8, 9].
In terms of the relative sensitivity and specificity of different callers, our alignment-based
validation gives nearly identical results to those based on the gold sets (Supp. Figures 6 and
7). Across all size ranges below 10 kb, we observed high concordance between the sets of
true positives from each validation method; concordance among false positives was somewhat
lower but may reflect incompleteness in the gold sets (Supp. Figure 8). Thus, for simple
SVs, our SV validation approach is highly consistent with the standard approach based on
gold sets.

Next, we use our approach to evaluate the performance of SV callers across all SV types.
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Figure 1: A: Sequence comparison between the reference genome and a corresponding region
in the sample (ground truth sequence from HuRef assembly). Discordant alignments are
consistent with both (1) a tandem duplication of BC'; and (2, 3) a deletion of C' or C'D. B:
Comparison using ARC-SV’s predicted rearrangement instead of the reference. The reads
producing discordant alignments are more likely given this alternative structure.

We compared the accuracy of the initial call sets (Supp. Table 1) as well as calls after
filtering for quality (Figure 2A; stratified by SV size in Supp. Figures 9, 10, 11). Each call
set was filtered by a random forest classifier trained on validation results from the opposite
sample, using the relevant features from each algorithm’s output (Supp. Table 5; Methods).

Before random forest filtering, ARC-SV achieves the highest precision in both samples
and across all variant types except Tandem Duplications in NA12878, where LUMPY is more
accurate (empirical FDR of 28% vs 29% in ARC-SV) but much less sensitive. The sensitivity-
precision curves suggest that, after filtering, ARC-SV and DELLY are most competitive for
deletions, while ARC-SV and Pindel are best for Tandem Duplications. There are too few
validated simple inversions for a precise comparison, but ARC-SV’s improved precision may
result from its ability to correctly resolve complex inversions. However, ARC-SV’s accuracy
comes at a cost of significantly reduced sensitivity for some variant classes. Most notably,
LUMPY correctly detects 25% more deletions > 1 kb across both samples (1227 vs 984),
though with a large drop in precision compared to ARC-SV (63% vs 91%).

Complex SVs make up 2.5% (130/5229) of all validated ARC-SV predictions: there are
55 validated complex events in Venter, 75 in NA12878, and 16 calls in NA12878 excluded
for low PacBio coverage. At 129/130 (99%) of these complex sites, one or more simple SVs
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Figure 2: (A) Precision and sensitivity results based on raw SV calls (points) and cross-
sample random forest-based filtering (curves). The results without filtering (points) are the
same as those given in Supp. Table 1. Less reliable calls are removed as we increase the
stringency of the filter. (B) Types of cxSVs discovered across NA12878 and Venter (combined
results, validation rates in parentheses).

was called by other methods on the same sample (with at least 50% overlap to the complex
call). Many of the overlapping simple SVs were validated by our alignment method, but the
results from ARC-SV suggest that additional complexity was missed.

Most validated complex events fall into three categories: interspersed (non-tandem) du-
plications, inverted duplications (mostly non-tandem), and inversions flanked on one or both
sides by deletions (Figure 2B, Supp. Fig. 13, Supp. Tables 3 and 4). A number of other
complex SV structures were also observed (Supp. Fig. 14), illustrating one advantage of a
highly general cxSV caller.

Complex SVs containing duplicated segments make up a significant portion of all vali-
dated ARC-SV duplications (249 tandem vs 55 complex duplications in NA12878; 285 vs
38 in Venter). Out of 71 interspersed duplications correctly called by ARC-SV across our
two samples (without any merging or deduplication of events), 51% involve an inversion of
the duplicated segment, and 70% have an accompanying deletion at the insertion site. The
median sizes of these variants were 187 bp duplicated, an insertion site 1155 bp away, and,
among cases with deletions, 13.5 bp of deleted sequence (Supp. Figure 15).

Consistent with recent surveys of complex variation [4, 12], we find few validated simple
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inversions compared to complex events with inverted segments (ARC-SV: 6 simple vs 49
complex in NA12878; 5 vs 36 in Venter). The most common structures seen among com-
plex inversions are inverted duplications and inversions with deletions at one or both flanks
(Figure 2B, Supp. Table 3).

We used targeted sequencing to experimentally interrogate several Venter SV calls. The
validation rate was 80% (4/5) for simple SVs and 80% (4/5) for complex SVs; genotype calls
were correct for 7 of the 8 validated SVs (Methods; Supp. Table 6). We also investigated
SVs called from whole genome sequencing of HepG2 cells, whose abnormal karyotype does
not match ARC-SV’s modeling assumption of a diploid genome (Supp. Tables 7, 8). Se-
quencing across predicted breakpoints yielded validation rates of 93% (40/43) for deletions
and 80% (16/20) for tandem duplications; testing 5 non-tandem duplications confirmed both
breakpoints for 3 variants and a single breakpoint of another variant.

ARC-SV and SVelter each required approximately 110 CPU hours per sample, compared
to LUMPY’s 9 hours and DELLY’s 18 hours. Future versions of the ARC-SV software will
likely incorporate computational speedups, but for now, our detection of ¢xSV structures
comes at an increased computational cost.

Limitations of our current methodology include a lack of novel insertion detection or
non-reference sequence determination in general. Also, unambiguously resolving some SVs
(e.g., large homozygous tandem duplications) requires phasing information not available in
a single paired-end sample. It is well-known that paired-end data lack full sensitivity for SV
detection [10], but ARC-SV’s probabilistic model is well-suited for extension to similar data
types, e.g., mate pairs or linked reads. Moreover, the existing wealth of data from paired-end
sequencing experiments provides ample opportunity for the use of methods like ARC-SV.

Methods

Breakpoint detection

Soft-clipped and split alignments. Soft-clipped and split alignments produced by BWA—
MEM are both used for breakpoint detection. Split alignments are assigned a type (deletion,
duplication, left/right side of inversion) and a breakpoint interval based on the orientation
and mapped positions of the primary and secondary alignment. Soft-clipped reads without
split alignments are also used. We require the soft-clipped portion is at least 5 bases long
and has median base quality 15 or higher. For increased sensitivity on soft-clipped reads, we
require a MAPQ score of 10 rather than the threshold of 20 used elsewhere in ARC-SV.

Soft-clipped reads within 5 bp and with the same clip orientations are merged; the break-
point position whose supporting reads have the highest total MAPQ is used as a candidate
breakpoint. Also, microhomology can lead to two soft-clip clusters at a single insertion or
inversion breakpoint. We thus merge each pair of soft-clip clusters with overlapping aligned
bases and opposite clip orientations whenever the two breakpoints are within 25 bp; the
region between the breakpoints is then used as a breakpoint interval.

Discordant read pair extraction. Discordant read pairs (DRPs) are read pairs whose
abnormal alignment suggests the presence of structural variation. Pairs with abnormal in-
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sert sizes suggest deletions and insertions, and pairs with abnormal mapping orientation
suggest tandem duplications and inversions. We treat DRPs from the left and right sides of
inversions separately.

Deletion and insertion read pairs are defined according to insert size cutoffs. Conven-
tionally, discordant insert sizes are those outside of (1 — no, u+ no), where p and o are the
mean and standard deviation of the estimated insert size distribution f, and the multiplier
n is commonly set to 3 [21, 22]. To allow for a variety of different insert size distributions,
we instead use cutoffs based on a likelihood ratio. Because discordant reads are extracted
during the first pass of the data, the insert size distribution is estimated beforehand using a
random subsample of reads (1 million by default). To avoid including read pairs that clearly
span large deletions, we truncate the insert size distribution at 3 times the median insert
size. We define deletion pairs as those with insert sizes exceeding z*, where z* is the smallest

value such that, for all z > z*,
max f(z — 9)

T I

The ratio above involves the probability of observing an insert size z under the refer-
ence genome versus a genome with a homozygous deletion of maximal likelihood. We set
C = exp(3%/2) so that, if f is a normal distribution, the cutoff z* is the commonly-used
value u + 30. Insertion read pairs are defined by insert sizes smaller than z,, where z, is
defined analogously to z* but with maximization over {S < 0}.

> C.

Discordant read pair clustering. For discordant pair i, we denote the mapped in-
sert size as z; and the 3-most mapped read positions as a; (leftmost read in the reference)
and b; (rightmost). After extracting DRPs, we construct a graph with nodes correspond-
ing to DRPs. Two DRPs ¢ and j are connected if they are of the same type, if both
la; — a;| and |b; — b;| are less than p + 30, and if max{a;,a;} < min{b;,b;}. The third
condition requires that some region is spanned by both DRPs. (For insertions, we require
max{a;,a;} —h < min{b;,b;} to allow for up to h = 20 base pairs of microhomology at
the insertion site.) The parameters p and o are estimated from the insert size distribution
using the median and 1.35 times the interquartile range, respectively. After constructing the
graph of compatible read pairs, we cluster the read pairs by taking the largest clique(s) in
each connected component (ignoring singleton components).

Discordant read pair FDR. We select “significant” clusters using a procedure that
adapts to the coverage of the data and only requires a target false discovery rate (FDR).
For a given DRP type with M total clusters, we assign each cluster j a heuristic score s;
indicating the strength of evidence. For inversions and tandem duplications, s; is the cluster
size. For insertions and deletions, s; is a log-likelihood ratio statistic. For deletion clusters,

we first estimate the deletion size lA?j:

. 1 .
D; =min { —— E Z; — |b, minb; — maxa; p ,
|C]| - ieCj iGCj
ZECj
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where C; is the set of read pairs within the cluster. The cluster score is

Y

o ¢(zz7M+DJ7O-)
R U St
i€C; ir Hy
where ¢(-; u, o) is the density function for the normal distribution. The case for insertions
is completely analogous.

Under a null hypothesis of no structural variation, we would still expect some false DRP
clusters to form when spurious discordant alignments occur close together. To simplify, we
assume these errors happen independently. To simulate the formation of false clusters, we
move each DRP to a new reference position uniformly at random, without changing the
insert size or mapping orientations. Repeating the clustering process on these DRPs yields
My clusters. The resulting distribution of cluster scores is used as an estimate F|, of the
null score distribution. We also use Ty = min{1, My/M} to estimate the proportion of false
clusters in the original sample. If FDR control at level « is desired, we use a cluster score

cutoft N
M7o(1 — Fy(s;
s* =minq s; o o(s)) <ap.
j #{k s, > s;}

Then all clusters ¢ of the appropriate type with scores s; > s* are kept as significant.

Breakpoint intervals. Discordant read clusters alone do not give precise breakpoint
locations, so we provide an estimated breakpoint location along with a confidence interval.
A natural estimate for the breakpoint position uses the locations of the 3'-most aligned bases
among all reads in the cluster. For example, a deletion cluster with 3’ positions {a;} and {b;}
yields breakpoint estimates max; a; and min; b;. The true distribution of 3’ positions around
each breakpoint will depend on the insert size distribution. For simplicity, we approximate
using a uniform distribution on an unknown but fixed genomic interval [#,6) and use a 95%
confidence interval for the breakpoint position (see Supplementary Note for a derivation).

Breakpoint merging. After the above steps, we have breakpoint locations derived from
soft-clipped reads, split reads, and discordant read pairs. We merge all overlapping break-
point intervals and exact breakpoints (represented as intervals of length 1); we keep merged
intervals with a supporting DRP cluster or at least 2 supporting split/clipped reads. Given
merged breakpoint intervals {I; = [a;,b;)};25, along with Iy = [0,1) and I, 1 = [L, L+1),
where L is the length of the chromosome, we define blocks B; = [bj_1 — 1,a;) for j =
1,...,npp + 1. (Note that if there is breakpoint uncertainty, i.e., if b; — a; > 1 for some
J, then there will be gaps between some adjacent blocks.) These blocks are the genomic

segments that will be rearranged during SV detection.

Insertion breakpoint detection. In order to mitigate some false positives, ARC-SV
internally detects novel insertions (though the current version does not output them). Be-
fore the main inference procedure, at breakpoints derived from an insertion-type read cluster
or from both orientations of soft-clipped reads, we compute the likelihood (model described
below) of heterozygous and homozygous insertions over a range of lengths. If the likelihood
surpasses that of no insertion then we add an insertion block S; of the inferred length.
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Adjacency graph

Graph creation. The adjacency graph is an undirected graph with two nodes for each
block, B}“ and B;?“t, corresponding to the start and end relative to the reference coordinates;
insertion blocks S; are treated likewise. “Block edges” are added between each block’s pair
of nodes. Other edges in the graph represent adjacencies between genomic segments and
are called “adjacency edges.” We do not include any adjacency edges across gaps in the
reference.

Adjacency edges B;?“t — B}‘jrl implied by the reference sequence are added automatically,
as are edges connecting candidate insertions S; to their flanking blocks. Other adjacency
edges must be supported by the data. For example, a read pair aligned to the forward strand
of B; and to the reverse strand of By is considered to support the edge B;’“t — BI™ if the
implied insert size under that adjacency falls within the expected range (middle 95% of the
insert distribution). An exception is made for adjacencies B" — Bi" i.e., those supporting a
duplicated block. In this case paired-end support requires that the implied insert size under
no tandem duplication falls outside the expected range. Split reads whose splits occur at
candidate breakpoints automatically add support to the implied novel adjacencies. The final
adjacency graph is formed by removing edges with only 1 supporting read, as well as edges
spanning more than 2 Mb. This distance is longer than, for example, the largest deletion in
the Venter gold set [23].

Graph partitioning. Paths through the adjacency graph will correspond to candidate
SVs. To limit computational costs, we consider a set of subgraphs formed as follows. A
reference block B; as “spanned” by the adjacency graph if there is some edge connecting B;
to By, where ¢ < 7 < k. Define a “back edge” from B;-’“t as any edge connecting to a block
B; with i < j; similarly, a back edge from Bj" connects B}" to some block By with k > J- We
call j a cut point in case B; is not spanned and there are no back edges connected to B}" or
B?Ut. Additionally, the first and last reference blocks, as well as blocks adjacent to assembly
gaps, are considered cut points. Thus, we have cut points 1 = j; < jo < --- < jp = J within
the graph. For each 2 consecutive cut points 7, and j,,.1, we will consider the subgraph
formed by blocks Bj,,...,B;, ., as well as any insertion blocks contained within that ge-
nomic region. Subgraphs consisting of only a pair of reference blocks are discarded. Finally,
each subgraph is extended on either side to ensure that some minimal amount of sequence

flanks any structural variants, and subgraphs that overlap as a result are merged.

Subgraph traversal. Given two nodes s and e, a valid traversal through the graph is
a path from s to e that alternates between block edges and adjacency edges, beginning and
ending with block edges. Any valid traversal is equivalent to some sequence of oriented
blocks, i.e., a genomic rearrangement. For tractable computation, we limit the number of
times (by default, 2) each node may be exited using any back edges.

Probabilistic model

Suppose a subgraph/region R consists of reference blocks B;, Bit1, . .., Bj. We call the set of
valid traversals ©; each 6 € © represents a possible rearrangement of R. The set of genomic
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coordinates within R under rearrangement 6 is called Ry. We aim to maximize the likelihood
of the observed paired-end alignments, P(data;f;,6,), as a function of the sample’s diploid
genotype (01,6,) € ©2.

Fragment and alignment model. Fragments of DNA are assumed to be sampled from
Ry with frequencies proportional to the insert size density. If x,y € Ry and = < y, fragment
[z, y) is sampled with probability

(y —z)

f
> flu—v)

u,VERg,u<v

P(z,y;0) =

After the ends of fragment [z, y) are sequenced, we observe a paired-end alignment to the
reference genome, a = (ay, az). Specifically, the alignment a; is represented as a; = (s, 0, m).
The variable s is the sequence of oriented reference blocks corresponding to the alignment.
For example, a read from the forward strand of B; has s = (B;), whereas a read from
the reverse strand has s = (B}); a split alignment supporting the deletion of By may have
s = (B1, B3). We use o to denote the read’s start position, or offset, within the first block
of s. By assuming s and o are directly observed, we implicitly assume that alignments are
perfect and that split reads are always mapped correctly (Supp. Fig. 3). We do not explic-
itly model soft-clipping: clipped bases on the 3’ end are ignored, and reads with clipped 5’
ends have their offsets o adjusted so the fragment length is calculated correctly.

Hanging read model. The variable m indicates the mapping outcome of the sampled read.
Ordinary paired-end alignments (a1, as) mapped back to the region R have m; =my =1. A
“hanging pair” in which only read 1 is mapped is indicated by m; = 1, ms # 1. In this case
we set mgo = 0 if read 2 is unmapped and ms = —1 if read 2 is mapped outside of R. Pairs
in which neither read is mapped to R (i.e., m; # 1 and my # 1) are assumed unobserved.
Thus, we perform inference conditional on the complementary event, m; =1V mgy = 1.

In the model used by ARC-SV, the frequency of hanging and unmapped reads depends on
the unobserved variable I = (I3, I5), where [; is 1 if read j is derived from a novel insertion
and 0 if it derives from reference sequence. For the case where both reads derive from
reference sequence, we estimate the distribution P(mq, ms|l; = I, = 0) using the observed
frequencies of mapped and hanging pairs across all reads. This is a conservative overestimate
since we include insertion-derived reads. To handle reads within insertions, we assume the
probability of successfully mapping a reference-derived read does not depend on the location
of its mate:

Pmy =1/ =0,I=1)= P(m; =11, = 0,1, =0).

Conditional on the reference-derived read mapping successfully (m; = 1 above), we assume
the insertion-derived read is either unmapped or mapped distantly (my = 0, —1) with equal
probability. If the one reference-derived read is unmapped, or if both reads derive from
inserted sequence, then we assume neither mq, ms is equal to 1, and the pair is not observed.

Likelihood evaluation. Given a paired end alignment a = (a;,a2) and a candidate
haplotype 6, we consider the set of fragments from Ry that have block sequences and offsets
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identical to those of (a1,az). Call this set of “compatible” fragments Cy(a). Each member
of Cy(a) is an interval [x,y) C Ry and a variable £ € {1,2}, which indicates which one of
ay or as corresponds to the “x end” of the fragment. For example, suppose read 1 matches
the forward strand of B, and read 2 matches the reverse strand of B;. Then there is 1
compatible fragment under § = By B3, none under § = B; B, and 2 under § = B; B, B3Bs.
If only one read is mapped, then Cy(a) consists of all fragments matching the mapped end.
For more illustration, see Supp. Fig. 3.

We assume that a is observed conditional on the mapped end(s) falling within the region
R. Summing over the compatible fragments and incorporating the hanging read model, we
have the likelihood

> fly— )P (mlI=n([z,).£))
([5571/)76)609(@)

ST fly—a)P (i =1V ms = 1L = ([, ), €)
z,y€Ro:z<y £€{1,2}
po(a)

Go '
where 7y indicates whether the reads derive from novel insertion sequence.

If the rearrangement 6 contains no novel insertions, then the normalizing constant Gy
merely requires computing a double sum Zﬁ:o Zi:m 11 f(y—m), where L is the length of the
haplotype. Adjusting for N novel insertions requires an additional computation of O(N?)
similar double sums. Each such term is computed in O(1) time using pre-computed values
of F(t) = Zizo f(z) and F(t) = Zizo F(z).

The likelihood of the data, assuming fragments are sampled independently, is then

Py(data) G” Hpg (a;)

Note that pg(a;) = 0 if @; has no compatible fragments under #. This may occur even if 0 is
correct, for example if there is a spurious split alignment or an error in mapping orientation.
Thus, we use the following “robust” likelihood,

Py(almapped ends in Ry) =

By(data) = éa H(H (1 — m)polar)).
This modified likelihood gives a small probability to all possible mappings, eliminating the
effect of extreme outliers. Similar techniques have been used in classical statistical problems
— see e.g., the “redescending M-estimators” discussed in [24]. For this work, we used a fixed
value of m = 1079, but future versions of ARC-SV will adjust this parameter based on the
scale of the insert size distribution.

Diploid rearrangements. Since we are working with diploid genomes, ARC-SV attempts
to maximize the likelihood over diploid rearrangements (6y,6,) € ©%:

m [T@r + (1= 7)(pe, (@) + o, (@)

i=1

P91,92 (data) =
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Specifically, we use the following procedure:

1. Enumerate rearrangements 6 € O based on traversals through the current subgraph
R. If the size of O is greater than 1000, skip this subgraph.

2. Rank each 6 by its homozygous likelihood, ]5979(data), and let ©r C Op contain the
best 50 rearrangements.

3. Maximize the diploid likelihood 1591792 over (6,0s) € @; to produce the final SV call.

Implementation details. Recall that there may be gaps between some blocks due to
breakpoint uncertainty. It is possible (though rare in practice) that an alignment falls entirely
into one of these gaps; these reads are ignored. Also, when rearranging blocks, we take the
median of any breakpoint gap to be the best guess for the breakpoint location. For example,
a deletion of B from ABC will leave behind half of any gaps between A and B, B and C.

ARC-SV only uses mapped reads with a MAPQ score of at least 20, except when deter-
mining candidate breakpoints from soft-clipped reads. The unmapped or “distantly mapped”
ends of hanging reads are not subject to a MAPQ constraint.

Split reads with breakpoint positions that do not agree with our merged, filtered break-
points are ignored. (Breakpoint filtering requires two supporting reads, so isolated split reads
do not contribute to the final breakpoints.)

Computational validation of SVs

Motivation. In the validation of many previous methods, a simple SV call is often labeled
a correct detection if it has high overlap to a known SV [9, 16, 21, 25]. However, complex
SVs do not generally correspond to unique sequences of operations on intervals (e.g., dele-
tions and inversions; see Supp. Fig. 4). Thus, it is not obvious how to extend the usual SV
overlap criterion to complex variants. We instead validate SV predictions by direct sequence
comparison to a ground truth, either a high-quality assembly or long reads. The SV is con-
sidered validated if the predicted sequence matches the truth; additionally, we check that
the predicted sequence is significantly different than the original reference when subjected
to the same comparison.

Altered reference and ground truth sequences. We construct a predicted sequence
for each SV call by rearranging the reference genome accordingly and including 1000 bp of
flanking sequence on each side. This altered sequence is annotated with the locations and
sizes of any deletions as well as the boundaries of the rearranged reference blocks. We say
block B is deleted if By is absent in the rearrangement and the subsequence Bjy_1Bgy1 is
present in either orientation.

If an assembly is used as ground truth, SV predictions from each chromosome are aligned
to the assembled versions, as well as all unplaced contigs. When validating against a set
of long reads, each SV prediction is aligned to the set of long reads mapping discordantly
(i.e., with an indel > 50 bp, a split alignment, or at least 100 soft-clipped bases) to the
appropriate chromosome.

11
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Alignment and heuristics. For SV validation, the following options are used with BWA—
MEM [26]:

bwa mem -a -D 0 -w 1000 -x intractg {ground truth} {altered seq}

These options are chosen to obtain a large, sensitive set of alignments that include large
indels.

Sometimes BWA-MEM will produce multiple alignments to a single ground truth se-
quence. We find the single best alignment chain according to the same scoring function used
by BWA-MEM. Formally, we have alignment segments with coordinates [s!, e!) in the query
(i.e., predicted SV) sequence and coordinates [s],el) in the reference (ground truth). Seg-
ment j can follow 7 in the alignment chain if their orientations are the same and if j appears
after 7 in both query and reference: e < 33- and e] < s’ (for positive strand alignments).
In order to properly chain together large segments with small amounts of overlap — e.g., a
pair of segments with query coordinates [0,100) and [95,200) — we split each segment at
all points of overlap (in reference or query coordinates) with other segments.

Finding the best alignment chain from N segments costs O(N?) time with the standard
dynamic programming solution (though speedups are possible [27]), so we incorporate several
heuristics. We may ignore alignment gaps longer than the length L of the entire query
sequence since, with our choice of penalties, such an alignment chain would be inferior to
any single aligned segment. We also ignore segments smaller than 0.5% of the smallest
non-flanking reference block’s length.

It is possible that the predicted SV is correct, but (say) a long read that matches the
prediction is too short to align across the entire flanking sequence. The best overall align-
ment may be to a read covering both flanking sequences in the query but not matching the
predicted SV. Thus, when an alignment extends at last 200 bp out into the query’s flanking
sequence but cannot continue because the reference sequence ends, we adjust the alignment
score upward as if the alignment continued to the end of the query. This adjustment is
only to select the best alignment chain and does not otherwise affect the validation score
(described below) for that SV.

Finally, if the ground truth sequence is an oriented assembly contig, we ignore alignments
to negative strand. We will fail to validate any variants contained within large inversions,
but in general using negative strand alignments tends to validate many incorrect inversions,
as in Supp. Fig. 5.

Block-wise SV validation score. Using the best alignment, we compute a score for
each simple deletion (i.e., a block not present but whose adjacent segments remain in stan-
dard orientation) and non-flanking block in the predicted SV. Validation requires that the
minimum blockwise score is at least 0.5 and that at least 100 bp of flanking sequence is
aligned on both sides of the SV region; validation of the complex SV ABC BE, for example,
requires that the inner 3 blocks are aligned well, and that the alignment spans 100 bp into
the flanking blocks. We additionally require the validation fails when comparing the SV to
the original reference.
Our score for query blocks is

#aligned bases — #assigned gapped bases
block size '
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The score for a deletion is 0 if not spanned at least 50 bp on each side by the alignment;
otherwise the score is

deletion size — #assigned gapped bases

deletion size

Alignment gaps may span multiple blocks or deletions, but are assigned conservatively
to the smallest such spanned region. If segment j follows directly after ¢ in the optimal
alignment chain, we say there is a reference gap if r;; = sJ — el > 0, and a query gap if
s) — el > 0. The reference gap’s location in the query sequence is the interval Q;; = [el, s7).
We assign the gap error r;; to the smallest non-flanking query block or predicted deletion
within 1 bp of @);;. For this purpose, a length D deletion is represented by a window of total
width 2max{50, D}. Query gaps are assigned in the same way, but only to deletions. An
exception is made for query gaps within flanking sequence but within max{50, block size} of

the outermost non-flanking block, in which case the gap may be assigned to that block.

Analysis of validation data. Our validation analysis excludes certain SV calls. As stated,
variants with significant overlap to simple and tandem repeat regions were considered sepa-
rately (Supp. Table 2); note these validation results are likely less reliable. We remove all
variants affecting fewer than 50 bp, having predicted sequences exceeding 2 Mb, or overlap-
ping gaps in the reference genome. We also excluded NA12878 calls for which the relevant
region of the reference is covered by fewer than 5 long reads, in order to avoid bias against
large inversions and duplications. To avoid overcounting both true and false positives, we
remove duplicates (same SV type and 90% reciprocal overlap) within each call set, keeping
the calls with higher validation scores; only simple SV calls are filtered in this way, primarily
from Pindel, but also from LUMPY, DELLY, and SoftSV.

Finally, we did not consider breakend (BND) type events as reported by lumpy and delly,
as they represent single breakpoint and not complex SV structures. Neither do we consider
replacement (RPL) events from Pindel, as Pindel does not distinguish between inserted se-
quences that are de novo and those that derive from reference sequence.

Compound SV calls. Some calls from ARC-SV and SVelter consist of multiple non-
overlapping simple SVs; these were termed compound events. Both the number of calls and
the validation rate were slightly lower than for complex SVs (Supp. Fig. 12).

Random forest filtering. Random forest filtering was performed on all SV calls. We
fit a separate random forest for each SV type, caller, and sample. The model predicts SV
validation (a binary outcome) given features taken from the SV caller’s output (see Supp. Ta-
ble 5). We used the randomforest package in R (https://cran.r-project.org/package=
randomForest) with 5000 trees per forest. Filtering was performed on each call set using
the classifier trained on the opposite (independent) sample.

Experimental validation of SVs

Venter SVs. We experimentally tested 2 deletions, 3 tandem duplications, and 5 complex
SV calls, as well as two control regions containing no ARC-SV calls (Supp. Table 6). First,
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we applied long-range PCR with multiplexed sequencing on an Oxford Nanopore MinION
device (flowcell version R7). Passing 2D reads were aligned to the reference with bwa mem
-w 1000 -x ont2d, alignments with MAPQ > 20 were divided into two groups based on
the presence or absence of any large errors: split alignments, indels > 50 bp, or soft-clipping
> 200 bp. We inspected a sample of 50 dotplots within each group to estimate the total
number of reads supporting the reference, the variant call, some other structure, or else
ambiguous. Sanger sequencing was also applied in cases where the long-range PCR failed
to amplify the alternative allele. For detailed experimental procedures, see Supplementary
Note 3.

HepG2 SVs. For the HepG2 SV calls we conducted Sanger sequencing across the break-
points of 43 deletions, 20 tandem duplications, and 5 non-tandem duplications (Supp. Tables
7, 8). We required breakpoints to be verified both by PCR and Sanger sequencing (with
70% identity to the expected sequence).

Reproducibility

Read alignment. Reads used for SV calling were aligned to the GRCh37 reference genome
using bwa mem [26] version 0.7.12-r1044 with default parameters, and PCR duplicates were
marked using Picard tools (http://broadinstitute.github.io/picard).

Other SV software. The following SV calling tools were used (with default parame-
ters unless noted):

e DELLY [21]; version 0.7.3, using the default list of excluded regions

e LUMPY [22]; version 0.2.13, using the lumpyexpress command

e Pindel [28]; version 0.2.5b8, using the options -x 4 -M 3 -B 0

e SoftSV [29] version 1.4.2; we require both paired end and split read support

e SVelter [16]; Git commit deb24b5 (July 8 2016); we remove calls with score < 0

Data availability. The Venter/HuRef sample was sequenced to approximately 40X cov-
erage by 2 x 100 bp paired-end reads (SRA accession SRX1016818) [9]. The NA12878
paired-end sequences were obtained from the Illumina Platinum Genomes Project (ENA
accession ERR194147) and amount to 50x coverage by 2 x 100 bp reads [30].

For validation we have used the HuRef diploid assembly of Levy et al.:

https://www.ncbi.nlm.nih.gov/assembly/GCA_000252825.1/

and error-corrected PacBio reads derived from NA12878 by Mt. Sinai School of Medicine
from the Genome in a Bottle Consortium [20]:

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878 PacBio_MtSinai/
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We also used two sets of high-quality deletions from previous literature: the Venter gold set
from [9] and the NA12878 deletion call set from [8]. The NA12878 set was created with
preliminary 1000 Genomes Project results, so we augment the calls with NA12878 deletions
from Phase 3 of the Project [4] (excluding deletions overlapping >50% reciprocally with the
original call set).

Software availability. = The ARC-SV software is available at https://github.com/
jgarthur/arcsv.
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