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Abstract 
A major challenge in cancer research is to determine the biological and clinical significance of 

somatic mutations in non-coding regions. This has been studied in terms of recurrence, 

functional impact, and association to individual regulatory sites, but the combinatorial 

contribution of mutations to common RNA regulatory motifs has not been explored. We 

developed a new method, MIRA, to perform the first comprehensive study of significantly 

mutated regions (SMRs) affecting binding sites for RNA-binding proteins (RBPs) in cancer. 

Extracting signals related to RNA-related selection processes and using RNA sequencing data 

from the same samples we identified alterations in RNA expression and splicing linked to 

mutations on RBP binding sites. We found SRSF10 and MBNL1 motifs in introns, HNRPLL 

motifs at 5’ UTRs, as well as 5’ and 3’ splice-site motifs, among others, with specific mutational 

patterns that disrupt the motif and impact RNA processing. MIRA facilitates the integrative 

analysis of multiple genome sites that operate collectively through common RBPs and can aid in 

the interpretation of non-coding variants in cancer. MIRA is available at 

https://github.com/comprna/mira.  
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Introduction 
 

Cancer arises from genetic and epigenetic alterations that interfere with essential 

mechanisms of the normal life cycle of cells such as DNA repair, replication control, and cell 

death (1). The search for driver mutations, which confer a selective advantage to cancer cells, is 

generally performed in terms of the impact on protein sequences (2). However, systematic 

studies of cancer genomes have highlighted mutational processes outside of protein-coding 

regions (3–5) and tumorigenic mutations at non-coding regions have been described, like those 

in the TERT promoter (6,7). However, a major challenge remains to more accurately and 

comprehensively determine the significance and potential pathogenic involvement of somatic 

variants in regions that do not code for proteins (8). Current methods to detect driver mutations 

in non-coding regions are based on 1) the recurrence of mutations in predefined regions in 

combination with measurement of potential functional impacts (4,9–11), 2) recurrence in 

combination with sequence conservation or polymorphism data (12,13), or 3) the enrichment of 

mutations with respect to specific mutational backgrounds (5,14,15); and some of them combine 

such approaches (5). However, these methods have so far been restricted to individual positions 

rather than combining the contributions from multiple functionally equivalent regulatory sites. 

Additionally, the impact on RNA processing measured from the same samples have not been 

evaluated 

RNA molecules are bound by multiple RNA binding proteins (RBPs) with specific roles in 

RNA processing, including splicing, stability, localization and translation, which are critical for the 

proper control of gene expression (16). Multiple experimental approaches have established that 

RBPs generally interact with RNAs through short motifs of 4-7 nucleotides (17–19). These motifs 

occur anywhere along the precursor RNA molecule (pre-mRNA), including introns, protein 

coding regions, untranslated 5’ and 3’ regions, as well as in short and long non-coding RNAs 

(20,21). Mutations on RNA regulatory sequences can impact RNA processing and lead to 

disease (22). However, studies carried out so far have mainly focused on sequences around 

splice sites (23), or in protein-coding regions (24). In vitro screenings of sequence variants in 

exons has revealed that more than 50% of nucleotide substitutions can induce splicing changes 

(25,26), with similar effects for synonymous and non-synonymous sites (26). Since RBP binding 

motifs are widespread along gene loci, and somatic mutations may occur anywhere along the 

genome, it is possible that mutations in other genic regions could impact RNA processing and 

contribute to the tumor phenotype. Mutations and expression alterations in RBP genes have an 

impact on specific cellular programs in cancer, but it is not known whether mutations in RBP 
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binding sites along gene loci are frequent in cancer, could damage RNA processing, and 

contribute to oncogenic mechanisms.  

To understand the effects of somatic mutations on RNA processing in cancer at a global 

level we have developed a new method, MIRA, to carry out a comprehensive study of somatic 

mutation patterns along genes that operate collectively through interacting with common RBPs. 

Compared with other existing approaches to detect relevant mutations in non-coding regions, 

our study provides several novelties and advantages: 1) we searched exhaustively along gene 

loci, hence increasing the potential to uncover deep intronic pathological mutations; 2) we 

studied the enrichment of a large compendium of potential RNA regulatory motifs, allowing us to 

identify potentially novel mechanisms affecting RNA processing in cancer; 3) we showed that 

multiple mutated genomic loci potentially interact with common RBPs, suggesting novel cancer-

related selection mechanisms; and 4) unlike previous methods, we used RNA sequencing data 

from the same samples to measure the impact on RNA processing. Our study uncovered 

multiple mutated sites associated to common RBPs that impact RNA processing with potential 

implications in cancer, and revealed a new layer of insight to aid in the interpretation of non-

coding variants in cancer genomes.  

 

 
Results 

 

Unbiased search for significantly mutated regions (SMRs) along gene loci 

 

We performed an exhaustive detection of mutation enrichment using overlapping genomic 

windows of 7 nucleotides (7-mer windows) along each gene locus (Fig. 1a) (Figure S1) 

(Methods). Using a dataset of somatic mutations from whole-genome sequencing (WGS) from 

505 samples for 14 tumor types (10) (PAN505) (Table S1), we performed a double statistical 

test. First, to account for local variations in mutational processes we compared each 7-mer 

window against the mutation rate in the entire locus, and selected those with p-value < 0.05 after 

correcting for multiple tests (Figure S2a) (Methods). Secondly, to account for nucleotide biases, 

we compared the mutation count in each 7-mer window with the expected count calculated from 

the mutation rate per nucleotide to define a nucleotide bias (NB) score per window (Methods). 

Of the 140,704 windows with 3 or more mutations, 93,497 (66%) showed NB-score > 6, whereas 

of the 45,916,437 windows with 1 mutation, which we considered to reflect the background, 

1,557,310 (3%) had NB-score > 6 (Fisher’s exact test p-value = 0, odds-ratio = 369.5) (Figure 
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S2b). Using the filters of p-value < 0.05 and NB score > 6, our exhaustive search produced 

78,352 significant 7-mer windows in 8,159 genes. We further separated 7-mer windows 

according to whether they were in a coding sequence (CDS), a 5’ or 3’ untranslated region 

(5UTR/3UTR), an exon in a long non-coding RNA (EXON), an intron (INTRON), or overlapping a 

5’ or 3’ splice site (5SS/3SS) and clustered them into significantly mutated regions (SMRs) (Fig. 

1a), producing a total of 20,307 SMRs, harboring a total of 41,756 substitutions (Figure S3) 

(Tables S2 and S3). Most of the predicted SMRs were 7-15 nucleotides long (Figure S4), and 

the majority of SMRs were in introns and in exons of non-coding RNAs (EXON) (Table 1).  

 

SMRs Total With 
motifs 

With labeled 
motifs 

Impact on 
RNA 

3SS 823 341 335 2 

3UTR 294 44 44 7 

5SS 1054 546 521 11 

5UTR 119 45 45 5 

CDS 208 10 10 3 

EXON 335 119 114 12 

INTRON 17474 3176 1812 427 
 

Table 1. Significant mutated regions (SMRs). For each region type, we indicate the number of SMRs predicted 

(Total), SMRs with stranded enriched motifs (with motifs), with stranded enriched motifs that we could label (with 

labeled motifs), and with a significant association to an RNA-processing change (impact on RNA). This latter case 

includes changes in exon-exon junctions and transcript expression.  

 

We tested our predicted SMRs for possible biases. We calculated for each SMR the DNA 

replication timing, which is known to correlate with somatic mutations in cancers and can be a 

source of artifacts (27,28), and observed no association with mutation count (Figure S5). 

Another potential source of artifacts is the relation between gene expression and mutation rates 

(27). We used RNA sequencing (RNA-seq) data from the same samples to measure the 

expression of SMR-containing transcripts and observed no association between the mutation 

count and expression (Figure S6). We further used LARVA (14) to test our SMRs using a 

statistical model that accounts for over-dispersion of the mutation rate and replication timing 

(Methods). We observed an overall high similarity between the significance provided by MIRA 

and LARVA (Figure S7). In particular, we found a strong agreement for INTRON SMRs 

(Pearson’s R = 0.83). Additionally, we analyzed our SMRs with OncodriveFML (11).  Most of the 

CDS and EXON SMRs were identified as significant by OncodriveFML, whereas not as many 

INTRON, 5UTR or 3UTR SMRs were seen as significant (Figure S8) (Table S2), suggesting that 
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mutations falling on INTRON or UTR regions may impact function in a different way that has not 

been considered yet. 

 

Predicted SMRs recovered known and novel mutational hotspots 

 

We found SMRs in 501 cancer-driver genes out of 889 collected from the literature (29) (Fig. 1b) 

(Figure S9), which is more than expected by chance (Fisher’s exact test p-value = 7.24e-109, 

odds-ratio = 4.67) compared to the 8870 non-cancer genes (out of 40973) that do not harbor 

SMRs. We observed CDS SMRs in 34 cancer genes identified previously (11,13), including 

BRAF, IDH1, KRAS, PIK3CA, SF3B1, CTNNB1, TP53 and KRAS (Fig. 1b), as well as in in 

cancer genes not found previously, including NRAS, EP300 and ATM (Fig. 1c). From the 133 

genes with predicted 5UTR SMRs, 17 were identified previously (11) and 8 corresponded to 

cancer genes, including SPOP and EEF1A1. We also found 3UTR SMRs in 28 cancer genes, 

including CTNNB1 and FOXP1. From the 519 SMRs in EXON SMRs, 18 were located in cancer 

gene loci. In 42 lncRNAs related to cancer (15), we found only one EXON SMR in TCL6, but 11  

INTRON SMRs, suggesting that lncRNAs introns could be more relevant than previously 

anticipated. As our analysis was exhaustive along the entire gene loci, we recovered many more 

INTRON SMRs than in previous reports, 317 of which within cancer genes, including NUMB, 

ALK, EPHB1, ARID1A and MET (Fig. 1c). Additionally, 5 of the previously reported intronic 

mutations (11), we classified as 5SS/3SS SMRs, with ATG4B, NF1 and TP53 having both types 

of SMRs.Finally, we found 62 5SS SMRs and 53 3SS SMRs in cancer genes, including MET, 

CHEK2, BRCA1, VEGFA, RB1, CDKN2A, as well as TP53, PTEN and CHD1, which were 

described before to have cancer mutations at splice-sites (23). In summary, our SMRs provide a 

rich resource with potential to uncover new relevant non-coding alterations in cancer.  

 

Somatic mutations occur frequently on RBP binding motifs 

 

To further understand the properties of our SMRs we calculated the mutation frequencies at tri-

nucleotides considering the strand of the gene in which the SMR was defined. We observed an 

enrichment of C>T and G>A mutations on SMRs (Fig. 2a, upper panel), which was recapitulated 

in the reverse-complement triplets, indicating a strong contribution from DNA-related selection 

processes. To identify SMRs that reflect RNA-related selection processes we studied sequence 

motifs potentially related to RNA processing. We performed an unbiased k-mer enrichment 

analysis in SMRs with k=6 (Methods). Further, to select those associated with RNA rather than 
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DNA, we reverse-complemented all SMRs and control sequences and repeated the enrichment 

analysis, and 6-mers enriched in both calculations for the same region-type were discarded 

(Figure S1c). We found a total of 357 enriched 6-mers (Table S4) in 3546 SMRs (Table S5). 

These enriched 6-mers showed a different mutational pattern compared to all SMRs (Fig. 2a) 

(Table S6). The symmetry between triplets and their reverse complements was no longer 

present, and there was an enrichment of mutations at AGA and TCC triples, probably reflecting 

RNA-related selection processes.  

From the 74 enriched 6-mers found on 5SS SMRs, 46 included the 5’ splice-site 

consensus GT (5SSC). 5SSC motifs showed a strong conservation of G at the +5 intronic 

position (position 7 in Fig. 2b), with the highest density of mutations, mostly G>A and G>T, on 

either side of the exon-intron boundary (Fig. 2b). From the 52 enriched 6-mers found on 3SS 

SMRs, 36 contained the 3’ splice site (3’ss) consensus AG (3SSC), with strong conservation of 

C nucleotides at the -5 position of the intron (position 1 in Fig. 2c) and with positions -1 and -3 (3 

and 5 in Fig. 2c) being the most frequently mutated positions (Fig. 2c). Among the cases found, 

there was a 5’ss in NF1 with mutations in skin (SKCM), lung (LUAD) and uterine (UCEC) tumors 

(Fig. 2d), and a 3’ss in FGFR3 with mutations in head and neck (HNSC) and bladder (BLCA) 

tumors (Fig. 2e). Mutations at splice site motifs where more frequent in lung (LUAD, LUSC) and 

uterine (UCEC) tumors; 5SSC mutations were also frequent in bladder tumors (BLCA), whereas 

3SSC mutations were specifically frequent in colorectal tumors (CRC) (Fig. 3a).  

To identify RBPs that could potentially bind the enriched 6-mers beyond 5SSC/3SSC 

motifs, we used DeepBind (30) to score the enriched 6-mers using models for 522 proteins 

containing KH, RRM and C2H2 domains from human, mouse and Drosophila (Methods). We 

could confidently label 245 (68.6%) of the 357 enriched 6-mers (Table S4). In 5SS and 3SS 

SMRs, besides the enriched 5SSC/3SSC motifs, we identified binding sites for multiple RBPs 

(Figs. 3a and 3b); including SRSF10, a splicing factor that regulates an alternative splicing 

response to DNA damage (31) and PCBP1, which was linked to alternative splicing in cancer 

(32). SRSF10 and PCBP1 motifs appeared also in CDS and INTRON SMRs (Figs. 3c and 3d) 

(Figure S11). In 3SS SMRs we also found binding sites for HNRPLL (Fig. 3b), a regulator of T 

cell activation through alternative splicing (33), which was also found on EXON and INTRON 

SMRs (Fig. 3d) (Figure S11).  

To validate our assignment of RBP labels to SMRs we used data from 91 CLIP 

experiments for 68 different RBPs (34–40) (Methods). Using the significant CLIP-Seq signals as 

evidence of protein-RNA interaction, we observed an enrichment of CLIP signal on labeled 

SMRs compared to SMRs without any RBP assignment (Fisher’s exact test p-value = 4.10e-30, 
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odds-ratio = 1.97). We further tested each specific motif independently for the enrichment of 

CLIP signals with respect to the other motifs (Table S7) (Figure S10). Motifs associated to 

splice-site sequences had the highest enrichment of CLIP signal. We also observed that SMRs 

labeled with CPEB4, SRSF10, PCBP1 or PCBP3 are among the cases with greatest enrichment 

of CLIP signal. Thus, our labeled SMRs are generally enriched on CLIP-Seq signal compared to 

non-labeled SMRs, supporting the notion that these SMRs are likely to participate in protein-

RNA interactions. 

 

Somatic mutations show positional biases on RBP binding motifs 

 

We further studied whether particular positions on the identified RBP motifs were more 

frequently mutated than others. For each RBP, we grouped the SMRs containing the enriched 

labeled 6-mers and performed a multiple sequence alignment (MSA) to determine the equivalent 

positions of the motifs across the SMRs. For SRSF10 motifs we found an enrichment of A>G 

mutations at A positions (Fig. 3d), which was recapitulated at INTRON, CDS and 3SS SMRs 

(Fig. 3c). On EXON SMRs the most abundant RBP motif was CPEB4, which showed enrichment 

of T>A mutations, whereas HNRPLL and PCBP1 motifs showed enrichment of C>T mutations 

(Figure S12). At 5UTR SMRs we found multiple T- and C-rich motifs, predominantly in 

melanoma (SKCM) (Fig. 4a). In particular, PCBP3 and PTBP1 motifs at 5UTR SMRs, which 

were characterized by an enrichment of C>T substitutions (Fig. 4b), might be related to the 5’ 

terminal oligo-pyrimidine tract (5’TOP) motif that is relevant for translational regulation (41,42), 

and these mutations could indicate an impact on translation. At 5UTR SMRs there were also G-

rich motifs (HNRPLL, HNRNPA2B1) with frequent G>A mutations (Figure S13). At 3UTR SMRs 

(Fig. 4c) we observed frequent CT-rich motifs associated to PTBP1, HNRNPC, PCBP3 and 

ELAVL1 (HuR) in CRC, BLCA and UCEC patients (Fig. 4d), and AC-rich motifs associated to 

IGF2BP2 in UCEC and CRC with enrichment of C>T mutations (Figure S14).  

For each enriched motif, we calculated the enrichment of gene sets (GO Biological 

Function, Pathways and Oncogenic Pathways) in the genes harboring SMRs with the motif 

(Table S8). Among the motifs associated with cancer-related functions: 5SSC motifs appeared 

related to apoptosis and DNA damage response functions, as well as to NFKB activation and 

PI3K signal cascade (Figure S15). Genes with SMRs harboring SRSF10 motifs showed 

association to apoptosis and immune response, whereas genes with HNRNPC or HNRNPLL 

motifs were related to metabolic processes. RBM41-motif containing SMRs are also related to 

genes involved in metabolic processes, as well as in T-cell activation. These results indicate that 
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cancer mutations on RBP motifs potentially impact a wide range of functions that may lead to 

specific tumor phenotypes. 

 

Somatic mutations in RBP binding motifs impact in RNA expression and splicing 

 

To determine the impact of mutations in enriched motifs we tested their association with 

changes in RNA processing. We first estimated the association of mutations with changes in 

transcript isoform expression (Methods). From the 20,308 SMRs tested, 148 showed an 

association with a significant expression change (Fig. 5a) (Table S9) (Methods). Most of the 

significant changes were associated with INTRON SMRs in skin (SKCM) and colorectal (CRC) 

tumors (Figures S16 and S17). The motifs PTBP1, PCBP1, RBM8A and ZNF638 harbored the 

highest number of mutations associated with significant transcript expression changes (Fig. 5b) 

(Figure S17). In particular, mutations in RBM8A motifs were associated with expression changes 

of the histone acetyl-transferase gene KAT6A and the pre-B-cell leukemia transcription factor 1 

gene PBX1, both potential oncogenes (43,44). In the case of PBX1, two transcript isoforms 

change expression in opposite directions, indicating an isoform switch.  

 We also found mutations in an intronic SRSF10 motif associated with expression 

changes in a transcript from the dystrophin gene (DMD) in breast cancer (BRCA), and in two 

transcripts from the Mitogen-Activated Protein Kinase 10 MAPK10 (JNK3) in colorectal cancer 

(CRC) (Fig. 5c). In DMD, the mutation was associated with increased expression, whereas in 

MAPK10 we observed an isoform switch (Fig. 5c). MAPK10 is a pro-apoptotic gene and our 

results suggest that a mutation in an intronic SRSF10 motif conserved in primates to be 

associated to an isoform switch in CRC (Fig. 5c). We also found a CRC mutation on an intronic 

MBNL1 motif conserved in mammals that is associated with an upregulation of the transcription 

factor ETV1 (Fig. 5d), which has been linked to prostate cancer (45). A mutation at a nearby site 

in SKCM shows association to downregulation of a different transcript isoform (Fig. 5d). In 5UTR 

SMRs, significant changes were associated only with SKCM mutations (Figure S18). One of 

them corresponds to a mutation on a PCBP3 motif associated with an isoform switch in the 

galactokinase-2 gene GALK2 in melanoma. GALK2 is a regulator of prostate cancer cell growth 

(46) and has alternative splicing in multiple tumor types (29). Our results indicate that these 

splicing alterations could stem from a mutation on a PCBP3 motif at the 5’UTR. Finally, among 

the changes associated with 3UTR SMRs, we found a mutation in a HuR motif in CRC related to 

the downregulation of the Debrin-like gene DBNL (Figure S18). 

We also analyzed the changes in all possible exon-exon junctions defined from spliced 
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reads mapped to the genome and overlapping SMRs. Of the SMRs tested, 30 were associated 

with a significant inclusion change in at least one junction (Fig. 6a) (Table S10). The majority of 

cases occurred in INTRON SMRs, and associated to mutations in bladder (BLCA) and head and 

neck squamous-cell (HNSC) tumors. Significant junctions were also commonly associated with 

5SS SMRs, mainly in uterine (UCEC) and skin (SKCM) tumors (Fig. 6a) and in 5UTRs SMRs 

specifically associated to SKCM mutations. In contrast, we found few associations for 3SS and 

EXON SMRs, and none for CDS SMRs (Fig. 6a). Significant changes in junctions were most 

commonly associated to the 5SSC and 3SSC motifs, as well as to IGF2BP2, HNRNPA2B1, 

HNRNPLL and PCBP1 motifs among others (Fig. 6b). Among the significant changes associated 

to 5SSC (Fig. 6c), a mutation in the peptidyl-tRNA hydrolase 2 gene PTRH2 in uterine cancer 

(UCEC) would lead to the recognition of an upstream cryptic 5’ss (Fig. 6d). PTRH2 induces 

anoikis and its downregulation is linked to metastasis in tumor cells (47). The mutation observed 

could therefore play a role in cancer progression. We also found a significant splicing change in 

the Farnesyl Pyrophosphate Synthetase gene FDPS in melanoma that would induce an 

alternative 5’ss and skip part of the Polyprenyl synthetase domain (Figure S19). FDPS induces 

autophagy in cancer cells (48), and an alteration of the autophagy pathway has been related to 

myeloid neoplasms when SF3B1 mutations are present (49). It would be interesting to 

investigate further whether this splicing-induced alteration of FDPS could recapitulate a similar 

phenotype. Among the significant changes associated with 3SS mutations there was one in the 

Adenine Phosphoribosyl transferase gene APRT associated to G>A mutations at the consensus 

3’ss splice site in melanoma (SKCM), which would skip the Phosphoribosyl transferase domain 

(Figure S19). 

We also found mutations in 5UTR and EXON motifs associated to splicing changes (Fig. 

6e). We found a mutation in a 5UTR HNRPLL motif in C16orf59 that is conserved across 

mammals (Fig. 6f). We also found a mutation in an EXON IGF2BP2 motif in the C14orf37 locus 

(Figure S19). Finally, INTRON SMRs had the most numerous number of junction changes 

associated with mutations in multiple RBP motifs, including RBM8A and SRSF10 (Figure S20), 

which included changes in the histone gene HIST1H2AC related to mutations in the RBM8A 

motif in HNSC, and in GMEB1 related to mutations in an SRSF10 motif. BED and GFF tracks 

representing all the found cases are available as supplementary material. 

 

Discussion 
 

We have described a novel method to identify and characterize somatic mutations in coding and 
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non-coding regions in relation to their potential to be involved in protein-RNA binding. By 

considering mutational significance in combination with the enrichment of RBP binding motifs, 

we identified mutations in non-coding regions, particularly in deep intronic regions, with evidence 

of impact on RNA processing. Our analysis provides new potential mechanisms by which 

somatic mutations impact RNA processing and contribute to tumor phenotypes. Although these 

mutations may not be as frequent as other classical oncogenic mutations, recent evidence 

suggests that rare somatic variants can have an impact on expression and be clinically 

actionable (50). As RBPs are known to control entire cellular pathways, from epithelial-to-

mesenchymal transition (51) to cellular differentiation (52), these results suggest a general 

model by which cancer mutations disrupt the function of RBP-targets and contribute 

independently to the disruption of similar pathways (Fig. 7). Our work also provides a new 

strategy to interpret non-coding mutations and indicates that lowly recurrent mutations could still 

be relevant to the study of cancer, as they can impact functions collectively controlled by the 

same RBP. 

MIRA presents several advantages with respect to previous methods. It detects deep 

intronic mutations, whereas previous methods only tested intronic regions immediately adjacent 

to exons (11,15). Additionally, unlike previous approaches (11,13,15), we examined the location 

of the mutations in the context of a RNA regulatory motif, which enables the combined 

interpretation of non-coding mutations at multiple sites. Additionally, our analyses were driven by 

the positions of mutations on regulatory motifs, hence providing the precise region where 

mutations likely play a role. Finally, unlike most previous approaches, we tested the impact on 

RNA processing and expression using RNA-seq from the same samples. We observed 

significant changes for a small fraction of SMRs, indicating that the overall impact on RNA is 

modest as measured by RNA sequencing from cancer tissue samples. Deeper sequencing of 

tissue samples or in-vitro based assays could help validating many more of these events. 

The majority of the validated cases were deep-intronic mutations, whose interpretation 

has remained elusive so far. Here we provided evidence of their potential relevance in cancer. 

Interestingly, whereas other methods assumed that the function of lncRNAs may be impacted 

only through exonic mutations (15), we found that intronic SMRs may be relevant as well. 

Additionally, although it has been generally assumed that RNA structure determines the function 

in UTR regions (11), we found 5UTR SMRs associated to RNA processing changes, indicating 

new mechanisms. Our approach is subject to several limitations. The analysis may be 

underpowered due to the relatively small number of patients analyzed. Another limitation is that 

we chose specific descriptions for the RNA binding motifs; hence the analysis is limited by their 
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accuracy. Despite computational and technological advances, precise definitions of RBP binding 

sites at a genome scale remains challenging, and different RBPs may bind similar sequence 

motifs. To deal with these ambiguities, our method allowed for multiple assignments of 6-mers to 

RBP labels, providing the opportunity to describe the mutational patterns of different RBP motifs. 

In summary, MIRA analyzes non-coding mutations to take into account functional 

analogous sites at different genomic positions and RNA-related selection processes, providing 

evidence that multiple RNA processing mechanisms may be impaired in cancer through 

mutations on RBP motifs, thereby uncovering novel alterations relevant for cancer.  

 

  

Methods 

 

Data  

We used the Gencode gene annotations (v19), excluding pseudogenes. To define gene loci 

unequivocally, we clustered transcripts that shared a splice site on the same strand, and 

considered a gene to be the genomic locus and the strand defined by those transcripts. We 

used somatic mutations from whole genome sequencing for 505 tumor samples from 14 tumor 

types published previously (Table S1) (10): bladder carcinoma (BLCA) (21 samples), breast 

carcinoma (BRCA) (96 samples), colorectal carcinoma (CRC) (42 samples), glioblastoma 

multiforme (GBM) (27 samples), head and neck squamous carcinoma (HNSC) (27 samples), 

kidney chromophobe (KICH) (15 samples),  kidney renal carcinoma (KIRC) (29 samples), low 

grade glioma (LGG) (18 samples), lung adenocarcinoma (LUAD) (46 samples), lung squamous 

cell carcinoma (LUSC) (45 samples), prostate adenocarcinoma (PRAD) (20 samples), skin 

carcinoma (SKCM) (38 samples), thyroid carcinoma (THCA) (34 samples), and uterine corpus 

endometrial carcinoma (UCEC) (47 samples). We only used substitutions, discarding those with 

a precise allelic match to a germline variant in dbSNP138.  

 

Detection of significantly mutated regions 

To identify significantly mutated regions (SMRs) in both coding and non-coding regions of genes 

we used a sliding-window approach, whereby along each gene locus we tested all overlapping 

windows of length 7 (7-mer window) that harbored at least one mutation. For each 7-mer 

window, we performed a double statistical test. First, given a window with n mutations in a gene 

of length L and N mutations overall, we performed a binomial test using N/L as the expected 

local mutation rate (Figure S1). All tested windows in a gene were adjusted for multiple testing 
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using the Benjamini-Hochberg (BH) method, and we kept only windows with false discovery rate 

(corrected p-value) < 0.05 (Figure S2).  

To account for potential nucleotide biases we performed a second test per 7-mer 

window: we compared the mutation count in a given window with the expected count according 

to the distribution of mutations per nucleotide in the same gene as follows: For each base a we 

calculated the rate of mutations in a locus R(a) = m(a)/n(a), where n(a) is the number of a bases 

in the gene and m(a) is the number of those bases that are mutated. The expected mutation 

count is then calculated using the nucleotide counts in the window and the mutation rate per 

nucleotide. For instance, for the 7-mer window AACTGCAG, the expected count was calculated 

as: E = 3R(A) + 2R(C) + 2R(G) + R(T). This was compared to the actual number of mutations, n, 

observed in that window to define a nucleotide bias (NB) score: NB-score = log2( n / E ) per 

window. We discarded windows corresponding to single-nucleotide repeats (e.g. AAAAAAA) 

and kept windows with NB-score > 6 (Figure S2). Further, we kept 7-mer windows that 

overlapped any of the three intronic or exonic bases around exon-intron boundaries with 1 or 

more mutations as long as the NB-score was greater than 6.  

Significant 7-mer windows were clustered according to genomic overlap and classified 

according to the genic region in the same strand on which they fell: 5’ or 3’ untranslated regions 

(5UTR/3UTR), coding sequence (CDS), exon in short or long non-coding RNA (EXON), 5’/3’ 

splice-site (5SS/3SS), or intron (INTRON). To unambiguously assign each 7-mer window we 

prioritized regions as follows: 5SS/3SS > CDS > 5UTR/3UTR > EXON > INTRON, i.e. if a 

window overlapped a splice-site, it was classified as such; else, if it overlapped a CDS, it was 

classified as CDS; etc. No significant window overlapped start or stop codons. To each SMR we 

assigned the average NB-score and a corrected p-value using the Simes approach (53): we 

ranked the p-values of the n overlapping windows in increasing order pi , i=1,2,…n and calculated 

ps = min{ np1 / 1, np2 / 2, np3 / 3, …., npn / n}, where p1 was the lowest and pn the highest p-values in 

the cluster. Each SMR cluster was then assigned the p-value ps. Using other window lengths 

(k=6,8,9) we observed that k=7 provides an optimal trading off between the number of regions 

covered and the clustering of those regions (Figure S2). Code for this analysis is available at 

https://github.com/comprna/mira.  

 

Comparison to expression, replication timing and to other methods 

Data for replication time was obtained from (14). Only SMRs with replication time data were 

analyzed. For each SMR in the PAN505 cohort, we considered annotated transcripts whose 

genomic sequence overlapped with an SMR. We calculated the total expression in transcripts 
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per million (TPM) units for the overlapping transcripts per patient and averaged them across 

patients. For each SMR we compared the average expression of the SMR-containing transcripts 

in the mutated samples with the number of mutations. Additionally, using the same mutation 

dataset, we analyzed all SMRs with LARVA (14). LARVA assesses the significance of mutations 

in any genomic region integrating multiple non-coding functional elements, modeling their 

mutation count with a beta-binomial distribution to handle over dispersion related to the mutation 

heterogeneity and mutation correlation between neighboring sites, and uses regional genomic 

features such as replication timing to better estimate local mutation rates and mutational 

enrichments. We compared the significance of our SMRs with the significance given by LARVA 

using the model with a beta-binomial distribution and the replication timing correction (p-bbd-

cor), which accounts for over dispersion of the mutation rates and regional biases. We also 

analyzed our SMRs with OncodriveFML (11), which evaluates the functional impact of mutations 

using CADD score (54) and RNA secondary structure (55), using the same mutation dataset. 

OncodriveFML was run with option --type coding for SMRs of type CDS, and with the option --

type noncoding for all other SMR types (5SS/3SS, 5UTR, 3UTR, INTRON, EXON, where EXON 

corresponds to exons from non-coding RNAs). Each type was run independently. 

 

Control regions for SMR comparison 

For each SMR, we sampled 100 random regions of the same length and same type from the 

Gencode annotation, without mutations, and allowing for a maximum variation of G+C content of 

5%. Each of these 100 controls was separated into different sets to generate 100 control sets of 

the same number as SMRs, each with similar distribution and G+C content distributions. For the 

5SS and 3SS SMRs we generated controls by sampling regions with the same length and same 

relative position from Gencode exon-intron boundaries without mutations and controlling for G+C 

content.  

 

Motif analysis 

We performed an unbiased search for enriched k-mers (k=6) on the SMRs using MoSEA 

(https://github.com/comprna/MoSEA) (29), using as input the SMR sequences and control 

regions, for each region type. MoSEA counts the number of SMRs and control regions in which 

each 6-mer appears and a z-score was computed for each 6-mer comparing the observed 

frequency with the distribution of frequencies in 100 control subsamples of the same size, length 

distribution and GC content as the SMR set. This was repeated reversing the strand of SMRs 

and control regions, and those 6-mers that appeared significantly enriched in the direct and 
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reversed analyses for the same region type were discarded. We considered significant the 6-

mers with z-score > 1.96 and 5 or more counts. This analysis included the GT and AG 

containing 6-mers at 5SS and 3SS SMRs, respectively. In total we obtained 357 enriched 6-

mers (Table S4) in 3547 SMRs (Table S5). From all 20307 SMRs, 749 (3,68%) appeared in both 

strands due to overlapping genes. However, considering the 3456 SMRs with enriched 6-mers, 

only 25 (0,72%) overlapped on opposite strands (Fisher’s exact test p-value = 1.29e-32, odds-

ratio = 6.16). To label enriched 6-mers we used DeepBind (30) to score each 6-mer using 

models for 522 proteins containing KH (24 proteins), RRM (134, 2 in common with KH) and 

C2H2 (366 proteins) domains from human (413 proteins), mouse (49 proteins) and Drosophila 

(60 proteins). For each 6-mer, we kept the top three predictions with score > 0.1. Subsequently, 

given all 6-mers associated to the same RBP label, we kept those 6-mers at a maximum 

Levenshtein distance of 2 from the top-scoring 6-mer. Levenshtein distance measures the 

dissimilarity between two strings based on the number of deletions, insertions or substitutions 

required to transform one string into the other.  

 

Significant mutations per position of a motif 

For each RBP we considered all the associated 6-mers in SMRs of a given region type and 

performed a multiple sequence alignment (MSA) using ClustalW (56). Sequence logos were 

built from this alignment and somatic mutations were counted per position relative to the MSA. 

As a control, we shuffled the mutations along the aligned positions to calculate an average per 

position. Germline mutations per position of the MSA from the 1000 genomes project (57) were 

also considered. 

 

Gene set enrichment analysis 

Annotations for gene sets were obtained from the Molecular Signatures Database v4.0 (58). We 

performed a Fisher’s exact test per hallmark set for genes harboring SMRs with labeled enriched 

motifs using the counts of genes with/without the RBP motif SMRs, and within/outside each 

gene set.  

 

CLIP-Seq analysis 

We collected binding sites from 91 CLIP-Seq experiments for 68 different RBPs from multiple 

sources (34–40) and selected the available significant CLIP clusters from each experiment. For 

datasets with two replicates we selected the intersecting regions of the significant CLIP clusters, 

i.e. the genomic ranges covered by both replicates. From all SMRs with assigned RBP label, 
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482 (13.6%) had CLIP signal, whereas 3064 did not have CLIP signal. In contrast, from all 

SMRs without assigned RBP label, 1239 had CLIP overlap (7.4%), whereas 15522 did not have 

CLIP signal (Fisher’s exact test p-value p-value = 4.10e-30, odds-ratio: 1.97). We performed the 

same analysis per RBP label: For each RBP label, we considered the SMRs with and without 

the label assignment and tested the enrichment of CLIP signal associated to the label using a 

Fisher’s exact test (Table S7) (Figure S10).  
 

RNA-seq data analysis 

TCGA RNA-seq data was obtained for the PAN505 samples from the Genomic Data Commons 

(https://gdc-portal.nci.nih.gov/). We estimated transcript abundances for the Gencode 

annotations (v19) in TPM units using Salmon (Version 0.8.1) (59). For each mutated position in 

an enriched motif, we calculated the association to a transcript expression change using an 

outlier statistic. For each transcript whose genomic extension contained the SMR with the 

mutated motif, we compared the transcript log2(TPM+0.01) for each patient with the mutation, 

with the distribution of log2(TPM+0.01) values for the same transcript in the patients from the 

same tumor type with no mutations in the SMR. We only considered those cases where at least 

5 patients lacked a mutation. We kept those cases with |z-score|>1.96 and a difference between 

the observed log2(TPM+0.01) and the mean of log2(TPM+0.1) in patients without mutations 

greater than 0.5 in absolute value, and considered significant those with a p-value < 0.05 after 

adjusting for multiple testing (BH approach). RNA-seq reads were also mapped to the human 

genome (hg19) with STAR (version 2.5.0) (60) and analyzed using Junckey 

(https://github.com/comprna/Junckey) as follows. All exon-exon junctions defined by spliced 

reads that appeared in any of the samples were grouped into junction-clusters. Any two 

junctions were placed in the same cluster if they shared at least one splice-site. Clusters were 

built using all junctions present in any patient, but junction read-counts were assigned per 

patient. Only clusters with at least 30 reads in all samples were used. Additionally, we only used 

junctions <100kbp in length and with >1% of reads from the cluster in all samples. For each 

patient, the read-count per junction was normalized by the total read count in that cluster to 

define the junction inclusion or proportion spliced-in (PSI). A junction not expressed in a sample 

was set to PSI=0. For each SMR containing an enriched motif, we compared each patient with a 

mutation in the motif against all patients for the same tumor type without mutations in the same 

SMR. We measured a z-score derived from the PSI for each junction overlapping the motif and 

the of PSIs for the same junction in the non-mutated patients, and we kept only those cases with 

|z-score|>1.96 and |ΔPSI|>0.1. We considered significant those changes with p-value < 0.05 
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after adjusting for multiple testing (BH approach).  

 

Supplementary Data and Software 

UCSC tracks for SMRs, mutations, motifs and differentially included junctions are given as 

supplementary file. Plots for all mutated RBP binding motifs and RNA processing changes are 

available at: http://comprna.upf.edu/Data/MutationsRBPMotifs/ 

Code used in this manuscript is available at:  

https://github.com/comprna/mira 

https://github.com/comprna/MoSEA 

https://github.com/comprna/Junckey 
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Figures 

 
Figure 1. Systematic identification of RNA-related significantly mutated regions (SMRs). 

(a) Short k-mer windows (k=7 in our study) along genes are tested for the enrichment in 

mutations with respect to the gene mutation rate and the local nucleotide biases. Significant 

windows are clustered by region type into significantly mutated regions (SMRs). For each SMR 

we give the NB-score (x axis) and the number of mutations (y axis). (b) We show the SMRs 
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detected in CDS regions, introns (INTRON), 5’ UTRs (5UTR) and 3’UTRs (3UTR). All SMRs 

detected are shown, but we only show the gene name for the SMRs with nucleotide-bias (NB) 

score > 6 and with 5 or more mutations, except for the INTRON SMRs, where we highlight the 

cases with 12 or more mutations. (c) Examples of a CDS SMR in NRAS and an INTRON SMR 

in MET. The UCSC screenshots show the SMR (green) and the mutations detected (red). 
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Figure 2. Enriched splice-site motifs in significantly mutated regions (SMRs). (a) Upper 

panel: mutation pattern in SMRs. For each nucleotide substitution we give the total count of 

substitutions observed in SMRs separated according to the nucleotide triplet in which it occurs. 

SMRs are stranded; hence we give the substitutions according to the SMR strand. Lower panel: 

mutation patterns in enriched 6-mers in SMRs. For each nucleotide substitution we give the total 

count observed separated according to the nucleotide triplet in which it occurs. Since the 6-mers 

are stranded, give the substitutions according to the 6-mer strand. (b) We show the logos for the 

splice site motifs significantly enriched in 5SS and 3SS SMRs, i.e. they appear more frequently 

in 5SS or 3SS SMRs than in the corresponding controls. The barplots below show the proportion 

of all somatic mutations in the 6-mers (y axis) that fall on each position along the motif logo. In 

orange indicate those somatic mutations that coincide with a germline SNP. (c) The plots show 

for each position the number of splice-sites with each type of substitution indicated with a color 

code below. (d) We give two examples of mutations found at splice sites motifs in the genes 

NF1 and FGFR3. Above the gene track we show the significantly mutated region (SMR) (green 

track), the enriched motif found in the SMR (blue track), and the somatic mutations (read track). 

For each mutation we indicate the patient identifier, the tumor type and the substitution. 

 
  



Figure 3. Cancer mutations in enriched RBP motifs. We provide the proportion of samples 

separated by tumor type (y axis) that have a mutated motif in 5SS (a), 3SS (b), CDS (c) and 

INTRON (d) SMRs. In each SMR type we show the enriched motifs. For 5SS and 3SS we 

indicate the consensus 5’ or 3’ splice site sequences (5SSC/3SSC). The proportions are color 

coded by tumor type.  We show the mutation patterns on SRSF10 motifs in 3SS (e), CDS (f) and 

INTRON (g) SMRs. In the upper panel we indicate in dark red the position of the mutations and 

in light red the positions covered by motif. The barplots below show the proportion of somatic 

mutations (y axis) that fall on each position along the motif logo. In orange indicate those 

somatic mutations that coincide with a germline SNP. Below we show for each position the 

number of motifs with each type of substitution indicated with a color code below. 
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Figure 4. Cancer mutations in enriched RBP motifs in 5UTR and 3UTR SMRs. (a) For 5UTR 

(a) and 3UTR (b) SMRs we provide the proportion of samples in each tumor type (y axis) that 

have a mutated RNA binding protein (RBP) motif (x axis). The proportions are color-coded by 

tumor type. The proportions of SMRs with each RBP motif per tumor type are given in Figure 

S11. Positional patterns of mutations on (c) PCBP3 motifs in 5UTR SMRs, and on (d) 

HNRNPC3 motifs in 3UTR SMRs. In the upper panels we indicate in red the positions covered 

by the motif and in dark red the position of the mutations. The barplots below show the 

proportion of somatic mutations (y axis) that fall on each position along the motif logo. In orange 

we indicate those somatic mutations that coincide with a germline SNP in position (with a 

different substitution pattern, as the exact matching substitutions were removed). Below we 

show for each position, the number of motifs with each type of substitution indicated with a color 
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Figure 5. Transcript expression changes associated to mutations in RBP motifs. (a) For 

each region type (x axis) we give the number of SMRs (y axis) for which we found a significant 

change in transcript isoform expression associated with somatic mutations in enriched motifs 

within the SMR. The counts are color-coded by tumor type. (b) For each motif (x axis), we give 

the number of cases for which we found a significant change in transcript expression (y axis) 

associated with somatic mutations in the motif. The counts are color-coded by tumor type. (c) 

Significant changes in transcript expression associated with mutations in intronic SRSF10 



motifs. For each patient (x axis) we show the transcripts (y axis) that have a significant increase 

(red) or decrease (blue) in expression. We separate them according to tumor type (indicated 

above). In the UCSC screen shot we indicate the patients and mutations on the CAGAGA motif 

in the intron of MAPK10. Below we show the significant expression changes detected in two 

different transcripts of MAPK10 associated to mutations in the SRSF10 motif. (d) Significant 

changes in transcript expression associated with mutations in intronic MBNL1 motifs. For each 

patient (x axis) we show the transcripts (y axis) that have a significant increase (red) or decrease 

(blue) in expression. We separate them according to tumor type (indicated above). In the UCSC 

screen shot we indicate the patients and mutations on the CGCTTT motif in the intron of ETV1. 

Below we show the significant expression changes detected in two different transcripts of ETV1 

associated to mutations in the MBNL1 motif. 
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Figure 6. Changes in junction usage associated to mutations in RBP motifs. (a) For each 

region type (x axis) we give the number of SMRs (y axis) for which we found a significant 

change in exon-exon junction inclusion associated with somatic mutations in enriched motifs 

within the SMR. The counts are color-coded by tumor type. (b) For each motif (x axis), we give 



the number of instances (y axis) for which we found a significant change in exon-exon junction 

inclusion associated with somatic mutations in the motif (x axis). The counts are color-coded by 

tumor type. (c) Significant changes in junction inclusion associated to mutations in 5’ splice site 

(5’ss) motifs. For each patient (x axis) we show the junctions (y axis) that have a significant 

increase (orange) or decrease (cyan) in inclusion (PSI). We separate them according to tumor 

type (indicated above). (d) Significant junction changes in PTRH2 in uterine cancer (UCEC). We 

show the changing junctions in gray. The mutation in the annotated 5’ss induces the usage of an 

upstream cryptic 5’ss. We show the SMR (green), the enriched motif (blue), and the mutation 

(red). The boxplots blow show the PSI values (y axis) of the two changing junctions separated 

by samples with mutations and without mutations in this SMR in UCEC, indicated in the x axis. 

(e) Significant changes in junction inclusion associated to mutations in 5UTR SMRs. For each 

patient (x axis) we show the junctions (y axis) that have a significant increase (orange) or 

decrease (cyan) in inclusion (PSI). We separate them according to tumor type (indicated above). 

(f) Significant junction changes in C16orf59 associated to mutations in an HRNPLL motif in 

melanoma (SKCM). The boxplots show the PSI values (y axis) of the two changing junctions 

separated by samples with mutations and without mutations, indicated in the x axis. In the 

screenshot we show the 5UTR SMR (green), the enriched motifs (blue), and the mutations (red), 

which suggest dinucleotide mutations GG>AA in some patients. The junctions associated to 

these mutations are downstream of the SMR and do not appear in the genomic range shown in 

the figure.  

 

  



 
Figure 7. Non-coding mutations in human tumors impact binding sites of RNA binding 

proteins. Our analysis suggests that many of the mutations (indicated in red) on non-coding 

regions, predominantly introns, and UTRs, impact binding sites of RNA binding proteins 

(indicated in orange and green) and affect RNA processing in multiple different genes across 

patients. In the figure altered RNA processing are indicated as solid gene models. These 

alterations would contribute to the frequent changes observed in RNA processing in tumors and 

could indicate novel oncogenic mechanisms.  
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