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Abstract
As species face rapid environmental change, we can build resilient populations through 

restoration projects that incorporate predicted future climates into seed sourcing 

decisions.  Eucalyptus melliodora is a foundation species of a critically endangered 

community in Australia that is a target for restoration.  We examined patterns of 

genomic and phenotypic variation to make empirical based recommendations for seed 

sourcing.  We examined isolation by distance and isolation by environment, determining

gene flow up to 500 km and associations with environmental variables.  Climate 

chamber studies revealed extensive phenotypic variation both within and among 

sampling sites, but no site-specific differentiation in phenotypic plasticity.  Overall our 

results suggest that seed can be sourced broadly across the landscape, providing 

ample diversity for adaptation to environmental change.  Application of our landscape 

genomic model to E. melliodora restoration projects can identify genomic variation 

suitable for predicted future climates, thereby increasing the long term probability of 

successful restoration.

Introduction
Species around the globe face rapidly changing environments, often in combination with

habitat degradation and fragmentation.  These factors are expected to have a negative 

impact on biodiversity (Lindenmayer et al., 2010).  Three processes enable species 

survival in the face of altered conditions--migration, adaptation, and phenotypic plasticity

(Aitken & Whitlock, 2013; Aitken et al., 2008; Hoffmann et al., 2015; Nicotra et al., 

2010).  An important conservation strategy is to assist these natural processes to help 

build more resilient communities.  We can help species shift to regions with their 

preferred environmental conditions by assisting migration of gene pools across the 

landscape (Aitken & Whitlock, 2013; Aitken et al., 2008).  We can aid populations to 

survive in situ by ensuring that sufficient genomic variation exists for adaptation to 

changing environments (Hoffmann et al., 2015).  We can enable individuals to respond 
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to a greater range of environments by conserving existing phenotypic plasticity (Nicotra 

et al., 2010).

Seed sourcing during landscape restoration provides an ideal opportunity to 

apply scientific knowledge to enable these key processes and improve conservation 

outcomes (Broadhurst et al., 2008; Prober et al., 2015).  For example, seed sources can

be selected to restore historical patterns of gene flow across a fragmented landscape, 

incorporate high genomic diversity, and/or increase phenotypic plasticity.  Seed sources 

can also be matched with current or projected future climates, enabling assisted 

migration to favorable environments (Aitken & Whitlock, 2013; Williams et al., 2014).

Historically, restoration often focused on geographically restricted local 

sources of seed under the premise that this would improve restoration outcomes by 

reducing the risk of maladaptation to local conditions and preventing outbreeding 

depression (Broadhurst et al., 2008).  However, there are several potential drawbacks to

this narrow local focus.  In a fragmented system, narrow local seed sourcing reduces 

the number of potential source populations, thereby reducing the pool of available 

genetic material.  This reduced gene pool may result in inbreeding depression in future 

generations, especially if combined with small population size (Broadhurst et al., 2008). 

Obtaining potential seed sources from a wider geographical area can increase genomic 

and phenotypic diversity, thereby increasing the ability of the species to survive in situ 

(Broadhurst et al., 2008).  Additionally, the focus on maintaining local adaptation in situ 

assumes a static environment, not the rapidly changing environment that occurs today.  

As local conditions change, traits and genes that may have conferred an advantage in 

the past might not be suitable in the future environment.  In recent year, climate 

adjusted provenancing has been proposed, which is a seed sourcing strategy that 

incorporates climate variability and focuses on sourcing seed that is predicted to be 

adapted to future climates (Byrne et al., 2013; Prober et al., 2015).  This strategic 

assisted migration of variation across the landscape can aid in the establishment of 

populations that are more adaptable to future environments (Prober et al., 2015).

To determine the appropriate seed sourcing strategy and to identify optimal 

seed sources for a reforestation project, empirical knowledge of genomic variation for 
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the target species can provide valuable information.  The technology now exists to 

assess genomic variation in any target species, enabling determination of patterns of 

Isolation By Distance (IBD) and Isolation By Environment (IBE).  IBD is the association 

between genomic distance and geographic distance resulting from patterns of dispersal.

IBE is the association between genomic distance and environmental distance, while 

controlling for geographic distance (Wang & Bradburd, 2014).  Landscape genomic 

models can be generated by fitting geographic and environmental variables to the 

observed genomic diversity.  These predictive models can optimize the genetic material 

selected for restoration and should improve long term outcomes (Hoffmann et al., 2015; 

Williams et al., 2014).

The extent of phenotypic plasticity in potential seed sources can be measured

in growth assays of seedling traits across contrasting environmental conditions.  The 

magnitude of the environmental response can be compared among maternal lines or 

populations and may identify populations that differ in their response to the 

environment.  Such differing responses have been seen in some species of Eucalyptus 

(Andrew et al., 2010; Byrne et al., 2013; McLean et al., 2014).

Eucalyptus melliodora (A.Cunn. ex Schauer), commonly called yellow box, is 

an iconic Australian species that is the subject of extensive restoration efforts across its 

distribution.  It is a foundation species of a critically endangered ecological community: 

the White Box–Yellow Box–Blakely’s Red Gum Grassy Woodland and Derived Native 

Grassland (Department of Environment and Climate Change and Water, 2011; 

Department of the Environment and Heritage, 2006; Threatened Species Scientific 

Committee, 2006).  This woodland community exists in a fragmented landscape, with 

less than 5% of its original distribution remaining, mostly in small remnant patches 

(Department of Environment and Climate Change and Water, 2011; Department of the 

Environment and Heritage, 2006; Threatened Species Scientific Committee, 2006).  

Efforts to restore this endangered woodland community are ongoing and restoration 

practitioners are seeking scientific recommendations to improve seed sourcing.  Climate

change is an important consideration in seed sourcing decisions because species 

distribution modelling predicts that most eucalypts will need to shift their distributions 
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considerably in response (González-Orozco et al., 2016).  In particular, for E. melliodora

ecological niche modelling predicts that by 2090 the species distribution will shift toward

the southeast and suitable areas will decrease by 77% as a result of environmental 

changes (Broadhurst et al., in review).

Here we survey genomic variation in 275 individuals from 37 sites across the 

present range of E. melliodora.  We fit the genotypic data to geographic distance and 

key environmental variables at the site of origin.  We find that effects of genomic 

isolation by distance begin at approximately 500km.  This empirical estimate of "local" is

much farther  than what is often practiced for local provenancing.  We also find that 

features of the abiotic environment can further explain genomic differentiation after 

accounting for geographic distance.  We also examine seedling growth characteristics 

under simulated climate conditions and find significant variation in growth traits both 

within and among sites, but no significant variation in phenotypic plasticity across sites.  

Our landscape genomic model, which can empirically define local provenances and 

identify variation suitable for predicted future climates, can help build resilient 

populations through scientifically based restoration.

Results

Genotyping by Sequencing

We selected leaf material from 39 sites, sampling 3-10 trees per site (Supplemental 

Table S1).  For each sample we Illumina sequenced a Genotyping by Sequencing 

(GBS) library (Elshire et al., 2011) and used a reference alignment-based approach to 

call genotypes.  We conducted a preliminary analysis, based on 123,227 SNPs and 

removed 69 samples due to greater than 60% missing data.  Visual examination of a 

cluster dendrogram of genomic distance between samples showed that technical 

replicates cluster closely together (Supplemental Fig. S1).  A preliminary principal 

coordinate analysis (PCA) identified 19 samples that were strong genomic outliers 

(Supplemental Fig. S2), likely misidentified samples or recent hybrids.  This result is 
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consistent with minor morphological differences noted in these samples, as well as 

previous microsatellite work (Broadhurst et al., in review).  After removal of poor quality 

and geographic and genomic outlier samples, we reran the genotyping with the 

remaining 280 samples, resulting in 9,781 SNPs after filtering.  A second preliminary 

PCA identified an additional 5 outlier samples that we considered sufficiently 

differentiated from the main E. melliodora cluster to merit removal for downstream 

analyses (Supplemental Fig. S3).  We removed these samples and reran the missing 

data filter.  The final data set included 275 samples from 37 sites (Fig. 1A), genotyped at

9,378 physically distinct SNPs (>300 bp apart).

Genomic Analyses

A PCA of genomic distance among samples showed continuous variation with little 

suggestion of discrete population structure (Fig. 1B).  The samples largely formed a 

single cluster, with the first PCA axis corresponding roughly to latitude.  Outside of the 

main cluster, samples from the northernmost site separated out along the first PCA axis 

(y-axis) and a few samples from two other sites separated out along the second PCA 

axis (x-axis).  Together, the first two PCA axes explained 3.0% of the genomic variation 

among individuals.  The Mantel test estimated that the natural log of the geographic 

distance between samples explained 2.3% of the variation in individual genomic 

distance, indicating weak, but statistically significant, isolation by distance (p=0.0001).  

We summarized genomic diversity between sampling sites using pairwise Fst.  For all 

comparisons Fst was low (mean Fst=0.04, sd=0.02) (Supplemental Table S2).  The 

maximum Fst=0.10 occurs between sites 3 and 13, which are separated by over 1200 

km.  Similar to the PCA of genomic distance among samples, the PCA of Fst between 

sampling sites corresponded roughly to latitude (Fig. 1C).  In contrast, the first two axes 

of the PCA of Fst between sampling sites explained a higher percentage of variation 

(37.1%).  These results highlight the tremendous amount of genomic variation within 

sampling sites, as well as the ability of thousands of independent genomic markers to 

distinguish between more distant sampling sites. 
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The site by site pairwise Fst matrix was used to test for geographic and 

environmental associations using generalized dissimilarity modelling (GDM) (Ferrier et 

al., 2007; Fitzpatrick & Keller, 2015; Thomassen et al., 2011).  Of the 28 environmental 

variables considered for the model, we removed 12 variables because the single 

variable model explained less than 5% of the deviance (bioclimatic variables 2, 5, 6, 9, 

10, 14, 17, 19; elevation; water at depth; Prescott Index; and MrVBF).  We removed an 

additional 9 variables due to high correlation and lower explanatory power than another 

remaining variable (bioclimatic variables 1, 4, 7, 12, 13, 15, 18; surface nitrogen; and 

surface phosphorus) (Supplemental Table S3).  We ran permutation testing on a model 

with the remaining 7 variables and geography.  This highlighted an additional 2 variables

with low statistical significance and low explanatory power that we removed from the 

final model (surface water and bioclimatic variable 8).  We also removed phosphorus at 

depth because, although it explained a substantial amount of genomic variation, the 

sampled sites were not well distributed across the range of values.

As a result, we included four environmental variables in the final model: 

isothermality (bioclim 3), mean temperature of the coldest quarter (bioclim 11), 

precipitation of the wettest quarter (bioclim 16), and total soil nitrogen at 100-200 cm 

(nitrogen at depth) (Supplemental Fig. S4).  The GDM model with these four variables 

plus geographic distance explained 40% of the variation in sampling site genomic 

differentiation (Fst).  The GDM model showed a positive non-linear relationship between 

environmental distance and genomic distance (Supplemental Fig. S4A).  To test the 

predictive power of the GDM model, we used a cross validation approach by generating

1000 models with a random 30% of sampling sites removed.  GDM proved satisfactory 

at predicting genomic differences between removed sites (cross validation correlation 

mean=0.73, standard deviation=0.12) (Supplemental Fig. S4B).  

Of the four environmental variables, nitrogen at depth showed the strongest 

relationship with genomic distance, with changes in genomic distance predicted across 

the range of nitrogen values (Supplemental Fig. S4C).  Mean temperature of the coldest

quarter was the second strongest predictor, showing a similar pattern as nitrogen 

(Supplemental Fig. S4D).  Precipitation of the wettest quarter was the third strongest 
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environmental predictor, predicting the largest change in genomic distance between 250

and 400 mm (Supplemental Fig. S4E).  Isothermality (mean diurnal range divided by 

annual temperature range) was the final predictor, predicting the most change in 

genomic distance at higher values (Supplemental Fig. S4F).

Geographic distance showed a non-linear relationship with genomic distance.

The geographic spline predicted no genomic differentiation until close to 500 km, at 

which point an increase in geographic distance predicted an increase in genomic 

distance (Fig. 2).  Randomly subsampling sites showed that the predicted genomic 

distance for large geographic distances was quite variable, but for sites less than 500 

km apart, all iterations consistently predicted little genomic differentiation between sites 

(Supplemental Fig. S4H).

To project the final GDM model onto the current environmental landscape, we

first delineated the geographic extent of the analysis by defining an E. melliodora 

distribution polygon.  We then projected the GDM model onto this region using the 

current values of the environmental variables across the landscape.  This analysis 

partitioned the landscape into a number of regions with different predicted genomic 

compositions, including northern coastal, northern inland, and southern regions (Fig. 

3A).  While the biggest differences occurred in regions with few sampling sites, there is 

a distinction between the northern and southern sites, as well as between sites on 

opposite sides of the Great Dividing Range in the southern region (e.g. site G versus 

site A , Fig. 3A).  These projections highlight where environmental filtering of genotypes 

may have occurred due to different selective pressures.  

We compared the GDM model projected onto current conditions to the GDM 

model projected onto 2070 climate predictions.  This analysis scored each position 

across the landscape based on how much genomic change was predicted to occur in 

response to changing environmental conditions (Fig. 3B).  For the middle north region 

(around sites K2 and 14) and the southern areas towards the coast, the models 

predicted more intense natural selection in response to climate change.  Thus, these 

areas could be prioritized for assisted migration.
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We also used the GDM model to compare the genomic composition under 

future environmental conditions at a single location to the genomic composition under 

current climate conditions across the landscape.  This comparison is useful for 

identifying optimal seed sources for restoration sites given climate change scenarios.  

We demonstrated this utility by selecting two hypothetical reforestation sites and 

identifying distinct regions that would provide favorable seed sources for each site (Fig. 

4).  The analysis for the southern reforestation site identified a large portion of the 

southern distribution, centered at the reforestation site.  For this site it appears that the 

selected areas are largely driven by the pattern of isolation by distance, in particular the 

lack of genetic differentiation for long geographical distances.  The analysis for the 

northern reforestation site identified a more limited range of areas across the landscape,

possibly driven in part by a decreased power due to lower sampling intensity in the 

north.  In addition to identifying a narrow region in the north that is centered on the 

reforestation site, a number of more distant areas along the coast were also identified, 

indicating these selected areas are driven more by patterns of isolation by environment 

than isolation by distance.  

These genomic analyses suggest that for woodland restoration a 

geographically wider and environmental model based approach to seed sourcing would 

allow incorporation of more genetic diversity and enable better matching of the selected 

genotypes to current and predicted future environmental conditions at the reforestation 

site.

Growth Experiments

We conducted a climate controlled growth experiment to measure variation in seedling 

growth traits among sampling sites and assay phenotypic plasticity.  We grew seedlings 

from six sites, with six maternal lines per site, at two different climate regimes (average 

summer conditions and 5oC hotter summer conditions).  For analysis of seedling height 

and total leaf length, we analyzed a total of 291 seedlings (from 32 maternal lines 

representing six sampling sites) that were determined to be well established at the five 

week measurement.  For analysis of the relative height increment, we analyzed a total 
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of 560 seedlings (from all 36 maternal lines) for which were able to calculate this metric.

There were four seedlings that were outliers for the relative growth increment (>0.035).  

These outliers had little effect on the results of the linear models, so we included them 

in the final analysis.  

The models for all three response variables (seedling height, total leaf length, 

and relative height increment) showed that all fixed effects (sampling site, maternal line 

nested within sampling site, and experimental condition) were statistically significant at 

the p=0.05 level (Supplemental Table S4).  Experimental condition explained a small 

percentage of the variation (1.2-8.1%), as did sampling site (1.8-17.7%) (Supplemental 

Fig. S5).  Maternal line tended to explain a larger amount of variation (10.6-27.6%).  

However, most of the variation remained unexplained (56.6-71.5%).  None of the three 

response variables showed significant variation in phenotypic plasticity across sites (all 

maternal line/sampling site by experimental condition interactions p>0.50) 

(Supplemental Fig. S6 and Table S5).  

We then conducted an outdoor drought experiment using a subset of 

seedlings from the temperature experiment.  We analyzed 146 seedlings representing 

20 maternal lines from five sampling sites.  These seedlings were grouped into 73 pairs,

with one of each pair assigned to each treatment—well watered versus drought.  We 

analyzed variation in four response variables: stomatal conductance, leaf length to width

ratio, relative chlorophyll content (SPAD index), and specific leaf area (SLA, leaf area 

divided by dry mass). 

The droughted seedlings had significantly lower stomatal conductance rates 

than the well watered ones, indicating that the seedlings were stressed (p<0.00001) 

(Supplemental Table S6).  Treatment explained most of the variation in stomatal 

conductance (62.3%), while maternal line and sampling site explained only a small 

amount of variation (5.8% and 0.9% respectively) (Supplemental Fig. S7).  For the 

remaining three response variables (leaf length to width ratio, SPAD, and SLA), much of

the variation was unexplained (40.5%-70%).  Experimental condition was not 

statistically significant and explained little to no variation (0.0-4.4%) (Supplemental Fig. 

S7 and Table S6).  Sampling site and maternal line were statistically significant in the 
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linear models at the p=0.05 level and explained some variation (6.7-21.2%) 

(Supplemental Fig. S7 and Table S6).  Smaller, thicker leaves, and thus lower SLA 

values, were expected for droughted seedlings and for seedlings grown from seed 

collected from drier areas.  Consistent with this expectation, the seedlings subjected to 

drought conditions showed lower SLA values.  However, seedlings from drier sampling 

sites (D and T3) showed higher SLA values than more mesic sites (B, G, and 11), 

contrary to expectation (Supplemental Fig. S7).  None of the four response variables 

showed significant variation in phenotypic plasticity across sites (all maternal 

line/sampling site by experimental condition interactions p>0.13) (Supplemental Fig. S8 

and Table S7).  

In addition to measuring seedling growth traits, we also examined the shape 

of the leaves from the drought experiment seedlings.  We  noted substantial variation in 

leaf shape, both among sites and within (Supplemental Fig. S9).  The remarkable 

amount of phenotypic variation in the seedlings is consistent with the high levels of 

genomic variation measured both among sites and within sites.

Discussion
Eucalyptus melliodora is a foundation species in a critically endangered woodland 

community that now occupies a fraction of its former distribution and is the subject of 

restoration projects across its native range.  Our examination of the distribution of 

genomic and phenotypic variation across the range of this species provides valuable 

information for sourcing seed for restoration, including empirically defining local 

provenances and matching genotypes to predicted future environmental conditions.

Examining the relationship between genomic and geographic distance, we 

are able to empirically define "local" in this species to be on the order of 500 km, which 

is substantially farther than the current practice.  This new definition encourages 

restoration projects to source seed more broadly across the landscape.  In a highly 

fragmented landscape this will increase the number of potential source sites, potentially 
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enabling the collection of higher quality seed with increased genetic diversity 

(Broadhurst et al., 2008).  Incorporating more naturally occurring genomic variation can 

increase the adaptive potential of the restored population by providing the substrate for 

adaptation to rapidly changing environmental conditions.

By modelling genomic variation across the landscape, we can understand the

environmental factors that shape patterns of genomic variation and identify variation 

suitable for predicted future climates.  We found several environmental variables that 

have played a role in the structure of genomic variation across the landscape.  Of these,

the climate variables are predicted to change rapidly over time.  Change in soil nitrogen 

content might occur over longer time scales, but it is difficult to forecast due to complex 

biotic feedbacks (Brevik, 2013).  This suggests that optimal seed sourcing will need to 

balance the tracking of rapidly changing climate variables with the need to account for 

variables that are more stable due to their dependence on stable features of geology, 

topography, or hydrology.  This also highlights an important concern that key 

environmental variables may become uncoupled, resulting in less than ideal conditions 

for this species across the landscape.

Our analyses of phenotypic variation found no site-specific variation in 

phenotypic plasticity that would enable us to identify provenances better able to cope 

with rapid environmental change.  However, plasticity is trait specific and traits that are 

hypothesized to be important for establishment and survival should continue to be 

investigated because they may provide valuable information for restoration projects.  

Importantly, our growth experiments support the results of the genomic analyses, 

showing the remarkable extent of variation both among sites and within sites, further 

supporting our recommendation to source seed to incorporate the high level of variation 

that occur naturally in E. melliodora.

The results of this study are promising for the future of E. melliodora across its 

native distribution.  We found high genomic and phenotypic diversity within sites, as well

as shared across the range.  This naturally occurring variation can provide a basis for 

adaptation to a rapidly changing environment and it should be incorporated into 

restoration projects through strategic seed sourcing.  It is important to note that our 
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genomic analyses were based on mature trees that predate extensive land clearing for 

agriculture.  The same analyses in seedlings or saplings at these sites may show 

different results, although our phenotypic studies using seedlings produced concordant 

results.  It remains to be determined if human modifications of the landscape have 

disrupted historical patterns of gene flow, resulting in more fragmented and inbred 

populations.

Our landscape genomic model can guide seed selection by empirically 

defining local provenances and identifying variation suitable for predicted future 

climates.  This understanding of the relationship between environmental and genomic 

variation can be combined with other types of information, such as basic biological 

knowledge of the ecological community and best agronomic practices in restoration, to 

establish foundation species and ecosystems with the highest probability of success in 

a rapidly changing environment.

Methods

Sample Collection

We obtained E. melliodora leaf samples from mature trees at 38 sites across the 

species' range through a community science project described in Broadhurst et al. (in 

review) (Supplemental Table S1).  From each site, a citizen scientist collected leaf 

samples from up to 30 trees, put the samples in silica gel for drying, and shipped them 

to CSIRO for processing.  In addition to leaf material, they also collected seeds from the

sampled trees when available.  We sampled an additional seven trees planted at a 

single site in Western Australia, well outside the species' natural distribution.

Genotyping by Sequencing

We selected 3 to 10 trees per sampling site for sequencing and we processed each of 

the seven trees from Western Australia twice, using different leaves from the same tree, 

to serve as technical replicates.  No power analysis was used to determine sample size 
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during the design of the study.  Sample size was determined based on our experience 

and judgment, with consideration of the availability of samples.  We sequenced these 

379 samples using a modified Genotyping-By-Sequencing (GBS) protocol (Elshire et 

al., 2011).  Briefly, we extracted genomic DNA from approximately 50 mg of leaf tissue 

using the Qiagen DNeasy Plant 96 Kit, digested with PstI for genome complexity 

reduction, and ligated with a uniquely barcoded sequencing adapter pair.  We then 

individually PCR amplified each sample to avoid sample bias.  We pooled samples in 

equimolar concentrations and extracted library amplicons between 350 and 600 bp from

an agarose gel.  We sequenced the library pool on an Illumina HiSeq2500 using a 101-

bp paired-end protocol at the Biomolecular Resource Facility at the Australian National 

University, generating almost 260 million read pairs.

We checked the quality of the raw sequencing reads with FastQC (v0.10.1, 

(Andrews, 2012)).  We used AXE (v0.2.6, (Murray & Borevitz, 2017a)) to demultiplex the

sequencing reads according to each sample's unique combinatorial barcode and were 

unable to assign 11% of read pairs to a sample.  We used trimit from libqcpp (v0.2.5, 

(Murray & Borevitz, 2017b)) to clean the reads for each sample, using default 

parameters, except q=20.  This involved removing adapter contamination due to read-

through of small fragments (20% of read pairs) and merging overlapping pairs (49% of 

read pairs), both steps using algorithms based on a global alignment of read pairs.  We 

also used trimit for sliding window quality trimming (11% of reads).  We then used a 

custom script to remove sequencing reads that did not begin with the expected 

restriction site sequence (16% of reads).  We aligned sequencing reads to the E. 

grandis reference genome (v2.0, (Bartholomé et al., 2015; JGI, 2015; Myburg et al., 

2014)), including all nuclear, chloroplast, mitochondrial, and ribosomal scaffolds, but 

used only nuclear scaffolds for downstream analyses.  We aligned reads using bwa-

mem (v0.7.5a-r405, (Li, 2013)), as paired reads (-p) and treating shorter split hits as 

secondary alignments (-M), with 88% of reads successfully mapped.  We used GATK's 

HaplotypeCaller in GVCF mode (v3.6-0-g89b7209, (McKenna et al., 2010)) to call 

variants for each sample with heterozygosity (-hets) increased to 0.005, indel 
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heterozygosity (-indelHeterozygosity) increased to 0.0005, and the minimum number of 

reads sharing the same alignment start (-minReadsPerAlignStart) decreased to 4.  

We used GATK's GenotypeGVCFs (v3.6-0-g89b7209, (McKenna et al., 

2010)) for a preliminary round of joint genotyping across all samples based on the 

individual variant calls and again increasing the heterozygosity (-hets) to 0.005 and the 

indel heterozygosity (-indelHeterozygosity) to 0.0005.  For basic filtering, we used GATK

to remove variants that were indels, had no variation relative to the reference, were non-

biallelic SNPs, had QD<2.0 ("variant call confidence normalized by depth of sample 

reads supporting a variant"), MQ>40.0 ("Root Mean Square of the mapping quality of 

reads across all samples"), or MQRankSum<-12.5 ("Rank Sum Test for mapping 

qualities of REF versus ALT reads").  We removed samples with more than 60% missing

data and SNPs with more than 80% missing data.  We examined the genomic distance 

between samples to verify that technical replicates clustered closely together.  We used 

a preliminary PCA, based on genomic distance between samples, to identify outlier 

samples.  We removed outlier samples and poorly sequenced samples from the dataset

for final genotyping and all downstream analyses.

We reran GATK's joint genotyping on the final sample set.  We again used 

GATK to remove variants that were indels, SNPs with no variation relative to the 

reference, and non-biallelic SNPs.  We determined final filtering thresholds by 

examining parameter distributions.  A locus was retained for subsequent analysis if 

ExcessHet<13.0 ("phred-scaled p-value for exact test of excess heterozygosity"), 

-0.3<InbreedingCoeff<0.3 ("likelihood-based test for the inbreeding among samples"), 

MQ>15.0 ("Root Mean Square of the mapping quality of reads across all samples"), 

-10.0<MQRankSum<10.0 ("Rank Sum Test for mapping qualities of REF versus ALT 

reads"), and QD>8.0 ("variant call confidence normalized by depth of sample reads 

supporting a variant").  We ran a second preliminary PCA analysis to identify additional 

outlier samples.  Finally, we used VCFtools (v0.1.12b, (Danecek et al., 2011)) to remove

SNPs with greater than 60% missing data and thin the SNPs so that none were closer 

than 300 bp.
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Genomic Analyses

To examine the genomic structure of E. melliodora and how it is influenced by 

geography, we conducted individual-based analyses.  For these analyses, we converted

the final genotypic data (a vcf file) to a sample-by-SNP matrix and imported it into a 

genind object (R adegenet v2.0.1, (Jombart, 2008)).  We calculated the pairwise 

genomic distances between individuals using a euclidean distance in dist (R stats 

v3.1.2, (R Core Team, 2015)).  To visualize the genomic distance among samples, we 

ran a PCA using dudi.pco (R ade4 v1.7-4, (Dray & Dufour, 2007)).  We plotted the first 

two PCA components, with samples colored in a rainbow gradient based on sample 

latitude.  We calculated the geographic distance between samples based on their GPS 

coordinates using earth.dist (R fossil v0.3.7, (Vavrek, 2011)).  We used a mantel test (R 

vegan v2.4-0, (Oksanen et al., 2016)) to quantify the linear relationship between the 

genomic distance between individuals and the natural log of geographic distance.  

To examine the role that environmental factors play in driving the genomic 

structure across the landscape, we used Generalized Dissimilarity Modelling (GDM), 

which uses matrix regression to estimate the non-linear relationship between genomic 

distance and environmental distance (Ferrier et al., 2007; Fitzpatrick & Keller, 2015; 

Thomassen et al., 2011).  We then used this model to predict the distribution of genomic

variation across the landscape under current environmental conditions, as well as 

predicted future conditions.  We obtained environmental data for the GDM from climate, 

elevation, soil, and landscape raster layers. Climate variables included 19 bioclimatic 

variables for the current time period (1960-1990), at 30 arc second resolution 

(WorldClim, 2016b).  Elevation was from a digital elevation model aggregated from 90 

m resolution (CGIAR-CSI, 2016).  Soil data included available water capacity, total 

nitrogen, and total phosphorus sampled at the surface (0-5 cm) and at depth (100-200 

cm) (CSIRO, 2016).  Landscape data included the Prescott Index (a measure of water 

balance) and MrVBF (a topographic index) (CSIRO, 2016).  For future prediction, we 

used the 19 bioclimatic variables predicted for 2070 at 30 arc second resolution based 

on GCM MIROC5 for representative concentration pathway 8.5 (WorldClim, 2016a), 

which is a greenhouse gas concentration trajectory showing continual increase in 

16

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/200352doi: bioRxiv preprint 

https://doi.org/10.1101/200352
http://creativecommons.org/licenses/by/4.0/


emissions over time.  We determined the values for each variable at each sampling site 

based on GPS coordinates and used those values to calculate the environmental 

distances between sites.

To determine the genomic distances between sampling sites, we used the 

sample by SNP matrix to calculate pairwise Fst (Weir & Cockerham, 1984) using 

pairwise.WCfst (R hierfstat v0.04-22, (Goudet & Jombart, 2015)).  We ran a sampling 

site level PCA on the pairwise Fst matrix using dudi.pco (R ade4 v1.7-4, (Dray & Dufour, 

2007)) and calculated the percent of variation explained for each PCA axis.  For the 

GDM, we scaled the Fst  matrix to between 0 and 1 by subtracting the minimum value 

and then dividing by the maximum value.  We generated the GDM model using gdm (R 

gdm v1.2.3, (Manion et al., 2016)) with the scaled Fst matrix, geographic distance 

between sites, and environmental distances for the 28 variables for the current time 

period.  Initially, we generated a GDM model for each environmental variable separately

and excluded variables from further analysis if the deviance explained by the model was

less than 5%.  For the remaining variables, we calculated Pearson's correlation for site 

values between pairwise sets of variables.  If a pair of variables had a correlation 

greater than 60%, we excluded the variable with the lowest explanatory power from 

subsequent analysis.  We conducted permutation testing using gdm.varImp (R gdm 

v1.2.3, (Manion et al., 2016)) with 1000 permutations to determine the explanatory 

power and statistical significance of the remaining variables and excluded additional 

inconsequential variables.  We generated a final GDM model with the remaining 

environmental variables.

We cross validated the GDM model using a random 70% of the spatial 

sampling sites as training data and the remaining 30% of sites as test data and ran 

1000 resampled iterations.  We used the GDM models from the training sites to predict 

the genomic dissimilarity between the test sites and used Pearson's correlation to 

compare the predicted values to the observed values.  To test the robustness of the 

geographic prediction from the GDM model, we visualized the geographic splines from 

100 of these GDM models.

17

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/200352doi: bioRxiv preprint 

https://doi.org/10.1101/200352
http://creativecommons.org/licenses/by/4.0/


To project the final GDM model onto the current environmental landscape, we

first delineated the geographic extent of the analysis by defining an E. melliodora 

distribution polygon.  We downloaded 14,977 E. melliodora occurrence records from the

Atlas of Living Australia (ALA, 2016), of which we removed 189 because they were well 

outside the expected distribution or were sparse records on the distribution margin.  We 

generated the polygon using ahull (R alphahull v2.1, (Pateiro-López & Rodríguez-Casal,

2010)), with alpha=15 and gBuffer (R rgeos v0.3-21, (Bivand & Rundel, 2016)), with a 

20 km buffer.  We then transformed the environmental rasters based on the model 

splines (gdm.transform), took a PCA of the transformed layers (prcomp R stats v3.1.2, 

(R Core Team, 2015)), and predicted across space (predict).  We visualized the result 

by graphing the first three components of a PCA using a red-green-blue plot (Fitzpatrick 

& Keller, 2015).  We also projected the model onto a predicted future environmental 

landscape with the same procedure, except we substituted the current bioclimatic 

rasters with the future ones for 2070 that were predicted under a high CO2 emission 

scenario.  We calculated the expected change in the distribution of genomic variation 

over time using the predict function with time=T.

We examined the implications of the GDM model for seed sourcing decisions 

by selecting two hypothetical reforestation sites.  We compared predicted future GDM 

values at these two hypothetical reforestation sites to current climate GDM values 

across the landscape of potential seed sources.  This enabled us to generate a map of 

predicted genomic similarity of potential seed sources to the hypothetical reforestation 

sites under climate change.

Growth Experiments

To examine the effect of provenance and environment on phenotype, we conducted 

experiments in climate controlled growth chambers under two different climate regimes. 

No power analysis was used to determine sample size during the design of the 

experiment.  Sample size was determined based on our experience and judgment, with 

consideration of the availability of seed and space in the growth chambers.  We 

selected six sites (11, B, D, G, T1, T3) and six maternal trees per site that had sufficient 
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seed (asterisks in Fig. 1A).  For each chamber, we grew eight or nine replicate 

seedlings from each maternal tree.  To ensure we had a seedling for each intended 

replicate, four seeds were planted per pot (6.5 cm x 6.5 cm x 20 cm pots with soil that 

was 80% Martin's mix and 20% sand).  We germinated seeds in climate controlled 

chambers with 12 hours of light at 25oC and 12 hours of dark at 15oC.  We set lights to 

mimic summer morning light (photosynthetic photon flux 370 nm=82, 400 nm=83, 420 

nm=78, 450 nm=37, 530 nm=31, 620 nm=72, 660 nm=28, 735 nm=34, 850 nm=89, 

6500 K=94 µmol/m2/s).  We watered all seeds twice daily to keep the soil moist.  We 

culled to one seedling per pot 12-14 days after planting.  

Three weeks after germination, we sorted seedlings into treatment chambers 

based on a randomized block design.  Climate conditions were determined with 

SolarCalc (Spokas & Forcella, 2006) to mimic average summer conditions (sampling 

site 11) and hotter conditions (5oC temperature increase; sampling site T3).  We ran the 

experimental conditions for 12-14 weeks and took phenotypic measurements at five 

time points (1, 2, 3, 5, and 11 weeks after the experimental treatment began).  

Measurements included seedling height, number of leaves, and total leaf length.  

For the analysis of seedling height and total leaf length, we used the 

measurements at five weeks after the experimental treatment began and used only 

seedlings that were determined to be well established at that time.  We also calculated 

a relative height increment for each seedling by determining the last measurement 

when the seedling had two or fewer leaves and the first measurement with eight or 

more leaves.  The relative height increment is the difference between the natural log of 

the two height measures, divided by the difference in time.  

We investigated phenotypic plasticity by examining interaction plots between 

maternal line and experimental conditions for three response variables: seedling height, 

total leaf length, and relative height increment.  We statistically tested for an interaction 

between sampling site/maternal line and experimental condition with linear mixed-effect 

models using lmer (R lme4 v1.1-10, (Bates et al., 2015)) for each of the three response 

variables.  Due to a lack of power to consider maternal line nested within sampling site, 

we ran two models for each response variable—one with maternal line and one with 
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sampling site.  These models included the experimental condition, sampling site or 

maternal line, and and their interactions as fixed effects.  We included germination 

chamber and block as random effects.  We identified outliers visually and ran the 

models with and without outliers to determine if they affected the results.

We visualized the distribution of values for the three response variables 

across the six sampling sites using box plots.  We quantified the distribution of 

phenotypic variation with linear mixed-effect models using lmer (R lme4 v1.1-10, (Bates 

et al., 2015)).  For each of the three response variables, the model included maternal 

line nested within sampling site and experimental condition as main effects, with no 

interaction term, and germination chamber and block as random effects.

After completion of the chamber experiment, we conducted an outdoor 

covered drought experiment on the 16 week old seedlings.  No power analysis was 

used to determine sample size during the design of the experiment.  Sample size was 

determined based on our experience and judgment, with consideration of the availability

of space in the covered growth facility.  We selected 160 seedlings from five sampling 

sites, with four maternal lines per site.  We paired each seedling with a seedling of 

similar size from the same maternal line and treatment chamber.  We randomly 

assigned each seedling of the pair to a different drought treatment group.  We 

transplanted the seedlings to PVC tubes (9 cm diameter x 50 cm height with sand, 

perlite, and slow release osmocote) and kept them well watered for seven weeks, 

allowing them to acclimate to the outdoor conditions.  Then we imposed two treatments:

well watered and drought.  For the well watered treatment, we watered the seedlings to 

saturation as needed (between three times per week and twice per day, depending on 

the weather).  For the drought treatment, we watered as necessary to reach (but not 

exceed) 50% saturation.

We measured leaf traits on each seedling three weeks after the initiation of 

treatment.  We measured stomatal conductance with a porometer (SC-1 Leaf 

Porometer by Decagon Devices) and determined that water stress was induced in the 

droughted seedlings.  We determined the leaf length to width ratio from a scan of the 

most recent fully expanded leaf from each seedling using image analysis software 
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(WD3 WinDIAS Leaf Image Analysis System by Delta-T Devices).  This leaf was 

initiated prior to the start of treatment, but expanded while under treatment conditions.  

We took additional measurements two months after the initiation of treatment.  We used

a chlorophyll meter (SPAD – 502 by Konica Minolta) to determine the SPAD index, 

which measures relative chlorophyll content; reduction in SPAD index would indicate 

detrimental effects of water limitation.  We calculated specific leaf area (SLA, leaf area 

divided by dry mass) by scanning a single leaf from each seedling to determine the leaf 

area (WD3 WinDIAS Leaf Image Analysis System by Delta-T Devices) and weighed 

oven dried leaves.  For analysis, we excluded data for seedlings that died during the 

experiment.  We also excluded the experimental treatment pair of any dead seedlings.  

We visualized phenotypic plasticity by examining interaction plots between 

maternal line and experimental conditions for four response variables: stomatal 

conductance, leaf length to width ratio, SPAD index, and SLA.  We statistically tested for

an interaction between sampling site/maternal line and experimental condition with 

linear mixed-effect models using lmer (R lme4 v1.1-10, (Bates et al., 2015)) for each of 

the four response variables.  Due to a lack of power to consider maternal line nested 

within sampling site, we ran two models for each response variable--one with maternal 

line and one with sampling site.  These models included the experimental condition, 

sampling site or maternal line, and their interactions as fixed effects.  We included block 

and sample pairings as random effects.

We visualized the distribution of values for the four response variables across

the five sampling sites using box plots.  We quantified the distribution of phenotypic 

variation with linear mixed-effect models using lmer (R lme4 v1.1-10, (Bates et al., 

2015)).  For each of the four response variables, the model included maternal line 

nested within sampling site and experimental condition as main effects, with no 

interaction term, and block and sample pairings as random effects.  Due to a lack of 

power, the p-value for the sampling site term was determined from a model without 

maternal line.
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Figure Legends

Figure 1:  Map of sampling sites and PCA of genomic distance between samples

(A) A map of the geographic locations of the 37 sampling sites in southeastern Australia.  

Sampling locations are labeled with the site name and color coded in a rainbow gradient based 

on latitude.  Black asterisks indicate 6 sites used for growth chamber experiments.  The gray 

background shading indicates the species distribution polygon.  (B) Principal coordinate 

analysis of the genomic distance between individual samples.  Samples are labeled with a 

sample name that indicates the site name and tree number.  Samples are color coded by site to 

match the map.  The percentage on each axis indicates how much of the genomic variation 

between individuals was explained by the axis.  (C)  Principal coordinate analysis of Fst between

sampling sites.  Sampling sites are labeled by name and color coded to match the map.  The 

percentage on each axis indicates how much of the variation in Fst between sampling sites was 

explained by the axis.  

FIgure 2:  Estimated genomic variation as a function of geographic distance

The geographic spline estimated from the GDM model showing little predicted genomic change 

between sites less than 500 km apart and increasing genomic variation as geographic distance 

increases beyond 500 km.

Figure 3:  Predicted spatial and temporal variation in genomic composition

(A) The spatial distribution of predicted genomic variation based on projecting the GDM model 

onto geography and current environmental conditions.  Regions with similar colors are predicted

to have similar genomic composition.  (B) The predicted temporal genomic variation based on 

comparing the GDM model projected onto current environmental conditions and predicted 

environmental conditions for 2070.  The higher the difference (green colors), the more genomic 
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change predicted between current and 2070 conditions.  Sampling sites are labeled in black 

text.  

Figure 4:  Optimal seed sourcing locations for hypothetical reforestation sites

The predicted genomic similarity of hypothetical reforestation sites (indicated by black circles) to

potential seed sourcing locations under a climate change scenario for 2070.  Dark green areas 

indicate seed sourcing areas predicted to best match future conditions at the hypothetical 

reforestation sites; white and brown areas indicate areas of potential genomic mismatch.

Supplementary Figures

Figure S1:  Technical replicate dendrogram

Dendrogram based on genomic distance between samples showing the strong clustering of 

technical replicates (denoted with an "R" after the sample name and highlighted in yellow).  

Note that three of the technical replicates failed to pass quality control and are not included in 

the dendrogram.  Additional sample pairs show strong clustering.  In each case, the individuals 

of the pair are from the same sampling site, indicating samples that are closely related.

Figure S2:  Species identification PCA

PCA of genomic distance between samples showing strong outliers that are likely misidentified 

samples or hybrids.  The vertical line at 50 on PCA axis 1 indicates the cutoff, with all samples 

to the right removed from further analyses.

Figure S3:  Outlier PCA

PCA of genomic distance between samples for the confirmed E. melliodora samples.  The five 

samples on the left were deemed outliers and removed from further analyses.

Figure S4:  Generalized dissimilarity modelling (GDM) results

(A) Non-linear relationship between environmental distance and genomic distance.  Points are 

site pairs; the line is the predicted relationship.  (B) Relationship between predicted genomic 

distance and observed genomic distance.  Points are site pairs; the line indicates where 

observation and prediction match.  (C-G) Predicted splines showing the estimated relationship 

between the environmental variable and genomic distance for (C) total nitrogen content at 100-

200 cm of soil depth, (D) mean temperature of the coldest quarter, (E) precipitation of the 
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wettest quarter, (F) isothermality, and (G) geography.  (H) Geographic splines from 100 

iterations of sampling 70% of sites.  Each solid black line is an iteration; dashed grey line is the 

full model prediction.

Figure S5:  Variation in seedling growth in chamber experiment

Box plots showing variation between chamber treatments (left) and sampling sites (right) for 

three seedling growth traits.

Figure S6:  Interaction plots for chamber experiment

Plots showing interactions between three seedling growth traits and the experimental 

conditions.  Each line represents a maternal line, with color indicating the sampling site.

Figure S7:  Variation in leaf traits in drought experiment

Box plots showing variation between water treatments (left) and sampling sites (right) for four 

leaf traits.

Figure S8:  Interaction plots for drought experiment

Plots showing interactions between the four leaf traits and the water treatment.  Each line 

represents a maternal line, with color indicating the sampling site.

Figure S9:  Variation in leaf shape

One representative leaf from each maternal line in the drought experiment.  Each row shows a 

single sampling site, identified by site ID and state location (ACT=Australian Capital Territory, 

VIC=Victoria, NSW=New South Wales).  Each leaf is identified by its sampling site, maternal 

line, and replicate number).
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Table S1:  E. melliodora sampling information
site name latitude longitude # sampled # outliers* # in final analysis chamber experiment drought experiment
1 -33.416668 149.55055 10 1 secondary 7
2 -36.6755 146.26477 10 7
3 -27.368696 152.03023 10 9
5 -33.710145 149.52355 10 1 primary 9
7 -33.936944 116.963333 7 7 geographic 0
10 -37.285278 143.77778 10 8
11 -35.40026 149.1318 10 9 yes yes
13 -36.997778 145.474944 6 3
14 -32.389167 150.881667 10 10
16 -33.224724 149.28056 7 3 secondary 2
17 -33.44218 147.51628 10 8
19 -37.179444 144.483333 10 9
20 -34.911785 148.971179 10 9
21 -37.144361 142.839428 10 9
24 -36.980278 144.047611 10 7
26 -35.39474 149.677129 10 7 primary 2
A -36.388 146.481 10 10
B -35.235664 149.16422 10 7 yes yes
C -35.03333 147.33333 9 1 secondary 6
D -36.3675 145.70232 10 9 yes yes
G -36.86476 148.85016 10 9 yes yes
H -36.63518 149.56728 10 7
i1 -36.75 145.583333 10 8
i2 -36.54041 146.10739 10 7
J2 -33.121143 149.05785 10 9
K2 -30.54493 151.79367 10 8
M -34.630472 149.870892 3 1 primary 0
N1 -34.036884 148.5675 10 10
N2 -33.6166 149.64452 10 7
O -37.4279 147.8924 10 10 primary 10
P -35.819633 145.31187 10 9
T1 -35.26495 147.310133 10 7 yes
T2 -35.37515 147.25261 10 9
T3 -35.299683 147.165733 10 10 yes yes
U -36.632668 144.35019 10 8
V -33.423 149.752 10 7
W1 -36.42797 144.41092 10 8
W2 -36.580471 143.521639 10 4
W3 -36.980278 144.047611 10 8
* primary outliers refers to outlier samples identified with the first PCA analysis
  secondary outliers refers to outlier samples identified with the second PCA analysis
  geographic refers to samples outside the natural distribution
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Table S2:  Pairwise population Fst
10 11 13 14 16 17 19 2 20 21 24 26 3 5 A B C D G H i1 i2 J2 K2 N1 N2 P T1 T2 T3 U V W1 W2 W3

1 0.043 0.027 0.037 0.034 -0.005 0.036 0.034 0.046 0.010 0.023 0.035 0.028 0.053 0.019 0.037 0.029 0.047 0.011 0.032 0.038 0.018 0.012 0.016 0.021 0.008 0.044 0.014 0.026 0.011 0.027 0.028 0.013 0.031 0.027 0.022
10 0.047 0.047 0.065 0.019 0.056 0.030 0.034 0.028 0.018 0.047 0.030 0.097 0.043 0.038 0.049 0.058 0.028 0.056 0.072 0.029 0.022 0.039 0.039 0.041 0.053 0.045 0.042 0.028 0.034 0.028 0.046 0.063 0.027 0.042
11 0.049 0.054 0.028 0.040 0.057 0.051 0.028 0.034 0.050 0.041 0.080 0.035 0.045 0.030 0.051 0.029 0.064 0.055 0.037 0.027 0.031 0.026 0.027 0.053 0.035 0.041 0.021 0.039 0.040 0.034 0.056 0.027 0.046
13 0.056 0.011 0.050 0.053 0.045 0.031 0.022 0.051 0.015 0.103 0.047 0.046 0.035 0.043 0.026 0.057 0.067 0.035 0.025 0.045 0.056 0.037 0.065 0.039 0.069 0.033 0.036 0.022 0.048 0.063 0.006 0.054
14 0.016 0.028 0.055 0.073 0.033 0.046 0.062 0.044 0.057 0.047 0.055 0.049 0.053 0.031 0.061 0.043 0.041 0.039 0.025 0.017 0.035 0.053 0.029 0.049 0.022 0.039 0.042 0.047 0.051 0.036 0.048
16 0.029 0.028 0.051 -0.002 0.009 0.016 0.047 0.053 0.008 0.041 0.010 0.025 -0.008 0.040 0.044 0.034 -0.004 0.000 0.030 0.004 0.021 0.003 0.034 0.000 0.009 -0.005 -0.004 0.042 0.020 0.034
17 0.055 0.063 0.038 0.040 0.056 0.037 0.062 0.043 0.048 0.043 0.041 0.020 0.068 0.050 0.031 0.035 0.023 0.019 0.033 0.050 0.022 0.031 0.018 0.040 0.029 0.031 0.057 0.031 0.042
19 0.036 0.034 0.028 0.043 0.063 0.097 0.047 0.042 0.043 0.062 0.021 0.065 0.071 0.026 0.023 0.040 0.045 0.043 0.057 0.036 0.050 0.029 0.036 0.027 0.042 0.063 0.043 0.055

2 0.024 0.025 0.048 0.071 0.097 0.040 0.032 0.049 0.061 0.024 0.053 0.073 0.033 0.031 0.034 0.047 0.044 0.067 0.052 0.051 0.031 0.026 0.027 0.054 0.068 0.051 0.048
20 0.022 0.037 0.007 0.067 0.021 0.033 0.018 0.035 0.014 0.050 0.045 0.020 0.021 0.013 0.015 0.021 0.029 0.019 0.033 0.012 0.023 0.021 0.022 0.039 0.020 0.034
21 0.032 0.028 0.079 0.024 0.028 0.030 0.041 0.018 0.045 0.055 0.013 0.026 0.022 0.032 0.019 0.044 0.021 0.029 0.016 0.025 0.013 0.026 0.044 0.023 0.024
24 0.059 0.097 0.054 0.045 0.045 0.066 0.036 0.065 0.078 0.046 0.038 0.040 0.044 0.043 0.058 0.045 0.056 0.038 0.045 0.046 0.039 0.073 0.043 0.053
26 0.067 0.027 0.059 0.027 0.047 0.010 0.044 0.057 0.036 0.008 0.009 0.022 0.022 0.049 0.008 0.054 0.013 0.034 0.026 0.026 0.053 0.029 0.048

3 0.070 0.093 0.066 0.097 0.068 0.092 0.061 0.086 0.073 0.060 0.039 0.063 0.097 0.056 0.079 0.064 0.070 0.077 0.058 0.093 0.062 0.079
5 0.049 0.029 0.045 0.019 0.057 0.053 0.029 0.036 0.022 0.027 0.030 0.026 0.028 0.032 0.016 0.034 0.028 0.035 0.047 0.028 0.042
A 0.046 0.053 0.026 0.063 0.068 0.031 0.040 0.032 0.039 0.036 0.054 0.030 0.039 0.027 0.025 0.032 0.042 0.057 0.034 0.050
B 0.040 0.021 0.058 0.052 0.027 0.029 0.028 0.045 0.024 0.039 0.036 0.039 0.021 0.027 0.019 0.020 0.057 0.022 0.046
C 0.034 0.074 0.055 0.041 0.036 0.040 0.048 0.040 0.047 0.036 0.052 0.026 0.037 0.039 0.042 0.052 0.037 0.057
D 0.048 0.038 0.014 0.011 0.012 0.007 0.023 0.036 0.011 0.017 0.008 0.013 0.009 0.019 0.033 0.012 0.022
G 0.062 0.057 0.005 0.042 0.049 0.051 0.068 0.045 0.064 0.038 0.049 0.044 0.056 0.072 0.056 0.059
H 0.051 0.052 0.031 0.025 0.048 0.076 0.049 0.052 0.037 0.056 0.034 0.052 0.070 0.050 0.058
i1 0.019 0.017 0.032 0.026 0.049 0.024 0.032 0.011 0.030 0.008 0.029 0.054 0.033 0.035
i2 0.029 0.027 0.032 0.037 0.023 0.024 0.013 0.029 0.016 0.019 0.048 0.011 0.034

J2 0.015 0.018 0.030 0.006 0.027 0.016 0.021 0.022 0.022 0.035 0.021 0.029
K2 0.020 0.033 0.013 0.025 0.008 0.032 0.037 0.022 0.052 0.017 0.024
N1 0.032 0.016 0.027 0.010 0.026 0.024 0.023 0.043 0.019 0.031
N2 0.039 0.062 0.027 0.040 0.033 0.040 0.058 0.042 0.061

P 0.025 0.010 0.021 0.011 0.023 0.035 0.022 0.017
T1 0.009 0.033 0.021 0.037 0.048 0.039 0.053
T2 0.014 0.016 0.021 0.029 0.000 0.019
T3 0.019 0.033 0.047 0.016 0.033
U 0.022 0.038 0.009 0.034
V 0.056 0.022 0.043

W1 0.044 0.071
W2 0.036
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Table S3:  Pearson's correlation between environmental variables across sampling sites
surface depth surface depth surface depth Prescott

% explained bioclim1 bioclim2 bioclim3 bioclim4 bioclim5 bioclim6 bioclim7 bioclim8 bioclim9 bioclim10 bioclim11 bioclim12 bioclim13 bioclim14 bioclim15 bioclim16 bioclim17 bioclim18 bioclim19 elevation water water nitrogen nitrogen phosphorusphosphorus Index MrVBF
bioclim1 9.86 1.00 0.32 -0.10 0.34 0.84 0.79 0.32 0.29 0.45 0.95 0.95 -0.46 -0.25 -0.59 0.21 -0.25 -0.53 -0.15 -0.45 -0.71 -0.33 -0.47 -0.24 -0.15 0.50 0.47 -0.50 0.64
bioclim2 2.87 1.00 0.00 0.61 0.43 -0.26 0.80 0.37 -0.17 0.44 0.10 -0.22 -0.24 0.14 -0.44 -0.31 0.20 0.17 -0.56 0.10 -0.15 -0.22 -0.49 -0.53 0.10 0.01 -0.29 0.22
bioclim3 22.42 1.00 -0.76 -0.55 -0.12 -0.59 0.52 -0.56 -0.36 0.11 0.39 0.60 0.22 0.47 0.53 0.11 0.69 -0.26 0.35 0.54 0.57 0.06 -0.01 0.14 0.29 0.20 -0.39
bioclim4 12.17 1.00 0.72 -0.03 0.95 -0.10 0.31 0.62 0.03 -0.38 -0.55 -0.07 -0.61 -0.54 0.08 -0.34 -0.16 -0.19 -0.47 -0.58 -0.35 -0.35 0.03 -0.13 -0.31 0.48
bioclim5 3.49 1.00 0.64 0.67 -0.05 0.66 0.95 0.67 -0.65 -0.60 -0.56 -0.16 -0.58 -0.47 -0.52 -0.29 -0.74 -0.60 -0.68 -0.31 -0.19 0.26 0.15 -0.57 0.71
bioclim6 2.45 1.00 -0.14 -0.08 0.69 0.67 0.88 -0.47 -0.23 -0.77 0.47 -0.20 -0.76 -0.43 -0.07 -0.87 -0.34 -0.37 0.03 0.19 0.34 0.35 -0.41 0.52
bioclim7 10.82 1.00 0.01 0.18 0.58 0.02 -0.39 -0.54 0.01 -0.65 -0.55 0.13 -0.25 -0.30 -0.12 -0.44 -0.52 -0.42 -0.43 0.02 -0.14 -0.34 0.42
bioclim8 10.61 1.00 -0.64 0.17 0.29 0.08 0.27 0.02 0.11 0.16 0.05 0.60 -0.65 0.23 0.38 0.26 -0.33 -0.38 0.20 0.28 -0.14 0.13
bioclim9 1.51 1.00 0.52 0.43 -0.46 -0.44 -0.52 0.10 -0.35 -0.51 -0.70 0.26 -0.74 -0.61 -0.58 0.12 0.24 0.11 0.05 -0.29 0.37

bioclim10 3.89 1.00 0.80 -0.54 -0.43 -0.54 -0.03 -0.42 -0.44 -0.29 -0.41 -0.69 -0.47 -0.60 -0.31 -0.23 0.42 0.33 -0.54 0.71
bioclim11 17.30 1.00 -0.40 -0.12 -0.64 0.43 -0.12 -0.63 -0.11 -0.39 -0.74 -0.24 -0.33 -0.12 -0.01 0.50 0.51 -0.45 0.54
bioclim12 13.04 1.00 0.88 0.76 0.24 0.90 0.76 0.75 0.56 0.64 0.51 0.43 0.61 0.44 0.22 0.29 0.91 -0.64
bioclim13 18.37 1.00 0.46 0.61 0.98 0.44 0.80 0.37 0.54 0.56 0.47 0.55 0.41 0.29 0.42 0.79 -0.59
bioclim14 0.00 1.00 -0.36 0.45 0.97 0.60 0.34 0.72 0.35 0.35 0.29 0.13 -0.05 -0.07 0.65 -0.52
bioclim15 11.46 1.00 0.61 -0.42 0.24 0.16 -0.11 0.22 0.19 0.34 0.36 0.25 0.40 0.24 -0.19
bioclim16 22.31 1.00 0.44 0.76 0.45 0.49 0.52 0.42 0.60 0.45 0.36 0.47 0.82 -0.58
bioclim17 0.00 1.00 0.59 0.35 0.71 0.34 0.30 0.29 0.12 0.04 0.01 0.66 -0.46
bioclim18 18.87 1.00 -0.10 0.68 0.62 0.50 0.13 -0.05 0.31 0.42 0.51 -0.43
bioclim19 2.97 1.00 0.09 0.02 0.06 0.76 0.75 -0.04 -0.04 0.72 -0.41
elevation 0.24 1.00 0.63 0.61 -0.01 -0.17 -0.24 -0.12 0.48 -0.57

surface water 17.03 1.00 0.91 0.10 0.06 0.12 0.28 0.31 -0.24
depth water 3.56 1.00 0.10 0.10 -0.13 0.06 0.27 -0.37

surface nitrogren 6.05 1.00 0.94 0.32 0.30 0.78 -0.38
depth nitrogen 8.56 1.00 0.25 0.22 0.63 -0.23

surface phosphorus 24.23 1.00 0.93 0.19 0.22
depth phosphorus 24.27 1.00 0.18 0.14

Prescott Index 4.88 1.00 -0.65
MrVBF 2.72 1.00
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Table S4:  Percent of variation explained and p-values for non-interaction linear models for chamber experiment
seedling height total leaf length relative height increment

% explained p-value % explained p-value % explained p-value
sampling site 17.7 <0.00001 8.2 0.00063 1.8 <0.00001
maternal line:sampling site 10.6 0.00031 17.2 0.00001 27.6 <0.00001
experimental condition 5.4 0.00032 1.2 0.05084 8.1 <0.00001
germination chamber 0 -- 0.3 -- 0.8 --
block 1.1 -- 1.6 -- 5.1 --
residual 65.2 -- 71.5 -- 56.6 --

Table S5:  P-values of interaction term in linear model for chamber experiment
response variable

seedling height total leaf length relative height increment
maternal line 0.89 0.58 0.67
sampling site 0.63 0.51 0.53

Table S6:  Percent of variation explained and p-values for non-interaction linear models for drought experiment
stomatal conductance leaf length to width ratio SPAD SLA

% explained p-value % explained p-value % explained p-value % explained p-value
sampling site 0.9 0.02859 20 0.00007 19.5 0.0001 6.7 0.00864
maternal line:sampling site 5.8 0.00088 21.2 0.00131 10.2 0.03344 7.9 0.07407
experimental condition 62.3 <0.00001 0 0.49232 0 0.54236 4.4 0.02135
sample pairing 0 -- 15.8 -- 8.7 -- 4.9 --
block 7.6 -- 2.5 -- 2.2 -- 6.1 --
residual 23.4 -- 40.5 -- 59.4 -- 70 --

Table S7:  P-values of interaction term in linear model for drought experiment
response variable

stomatal conductance leaf length to width ratio SPAD SLA
maternal line 0.13 0.47 0.56 0.27
sampling site 0.51 0.78 0.31 0.82
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