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Abstract

Motivation: Biological sequence alignment is fundamental to their
further interpretation. Current alignment algorithms typically align either
nucleic acid or amino acid sequences. Using only nucleic acid sequence
similarity, divergent sequences cannot be aligned reliably because of the
limited alphabet and genetic saturation. To align divergent coding nucleic
acid sequences, one can align using the translated amino acid sequences.
This requires the detection of the correct open reading frame, is prone
to eventual frame shift errors, and typically requires the treatment of
genes separately. It was our motivation to design a nucleic acid sequence
alignment algorithm to align a nucleic acid sequence against a (reference)
genome sequence, that works equally well for similar and divergent se-
quences, and produces an optimal alignment considering simultaneously
the alignment of all annotated coding sequences.
Results: We define a genome alignment score for evaluating the qual-
ity of an alignment of a nucleic acid query sequence against a reference
genome sequence, for which coding sequence features have been anno-
tated (for example in a GenBank record). The genome alignment score
combines the affine gap score for the nucleic acid sequence with an affine
gap score for all amino acid alignments resulting from coding sequences
in open reading frames contained within the query sequence. We present
a Dynamic Programming algorithm to compute the optimal global or lo-
cal alignment using this genomic alignment score and provide a formal
proof of correctness. This algorithm allows the alignment of nucleic acid
sequences from closely related and highly divergent sequences within the
same software and using the same parameters, automatically correcting
any eventual frame shift errors and produces at the same time the aligned
translated amino acid sequences of all relevant coding sequence features.
Availability: The software is available as a web application at http:

//www.genomedetective.com/app/aga and as command-line application
at https://github.com/emweb/aga
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1 Introduction

Obtaining nucleic acid sequences that span partial or full genomes are
becoming cost-effective with recent advances in sequencing technology.
This enables new applications that use use this genomic sequence data
from known and unknown species in clinical or environmental samples [7]
[15].

Alignment, as part of a database similarity search, or against a spe-
cific reference genome, is typically a first step in the interpretation of
these sequences. Current alignment methods however work either on the
nucleic acid or amino acid sequence, but typically do not consider both
simultaneously. The benefit of aligning amino acid sequences is that they
are usable for more diverged sequences, but they require the correct de-
tection of open reading frames and a priori correction of eventual frame
shift errors that interfere with proper translation. By considering only
amino acid sequence similarity, the more sensitive evolutionary informa-
tion within synonymous substitutions is however lost.

We describe here an algorithm (AGA) which computes the optimal
pairwise alignment of an (unknown) nucleic acid sequence against a ref-
erence sequence, using a score that combines nucleic acid similarity and
amino acid similarity. Amino acid similarity is based on translated Coding
DNA Sequence (CDS) annotations of the reference sequence. In a typical
application, the reference sequence would be a complete genome sequence
annotated with the location of coding sequences of contained proteins or
polyproteins (see for example Figure 2). The proposed method can deal
with multiple coding sequences in different open reading frames, which
use either the forward or the reverse complemented strand, and which
may be composed of different regions that are spliced together. Open
reading frames may also verlap, which is not uncommon for compact viral
genomes.

The alignment of coding nucleic acid sequences using amino acid se-
quence similarity has been considered before [5] [1] [18] [18] [2] [19] [11]
[13] [8] [17]. The method outlined in this paper differs with this previ-
ous work in the sense that it considers specifically the problem of how to
optimally align a nucleic acid sequence against an annotated (reference)
genome, considering simultaneously nucleotide simularity and amino acid
sequence simularity in the annotated coding sequences. The method re-
sults in alignments with a minimum number of frame shifts in coding
sequences and with gaps preferably at codon boundaries, by penalizing
both such events in the scoring function that it optimizes. By combin-
ing similarity of the nucleic acid sequences and similarity of coded amino
acid sequences, the method can optimally align sequences to a reference
genome, regardless of whether they are highly similar or distant to the
reference genome.

Applications such as phylogenic tree reconstruction, sequence simi-
larity evaluation, read or contig mapping towards a reference sequence,
or determination of nucleic acid and amino acid substitutions for geno-
typic/phenotypic assocations, all depend on a high quality alignment. We
believe that AGA is useful to most of these applications.
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2 Approach

We define a Genome Alignment Score which scores the quality of a local
or global alignment of a nucleic acid Query sequence against a Reference
Genome. In this context, a reference genome is a nucleic acid sequence
annotated with Coding DNA Sequence information. Each coding sequence
indicates the location of one or regions in the genome that jointly translate
to a protein or polyprotein. The coding sequence may be based on a single
region or may span multiple regions that are spliced together. Each region
is part of one of three forward or reverse complemented open reading
frames within the genome sequence. Coding Sequences may also overlap,
sharing the same or different open reading frames, which is not unusual
for compact viral genomes.

The genome alignment score is based on (a) the alignment score of the
nucleic acid sequence using a traditional nucleic acid substitition matrix
score, with affine gap open and gap extension penalties [16], (b) the align-
ment score of each of the covered coding sequences using a traditional
amino acid substition matrix score, with affine gap open an gap exten-
sion penalties, and (c) additional penalties for frameshift insertions and
deletions, and for insertions and deletions that do not align with codon
boundaries.

By defining the genome alignment score in this way, it can be used
to compare the similarity of a nucleic acid sequence to multiple reference
genomes. By including the alignment score of the nucleic acid sequence it-
self, the genome alignment score is applicable to sequences that are highly
similar to the reference, having for example only meaningful differences
in their nucleic acid sequences, but virtually no changes in their amino
acid sequences. By including the alignment score of all covered coding
sequences as well, the alignment score is in particular also applicable to
highly divergent sequences, which may have lost much of their similarity
at the nucleic acid sequence, but which still share some similarity in their
protein sequences, especially when considering all coding sequences (cov-
ered by the query sequence) simultaneously. Finally, by considering the
possibility of (likely erroneous) insertions or deletions that cause frame
shifts, the alignment score is suitable to align sequences obtained from
sequencing techniques that are prone to such sequencing errors without
misusing frameshift mutations artificially as a means to optimize amino
acid sequence similarity.

We show how a Dynamic Programming algorithm can be designed
which computes the optimal local or global alignment subject to maxi-
mizing the genome alignment score. This work thus builds further on the
optimal alignment algorithms first proposed by Needleman-Wunsch [16],
Smith-Waterman [16], and Gotoh [4], by expanding the induction state
with additional state parameters.
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3 Methods

3.1 Notation

Let the two nucleic acid sequences be a reference genome G = g1g2...gM

and a query sequence B = b1b2...bN . For the reference genome G, infor-
mation on coding sequences are available, which are for example the CDS
annotations from a GenBank record. This information can be represented
as a list of codons in which the nucleotide at position m participates: Cm

= {[cm,1, rm,1], [cm,2, rm,2], ..., [cm,t, rm,t]} where 1 ≤ cm,i ≤ 3, indicating
the position of the nucleotide in a codon, and rm,i a boolean indicating
whether the codon is in the forward strand or in the reverse complemen-
tary strand. A splice site does not necessarily occur at a codon boundary,
and in that case the nucleic acids that are translated to the codon may
be scattered through the genome. To allow the algorithm below to pro-
cess the sequences sequentially from start to end, we exclude such codons
from the scoring models. We define tm = |Cm|, the number of codons in
which the nucleotide takes part. A value of tm > 1 indicates that there
are multiple overlapping coding sequences at the given nucleotide position
m, possibly in different open reading frames. We denote as Ti(a, r) the
translation of the codon aiai+1ai+2 to an amino acid in the forward or
reverse complementary strand depending on the value of r.

3.2 Genome alignment score

For a nucleic acid sequence alignment Ana(G,B), we define a genome
alignment score Sga{Ana(G,B)} that is based on a nucleic acid sequence
alignment score Sna{Ana(G,B)} for the nucleic acid sequence alignment
Ana(G,B) itself, and the amino acid sequence alignment score Saa{Aaa(X,Y)}
for each amino acid sequence alignmentsAaa(X,Y) that results from trans-
lation of the aligned sequences G and B according to the coding sequence
annotations of G.

The alignment scores Sna and Saa are of the same form but use a
distinct set of parameters. They score a match in the alignment according
to a substitution weight matrix W , and a gap of length k in the query or
reference sequence using an affine gap model: wk = pu(k − 1) + pv with
pv ≤ 0 the penalty for opening a gap, and pu ≤ 0 is the cost for extending
a gap. The incremental cost for a gap is then

∆wk =

{
pv if k = 1

pu if k > 1

Because the genome alignment score, and the alignment algorithm de-
scribed below, consider the insertion of gaps anywhere in the nucleic acid
sequence, and gaps of any length, we need to define how these gaps within
a coding sequence translate to gaps in the amino acid sequence. We make
the choice to consider a gap of length k with 3(n − 1) < k ≤ 3n as a
gap of length n in the amino acid sequence, regardless of whether the gap
aligns with a codon boundary. For practical reasons, one typically prefers
gaps to align with codon boundaries because otherwise they render the
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interrupted start and end codons as non-translatable, which lack a proper
notation and scoring at the amino acid sequence level (usually denoted
as an ’X’ in the resulting sequence alignment). Therefore a misalignment
penalty is added whenever a gap starts within a codon, disrupting proper
translation of that codon. More formally, a penalty pm ≤ 0 is added
whenever a gap opens after position gm, either in the query or reference
sequence, when Cm contains a codon position cm,i 6= 3.

The amino acid sequence alignment score SAA by itself does does not
consider insertions and deletions in the underlying nucleic acid sequence
that do not occur in a multiple of three. These however cause frameshift
mutations which change the translation profoundly and thus has a large
impact on the amino acid sequence alignment. Frame shifts are unex-
pected in a viable coding sequence, but they are not uncommon as a
consequence of sequencing errors and thus their possibility needs to be
considered (with low probability) to obtain a better alignment. The in-
troduction of a frame shift needs thus to be weighted against the quality of
the amino acid sequence alignment. Thereofre, in the genome alignment
score, a frame shift penalty pf ≤ 0 is added for a gap of length k with
(k mod 3) 6= 0.

Finally, the genome alignment score Sga is defined as a weighted sum
of the nucleic acid sequence alignment score and the amino acid sequence
alignment scores, using a weight waa for the amino acid alignment score
contribution.

3.3 Algorithm

We now describe an algorithm that calculates the optimal alignment, max-
imizing the above genome alignment score, using Dynamic Programming.
The algorithm extends the idea developed in [4] to expand the induction
state with additional state matrices to properly accomodate the affine gap
cost in the induction step. In particular, in [4] the induction state was
defined as [ Dm,n , Pm,n , Qm,n ] in which Dm,n is the best score for an
alignment of g1g2...gm versus b1b2...bn, Pm,n the best score for an align-
ment of the same sequences but ending with a gap after gm, and Qm,n

the best score for an alignment of the same sequences but ending with
a gap after bm. These additional two matrices Pm,n and Qm,n allow the
algorithm to properly evaluate the score for a gap taking into account the
different cost for a gap open and gap extension. With the genome align-
ment score as defined above, the cost for opening a gap will be different
from a gap extension, not only because of the affine gap penalty present
in the nucleic acid sequence and amino acid sequence alignment scores,
but also because opening a gap may break one or more codons and cause
a codon misalignment cost pm. But also the cost of a gap extension differs
from one to another since the length of the gap influences the occurence
of a frame shift penalty pf , and depending on the position relative to a
codon, a gap penalty may be added to the amino acid alignment.

We define as induction state [ Dm,n , Mm,n , P
(g)
m,n , Q

(h)
m,n ] with

1 ≤ g ≤ 3 and 1 ≤ h ≤ 3 where for an alignment of g1g2...gm versus
b1b2...bn :
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• Dm,n is the best score overall;

• Mm,n is the best score for an alignment ending with a match;

• P (g)
m,n is the best score for an alignment ending with a gap of length
k = 3i+ g after gm with i ≥ 0 in the reference sequence;

• Q(h)
m,n is the best score for an alignment ending with a gap of length

k = 3j + h after bn with j ≥ 0 in the query sequence.

At each induction step m,n the induction state is updated using an
incremental computation of the genomic alignment score. Let ∆dm,n be
the incremental score for extending the alignment of g1g2...gm−1 with
b1b2...bn−1 with a match. ∆pm,n(k) is the incremental score for extending
an alignment of g1g2...gm with b1b2...bn−1 by opening a gap (k = 1) or ex-
tending a gap in the reference sequence to length k. Likewise let ∆qm,n(k)
be the incremental score for extending an alignment of g1g2...gm−1 with
b1b2...bn) by opening a gap (k = 1) or extending the gap in the query to
length k.

∆dm,n = Wna(gm, bn) + waa

∑
1≤i≤tm

χm,n(cm,i, rm,i)

The sum component in the above equation adds the amino acid substitu-
tion score for each codon which starts at position m, and thus for which
cm,i = 1.

χm,n(c, r) =

{
Waa(Tn(g, r), Tn(b, r)) if c = 1

0 if c 6= 1

∆pm,n(k) = ∆wna,k + waa

∑
1≤i≤tm+1

ηm+1,n(cm+1,i, rm+1,i, k)

The sum component adds a score component η for each amino acid se-
quence which may be affected by the gap.

ηm,n(c, r, k) = νm,n(c, r, k) + ω(k) + φ(k)

The codon breakage cost ν undoes an amino acid substitution weight
previously added at the beginning of the codon, plus adds a misalignment
penalty :

νm,n(c, r, k) =


−Waa(Tm−c+1(g, r), Tn−c+1(b, r)) + pm

if c 6= 1 and k = 1

0 if c = 1 or k 6= 1

An incremental amino acid open gap cost is added when opening the gap,
and an amino acid gap extension cost is added for every additional 3
nucleic acid gaps, according to the affine gap model:

ω(k) =

{
∆waa,(k−1)/3+1 if (k mod 3) = 1

0 if (k mod 3) 6= 1
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Figure 1: Data dependencies in induction rule
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A frame shift penalty is incrementally updated based on the length of the
gap k:

φ(k) =


pf if (k mod 3) = 1

0 if (k mod 3) = 2

−pf if (k mod 3) = 0

Likewise we can define the incremental score for opening or extending
a gap in the query sequence:

∆qm,n(k) = ∆wna,k + waa

∑
1≤i≤tm

ηm,n+1(cm,i, rm,i, k)

At each induction step, we use the above incremental score update
functions to update the induction state (Figure 1):

Mm,n = Dm−1,n−1 + ∆dm,n

P (1)
m,n = max[Mm,n−1 + ∆pm,n(1), P

(3)
m,n−1 + ∆pm,n(4)]

P (i)
m,n = P

(i−1)
m,n−1 + ∆pm,n(i) for 2 ≤ i ≤ 3

Q(1)
m,n = max[Mm−1,n + ∆qm,n(1), Q

(3)
m−1,n + ∆qm,n(4)]

Q(i)
m,n = Q

(i−1)
m−1,n + ∆qm,n(i) for 2 ≤ i ≤ 3

Dm,n = max[Mm,n , P
(i)
m,n , Q

(i)
m,n] for 1 ≤ i ≤ 3

The optimal alignment is retrieved by tracking back the path through
the induction state matrix from Dm,n to D0,0 following back the path
that led to the optimal solution.
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3.4 Proof

At each induction step m,n we need to prove that the definitions of the
induction state parameters are satisfied.

The definition of Mm,n is satisfied since ∆dm,n only depends on m
and n and thus the optimal alignment ending in a match is the alignment
that extends the optimal alignment of g1g2...gm−1 versus b1b2...bn−1 with
score Dm−1,n−1.

The defintions of P
(g)
m,n and Q

(g)
m,n for g = 2 or g = 3 are satisfied

because the incremental gap cost terms ∆pm,n(k) and ∆qm,n(k) depend
only on m, n, and gap length k. When extending a gap (k 6= 1), it can
easily be verified that the following equalities exist:

∆pm,n(k) = ∆pm,n(k + 3i)

∆qm,n(k) = ∆qm,n(k + 3i)

This means that the cost for extending a gap to length k = 3i + g is the
same for any value of i, and thus the highest score for an alignment ending
with a gap of length k = 3i+g is the highest score for an alignment ending
with a gap of length k = 3i+ (g− 1), incremented with the gap extension
cost for k.

The definitions of P
(1)
m,n and Q

(1)
m,n are satisfied because the algorithm

uses the maximum score considering either the opening of a gap or ex-
tending of a gap of length k = 3i. The cost for opening a gap ∆pm,n(1)
and ∆qm,n(1) depend only on m and n, and thus the highest score for
ending the alignment with a gap of length k = 3i+ 1 is either the cost for
opening a gap added to the highest score for ending with a match, or for
extending a gap of length k = 3i.

Finally, the optimal alignment score Dm,n is defined as the maximum
alignment score considering the different options of ending the alignment
in a match, or ending with a gap in the reference of all possible lengths,
or ending with a gap in the query of all possible lengths.

4 Implementation

The above algorithm was implemented in C++11 as a standalone command-
line tool (AGA). The inputs are a reference genome (GenBank record) and
a query nucleic acid sequence (FASTA file). The implementation does
not keep the entire induction state matrix in memory by encoding the
backtrace information within the induction state variables, and is thus
in practice suitable for genome lengths up to 106 base pairs (most viral
genomes), provided sufficient computation time.

Through command-line parameters, the following parameters of the al-
gorithm may be configured: the choice of nucleic acid and amino acid sub-
stitution weight matrices Wna and Waa, the affine gap parameters pu,na,
pv,na, pu,aa, pv,aa, parameters to weight the nucleic acid versus amino acid
score waa, and frame shift penalty pf and misalignment penalty pm. For
the nucleic acid substition weight matrix, a score for a match and a score
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Table 1: Algorithms whose performance was compared to AGA.
Name Version Score Input Description
needle 6.6.0 NT pair-wise no special support for CDS
MACSE 0.9b1 AA multiple one CDS, minimizes frame shifts
codaln 1.0 NT + AA multiple multiple CDS

Table 2: Sequences used in the evaluation of AGA.
Name Accession Length Description
HXB2 NC 001802 9181 HIV-1 reference strain (Subtype B)
hiv1b AY835761 9824 HIV-1 Subtype B complete genome
hiv1c U46016.1 9031 HIV-1 Subtype C complete genome
siv KF304708.1 9449 SIV complete genome
hiv2 KP890355.1 9480 HIV-2 complete genome

for a mismatch can be configured. As amino acid substitution weight ma-
trices the tool offers the choice between BLOSUM30 and BLOSUM62 [6].
AGA can compute an optimal local or global alignment.

The tool outputs the nucleic acid sequence alignment and all amino
acid sequence alignments of coding sequences (after eventual frame shift
corrections). For each alignment, it outputs the corresponding score and
provides various statistics (coverage length, number of matches, identities,
indels, frame shifts, and codon misalignments).

5 Evaluation

To assess the benefit of the algorithm, we compared it to an implementa-
tion of a an optimal nucleic acid sequence alignment which doesn’t take
into account CDS features (EMBOSS needle [14]), and other alignment
algorithms designed to take into account CDS features (Table 1). For the
comparison, we evaluated how these algorithms perform to align different
HIV and other primate lentivirus genome sequences against the HIV-1
reference sequence (Table 2).

HIV-1 was chosen for this evaluation since it has a complex genome
organization (Figure 2), which is not uncommon for RNA viruses, with
multiple overlapping reading frames, some of which are joined by different

Figure 2: HIV-1 Genome Organization
1 9181

gag gag-pol
vif

vpr
tat
rev

vpu
env

asp

nef

Coding DNA Sequence (CDS) annotations of HIV-1, as derived from the GenBank

record NC 001802 (HIV-1 reference sequence)
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Table 3: Parameter values used for AGA in its evaluation.
Parameter Value
Waa BLOSUM62
Wna +2 for match, -2 for mismatch
pu,na -1
pv,na -10
pu,aa -2
pv,aa -6
waa 1
pf -100
pm -20

Table 4: Command-line arguments used for other algorithms used in the evalu-
ation.
Name Configuration
needle -gapopen 10 -gapextend 1 -datafile EDNASIMPLE2
MACSE -g -10 -x -1 -f -100 -d 1 -s -10
codaln -go 10 -gx 1 -m0 2 -m1 2

genomic segments, and including one that uses the complementary strand
(for the asp gene). Although one routinely will align HIV-1 sequences to
the reference genome, also the alignment of HIV-2 and SIV strains against
HIV-1 may be useful to unravel genetic causes for the different phenotypic
properties of these viruses [12] [3].

To evaluate the quality of each alignment, we used as meaningful statis-
tics number of frame shifts introduced within coding sequences, the num-
ber of amino acids not aligned at a codon boundary, and the affine gap
model score for the nucleic acid sequences and all amino acid sequences
(excluding frame shift and misalignment penalties). The run time perfor-
mance was also compared on a Dell XPS laptop.

Tables 3 and 4 detail value parameters used for running the different
algorithms in the comparison, which we tried to make comparable despite
differences in scoring models.

We also compared the different alignments using an alignment viewer
that shows simultaneously the nucleic acid sequence alignment and all
coding sequence alignments (this alignment viewer is also part of the web
version othe tool).

6 Results

AGA produced alignments with high nucleic acid and amino acid align-
ment scores while introducing only a minimum amount of frame shifts
and codon misalignments within coding sequences (Table 5). Because
MACSE makes the assumption of a single CDS, it introduces a frame
shift near the beginning or the end of a coding sequence region, or within
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Table 5: Alignment quality of AGA compared to other algorithms

Sequence Algorithm # FS # MA NT Score AA Score
hiv1b AGA 0 10 16182 18130

needle 3 20 16219 18054
MACSE 13 29 15521 18013
codaln 3 16 15615 18035

hiv1c AGA 1 19 12478 16127
needle 22 54 12525 16097
MACSE 13 42 11772 15813
codaln 4 21 11930 15907

siv AGA 2 23 1497 8536
needle 146 298 1980 8159
MACSE 13 66 62 8301
codaln 5 38 34 7552

hiv2 AGA 1 30 1164 8080
needle 161 338 1650 7472
MACSE 18 78 213 7799
codaln 1 27 -85 6983

Performance of other algorithms compared to AGA for aligning four genome sequences

against the HIV-1 reference strain (HXB2): # FS is the number of frame shifts caused

by indels within Coding DNA Sequences (CDS) in either the reference or query se-

quence; # MA is the number of indels not aligned to a codon boundary; NT Score is

the nucleic acid affine gap model score of the alignment; AA Score is the sum of all

amino acid affine gap model scores of the translated CDS alignments, after inserting

additional gaps to correct eventual frame shift errors.

an overlapping region, to jump to the new gene open reading frame, even
for the alignment of the highly similar HIV-1 subtype B sequence, but
otherwise also effectively minimizes the number of frame shifts. Codaln
on the other hand, like AGA, uses its knowledge of open reading frames
to minimize frame shifts within Coding Sequences, but the alignments are
of a lower quality (at both the nucleic acid and amino acid level) because
of an inaccurate estimation of open reading frames in the query sequence.

EMBOSS needle produces alignments with a maximum nucleic acid
alignment score, as can be expected, but it will introduce frame shifts
and codon misaligned gaps in order to optimize its nucleic acid sequence
alignment.

AGA as well as the other algorithms tested, implement a Dynamic
Programming solutions with a time complexity O(MN), and with the
exception of MACSE, all had a similar run time performance (Table 6).
Taking into account the possibility of multiple overlapping open reading
frames, AGA has an O(MNT ) time complexity, where T is the maximum
amount of overlapping coding sequences within the genome: T = maxi ti.
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Table 6: Runtime performance of AGA compared to other algorithms
Algorithm Run time (s)
AGA 6.3
needle 4.5
MACSE 185.2
codaln 5.5

Run time performance of other algorithms compared to AGA for aligning an HIV-1

Subtype B full genome sequence (hiv1b, 9824 bps) against the HIV-1 reference strain

(HXB2, 9181bps) on a Dell XPS (Intel Core i7-7500U CPU @ 2.70GHz).

7 Discussion

The proposed genomic alignment score combines the affine gap model
score of the nucleic acid sequence alignment with all affine gap model
scores of amino acid alignments. These scores are however not indepen-
dent: a gap in an amino acid sequence alignment will also correspond to
a gap in the nucleic acid sequence alignment. A matching amino acid in
the amino acid sequence alignment may correspond to matching codons
in the nucleic acid sequence alignment. Nevertheless the approach to al-
low gaps to be penalized at both levels was chosen since the cost for the
introduction of the gaps is also weighted against the score for character
matches in the alignments at each level. The parameter waa can be used to
give more or less weight to the amino acid sequence alignments compared
to the nucleic acid sequence alignment and a suitable value will depend
also on the nature of both scoring models since these are dimensionless
numbers that are not necessarily of the same order of magnitude and thus
comparable.

The original motivation for affine gap costs in nucleic acid sequence
alignments was in part to avoid gaps that introduce frame shifts [16].
Since in the genomic score the amino acid sequence alignment score is
included, it may have become redundant. AGA can also implement a
linear gap model by setting pu,na = pv,na.

From the results (Table 5), it can be seen that AGA can still generate
indels that are not aligned with a codon boundary in one of the coding
sequences. Provided a sufficiently high penalty for this, this will only
happen in regions of overlapping reading frames where the gap can only
be codon-aligned with one of the amino acid sequences.

A number of algorithms have been proposed which align coding nu-
cleic acid sequences by back-translation of the corresponding amino acid
sequence alignment [1] [18] [19] [18] [2]. Such methods however are lim-
ited to coding sequences for a single protein or polyprotein (and cannot
deal with overlapping open reading frames), cannot easily deal with frame
shift errors that prevent the translation in the first place, and disregard
the contribution of nucleotide similarity entirely.

To explicitly consider the possibility of frame shifts, another class of al-
gorithms more similar to AGA have been proposed, which therefore mod-
ify nucleic acid sequence alignment algorithms to take into account the
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translation, but still allow for frame shifts [13], [5], [17]. Like AGA, these
algorithms use a Dynamic Programming induction matrix to compute an
optimal alignment subject to a scoring function, and different results are
caused by different assumptions embedded in their scoring functions.

Codaln [17] implements an algorithm which, like AGA, can read the
annotations of coding sequences from a GenBank record. To align an un-
known query sequence against an annotated genome, it will first search
for open reading frames in the query sequence, which are used in a sec-
ond step in the scoring function of a Dynamic Programming alignment
algorithm. In our results (Table 5), we found that the lower alignment
scores, and erroneous frame shifts, of its alignments were caused by errors
in these estimated open reading frames.

MACSE [13] penalizes frame shifts but assumes that the entire se-
quence is a single Coding Sequence which needs to be translated with a
minimum of frame shifts and stop codons into a (pseudo-)protein, while
optimizing the resulting amino acid alignments. Although we included
MACSE in our evaluation, it is thus not well suited to align entire genome
with multiple, partially overlapping, open reading frames, some of which
may be using the complementary strand.

Future work could be to extend the scoring model to multiple sequence
alignment, considering then that one of the included sequences is a refer-
ence genome with CDS annotations. This could use the progressive com-
bination of pairwise alignments as originally implemented in CLUSTALW
[10], or other heuristic approaches such as implemented in MAFFT [9] or
MUSCLE [9].

8 Conclusion

We presented an optimal solution to a fundamental problem in biologi-
cal sequence analysis, namely how to best align an unknown nucleic acid
sequence against a (reference) genome, considering simultaneously simi-
larity at the nucleic acid and amino acid sequence level, and condidering
possible frame shifts and gaps causing codon misalignment, but scoring
such events with a user-defined penalty.

The proposed method is generally applicable to align any nucleic acid
sequence against any genome for which Coding Sequence feature annota-
tions are available. In practice, it is especially well suited to RNA virus
sequences, since they are generally rapidly evolving and also typcally have
compact viral genomes. By considering amino acid sequence similarity
across all Coding Sequences, the method can overcome the large diversity
caused by the high rate of evolution, and deals properly with overlapping
reading frames common to these viruses.

The method has been implemented in a software package AGA which
is available as a command-line package or can be used through a simple
web page.
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