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Abstract  
In the last decade advances in genomics, uptake of targeted therapies, and the advent of 
personalized treatments have fueled a dramatic change in cancer care. However, the 
effectiveness of most targeted therapies is short lived, as tumors evolve and develop 
resistance. Combinations of drugs offer the potential to overcome resistance. The space of 
possible combinations is vast, and significant advances are required to effectively find 
optimal treatment regimens tailored to a patient’s tumor. DREAM and AstraZeneca hosted a 
Challenge open to the scientific community aimed at computational prediction of synergistic 
drug combinations and predictive biomarkers associated to these combinations. We 
released a data set comprising ~11,500 experimentally tested drug combinations, coupled to 
deep molecular characterization of the respective 85 cancer cell lines. Among 150 submitted 
approaches, those that incorporated prior knowledge of putative drug targets showed 
superior performance predicting drug synergy across independent data. Genomic features of 
best-performing models revealed putative mechanisms of drug synergy for multiple drugs in 
combination with PI3K/AKT pathway inhibitors.  
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Introduction  
Personalized treatment with drugs targeted to a tumor’s genetics have resulted in 
remarkable responses, however patients often relapse.  Multiple opportunities for drug 
resistance exist 1, beginning with the genetic, non-genetic and clonal heterogeneity inherent 
of advanced cancers, coupled with complex feedback and regulatory mechanisms, and 
dynamic interactions between a tumor cell and its micro-environment.  Any single therapy 
may be limited in its effectiveness, but drug combinations have the potential to overcome 
drug resistance and lead to more durable responses in patients. The molecular makeup of 
the cancer cell and the mechanisms driving resistance will influence the optimal combination 
of mechanisms to target 1–3. 
 
High throughput preclinical approaches are crucial to determine and evaluate effective 
combination strategies. While empirical approaches are important for assessing the 
synergistic properties across drugs, the possible number of combinations grows 
exponentially with the number of drugs under consideration.  This is further complicated by 
the necessity to consider multiple phenotypic endpoints and disease and cellular contexts, 
rendering it impractical to cover all possibilities with experimental screens 4. Computational 
approaches for predicting drug synergy are critical to guide experimental approaches for 
discovery of rational combination therapy 5. 
 
DREAM Challenges (dreamchallenges.org) are collaborative competitions that pose 
important biomedical questions to the scientific community, and evaluate participants’ 
responses in a statistically rigorous and unbiased way, while also emphasizing model 
reproducibility and methodological transparency 9.  To accelerate the understanding of drug 
combination synergy, DREAM Challenges partnered with AstraZeneca and the Sanger 
Institute to launch the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge.  
This Challenge was designed to explore fundamental traits that underlie effective 
combination treatments and synergistic drug behavior. The essential question posed to 
Challenge participants was how to predict synergistic activity from drug pairs using data 
available prior to drug treatment, mirroring a clinically relevant scenario to direct therapeutic 
choice.  The Challenge was structured to address the following translational questions: (i) 
how to predict whether a known (previously tested) drug combination will be effective for a 
specific patient, (ii) how to predict which new (untested) drug combinations are likely to yield 
synergistic behaviors in a patient population, and (iii) how to identify novel biomarkers that 
may help reveal underlying mechanisms related to drug synergy.  
 
A number of approaches have been developed to model drug synergy using chemical, 
biological, and molecular data from cancer cell lines 6,10 but with limited translatability to the 
clinic.  A key bottleneck in the development of such models has been a lack of public data 
sets of sufficient size and variety to train computational approaches 4,7,8, particularly 
considering the diversity of biological mechanisms that may influence drug response.  We 
shared with Challenge participants ~11,500 experimentally tested drug combinations on 85 
cancer cell lines.  Molecular data was provided for the untreated (baseline) cell lines, 
alongside chemical information for the respective drugs.  Participants were also encouraged 
to use a priori knowledge of cellular signaling networks. 
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In this manuscript, we report on the results of this Challenge where we have identified novel 
and performant methods using a rigorous evaluation framework on unpublished data. 
Additionally, we describe the details of these approaches, as well as general trends arising 
from the meta-analysis of all submissions. Finally, we identify the mechanistic commonalities 
evident across predictive features used to reveal genomic determinants of synergistic 
responses between multiple receptor tyrosine kinase and PI3K/AKT pathway inhibitors. 

Results 

1. High-throughput screen covering diverse disease and drug 
combination target space 

We collated a combinatorial drug sensitivity screen comprising 11,576 experiments across 
85 cancer cell lines (Supp. Fig. 1). This dataset included cell viability response 
measurements to 118 chemically diverse compounds, and estimated synergy scores for 910 
pairwise drug combinations with high reproducibility (Supp. Fig. 2; see Methods). Information 
on the compounds included putative drug targets, and where available, their chemical 
properties. We also acquired deep molecular characterization of these same cell lines, 
including somatic mutations, copy-number alterations, DNA methylation, and gene 
expression profiles (Fig. 1A-C) measured before drug treatment 11.  
 
The 85 cell lines are predominantly derived from tumors of the breast (N=34), lung (N=22), 
bladder (N=14), and the gastro-intestinal tract (N=12) (Fig. 1D). Synergism for drug 
combination experiments were measured using the Loewe model, defined as increasing cell 
death beyond the expected additive effect of the individual compounds (see Methods). Drug 
synergy levels varied across disease types (Fig 1D); in particular lung cell lines had over 
two-fold higher mean synergy than breast cell lines (p-value<7e-27). Of the 118 compounds 
tested, 59 were targeted therapies against components of oncogenic signaling pathways 
(see Methods), 15 of which target receptor tyrosine kinases (RTKs), 22 target PI3K/AKT 
signaling, and 9 target MAPK signaling (Fig. 1E). Across the pair-wise drug combination 
experiments, 88% (N=797) of the unique pairs had drug targets within the same pathway 
and demonstrated markedly overall higher synergy levels (17.3 vs 7.3, p-value<2e-18) than 
the remaining 12% (N=113) whose drug targets were defined to be in different pathways. As 
part of the Challenge design, we ensured that drug targeted pathways and cancer types 
were proportionally distributed across sub-challenges and training/test data sets.  

2. Challenge outcome: Participants reached the upper limit of prediction 
accuracy using mostly genomic data. 

The Challenge was divided into two primary sub-challenges. In sub-challenge 1 (SC1) 
participants were asked to predict synergy scores for drug combinations for which training 
data on those same combinations were available. In sub-challenge 2 (SC2), participants 
were asked to predict synergy status on drug combinations for which no training data was 
provided, thereby requiring participants to infer synergy using transferrable data/knowledge 
patterns identified from previously seen independent compound pairs. SC1 was further sub-
divided into two parts: SC1A allowed the use of all available data for model prediction, while 
SC1B limited data use to just mutation and copy number variation (mimicking current clinical 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 9, 2017. ; https://doi.org/10.1101/200451doi: bioRxiv preprint 

https://doi.org/10.1101/200451


 

assay feasibility). SC1A received submissions from all 76 teams, 62 for SC1B and 39 for 
SC2. As scoring metric we used the average weighted Pearson correlation between 
predicted and known synergy values for SC1, and both the -log10(p) from a 3-way ANOVA 
and balanced accuracy (BAC) for SC2 (see Methods).  
 
A total of 969 participants of diverse geography and expertise registered for the Challenge 
(Supp. Fig. 3A,B). Across all teams, mean performance scores were R=0.24±0.01 and 
R=0.23±0.01 (weighted Pearson correlation ± standard error) for SC1A and SC1B 
respectively, and -log10(P)=12.6 (3-way ANOVA) for SC2. Teams showed a small decrease 
in performance for SC1B, Δprimary metric = 0.01 (P=0.90), compared to SC1A (Figure 2A; 
Supp. Fig. 3C,D). While teams employed many differing methodological approaches to 
modeling drug synergy - including regression, decision trees, random forests, Gaussian 
processes, SVM, neural networks and others (Supp. Fig. 4A) - algorithm class showed little 
relationship to performance (Supp. Fig. 4B). We observed that participants submitting to all 
sub-challenges rather than just one tended to do better (Supp. Fig. 3E). The top winning 
team in all three sub-challenge was Yuanfang Guan (Y Guan) with primary metrics of 0.48, 
0.45 and 74.89 in SC1A, SC1B, and SC2, respectively. Based on the primary metric in SC2, 
Y Guan performed considerably better (>5 Bayes Factor, based on bootstrapped metrics’ 
comparisons, see Methods) than other teams (Figure 2B). All performance statistics and 
team rankings are available at the Challenge website 
(https://www.synapse.org/DrugCombinationChallenge). 
 
To benchmark the performance of teams in the final rounds of SC1A/B and SC2, we 
established lower and upper bounds of performance. We defined the lower bound as the null 
model, i.e. random permutation of the synergy data across each cell line (see Methods). The 
upper bound was estimated using technical (experimental) replicates. We observed that 
83%, 85%, and 94% of submitted models performed better than random (5% FDR, see 
Methods) for SC1A, SC1B, and SC2, respectively. Team performances varied widely, but 
remarkably the top 15 models (20%) submitted to SC1A reached a performance level 
comparable to the noise level observed in the technical replicates (Figure 2A), as did the top 
13 models (21%) in SC1B. Proportionally fewer teams performed at the level of replicate 
experiments in SC2 based on the balanced accuracy (BAC), with North Atlantic Dream 
(NAD) coming closest to this bound (BAC=0.688; Figure 2C).  
 
Given the limited performance of SC2, we assessed whether an ensemble method - based 
on an aggregation of all submitted models - could yield a better overall model, a 
phenomenon called “wisdom of the crowd” 9,12. We used a Spectral Meta-Learner (SML)13 
approach, and observed a marginal improvement in performance (BAC=0.693) over the best 
performing individual team (BAC=0.688) and an ensemble of any number of randomly 
chosen models (Figure 2D). In SC2, SML ensembles including poorly performing models 
can achieve > 0.63 BAC.  

3. Increasing performance using biologically meaningful features 
Top performing teams (DMIS, NAD, and Y Guan) filtered cell line molecular features based 
on a priori cancer drivers (see Methods). These teams also consolidated pharmacological 
and/or functional pathway information associated with the molecular drug target, enabling 
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one drug’s model to learn from data generated for another drug with the same target (Y 
Guan16 and NAD14,15 16).  
 
To analyze each feature type’s importance, particularly whether incorporating molecular 
features and chemical/biological knowledge can increase prediction accuracy, we re-
engineered the DMIS and NAD models to use only cell line and drug labels as input features 
in SC1B (Figure 3, see Methods). Using these models as baseline predictors, we were then 
able to iteratively substitute or add specific molecular features or external data sources (e.g. 
pathway/network information) to assess their importance in improving prediction (Figure 
3A,B). Surprisingly high primary metrics were found for the baseline model (0.32, Figure 3A) 
highlighting that drug and cell line labels alone hold predictive information. Drug target was 
the only feature to improve performance when swapped with drug or cell line labels (Figure 
3A, P=0.012), and removing both drug label and target resulted in the highest performance 
drop (-0.17, Figure 3B).  This result highlights the predictive value of the transferrable 
biological information encoded within drug target that is not available from unique drug 
labels. Mutational and copy number variation (CNV) data can similarly encode cell line label. 
However, where mutation data improved performance when replacing cell line label, 
replacement with CNV decreased performance significantly (Figure 3A, P=8.8 x 10-6). 
Importantly, in all cases additional feature data increased performance when added to the 
baseline model, confirming that addition of biologically meaningful information truly adds to 
the model performance (Figure 3A, P=0.009, 0.009, 0.002, 0.008, 0.021 adding drug target, 
3 different pathways based and mutation features respectively). Ensembles of different 
feature sets improved prediction most when collectively increasing coverage of biological 
(pathway) complexity, leading to substantial increases in model performance (Figure 3A, 
P=1.2 x 10-6). 

4. Network connectivity of drug targets influences predictability. 
While a global performance metric applied to all cell-lines and drug combinations provides a 
broad assessment of model prediction accuracy, we hypothesize that some models may be 
optimized for certain sub-classes of combinations and/or tumor types. We assessed the 
Pearson correlation between predicted and observed synergy scores for each combination 
in SC1A/B, and clustered teams by correlation of performance across combinations. Of the 
118 combinations that had observed synergy scores >20 in more than one cell line, we 
identified 22 combinations predicted poorly by every participant (Figure 4A, see Methods), 
and over 50 combinations were defined as well predicted across all teams.  
 
Surprisingly, neither the training data size per combination nor experimental quality showed 
notable difference between these universally poor and well predicted combinations (Supp. 
Fig. 5). Higher performance (average Pearson correlation 0.37 vs 0.25; P=0.008, Figure 4B) 
was observed for combinations inhibiting the PI3K/AKT pathway together with MAPK 
pathway, or apoptosis pathway with metabolism or receptor tyrosine kinases. Assessment of 
the interactions between drug targets and neighbouring proteins from OmniPath, a 
comprehensive compendium of literature-based pathway resources 17, revealed no 
differences in the somatic alteration frequency for targets or their first neighbors between the 
poorly and well predicted combinations (Supp. Fig. 6A,B).  We did observe a significant 
enrichment of well predicted combinations where both drugs’ respective targets were 
downstream of a common neighbouring protein (P=0.01, Figure 4C), and conversely, we 
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observed an enrichment of poorly predicted combinations where targets were both upstream 
(P=0.03, Figure 4C). There was no significant difference (Chi-sqr P=0.44) in OmniPath 
protein network distance between targets of well and poorly predicted combinations (Figure 
4D). 

5. Algorithms from top performing teams generalize to an independent 
drug screening data set. 
We assessed the performance of top performing DREAM models on a smaller published 
screening experiment from O’Neill et al 4. O’Neill et al applied a different measure of cell 
death compared to the DREAM drug screens (Cell Titer-Glo vs Sytox Green). A similar 
correlation was observed among technical replicates in the O’Neill et al data set (rho=0.63) 
compared to the AZ-DREAM data (rho=0.56), however there was lower dispersion of 
synergy scores (Supp. Figure 2) and fewer instances of extreme synergy scores in O’Neill et 
al.  
 
Focusing on cell lines and drug combination tests (Supp. Table 1) non-overlapping between 
DREAM and O’Neill et al data, we observed that SC1A models from NAD and DMIS 
outperformed a random model for all new combinations in the O’Neill et al screen (mean R = 
0.07, P < 0.01) (Figure 5). Interestingly, no substantial performance increase was observed 
when independent model predictions were made on mutational profile from the 10 cell lines 
in common between the two datasets, nor the 30 similar combinations with similar chemical 
properties. As in the main Challenge, combining these two models led to an improved 
prediction performance (Figure 5).  

6. Biomarkers of synergy and clinical translatability 
A typical shortfall of many machine learning algorithms is the lack of feature interpretability 
and experimentally testable logic-based rules. We took two approaches to identify 
biomarkers that may be predictive of drug synergies: a direct survey of participants through 
which predictive features were nominated for each drug pair, and retrospective work 
focusing on results from two of the best performing teams NAD and DMIS to deconvolute 
features most impactful to model predictions. We focused on biomarker associations aligned 
to combinations for which the respective team had achieved a robust prediction accuracy 
(Pearson correlation > 0.5), with particular interest in the genetic biomarkers revealed 
through SC1B.  

Monotherapy predictive biomarkers increase likelihood of observing synergy. 
Although survey-submitted biomarker results varied in detail and depth (Supp. Table 2) 
common mutation and CNV markers were apparent across good predictions in SC1B, 
including EGFR, ERBB2, TP53, PTEN, PIK3CA or RB1. Synergy was commonly assigned to 
compound pairs targeting directly downstream of a mutated, amplified or over-expressed 
oncogenic driver, particularly those associated with monotherapy activity. To systematically 
test the association of monotherapy predictive biomarkers to combination synergy, we 
focused on Cancer Gene Census genes 11 for whom at least three of the 85 cell lines 
harbored genetic variants. The resulting 148 genes (45 mutated and 103 copy number 
altered) were then systematically tested for their association to monotherapy response of the 
118 compounds (averaging replicates) across the 85 cell lines. We classified “monotherapy 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 9, 2017. ; https://doi.org/10.1101/200451doi: bioRxiv preprint 

https://doi.org/10.1101/200451


 

predicted” drug combinations as those for whom predictive features include at least one 
biomarker associated to either of the respective monotherapies (see Methods). We observed 
a significantly higher likelihood that a drug combination was synergistic for monotherapy 
predicted drug pairs (36%) compared to the overall synergy rate (27%) (t-test P<4e-11, 
Figure 6A). 

Biomarker associations to drug combinations are independently reproducible. 
NAD and DMIS explored a total of 509 genomic traits after respective pre-filtering (Supp. 
Table 3) for SC1B. Features were ranked by their influence on model predictions for each of 
the well-predicted drug combinations (see Methods, Supp. Figure 7). We explored the top 5 
ranked features for each well-predicted combination and consolidated drug-target centrically, 
giving a non-redundant list of 839 feature-to-combination associations. Filtering to results 
returned by multiple teams or with network/functional similarity between biomarker and drug 
target (see Methods) left 47 associations (21 with univariate FDR <35%, Supp. Table 4). 7 of 
these associations could be mapped to independent cell lines in the O’Neil et al4 data set, 
with an overall Pearson correlation between DREAM and O’Neil effect sizes of 0.32 (Figure 
6B) showing a trend of reproducibility of synergy markers. Multiple validation criteria for 
quality and independent and in vivo reproducibility (see Methods) 4,7,8 were then applied to 
prioritize 13 feature-to-combination associations (Figure 6C, Supp. Table 3), 7 associated 
with synergy and 6 with non-synergy. 
 
Amongst the prioritized feature-to-combination associations were several genetic variants 
associated with synergistic responses to the combination of receptor tyrosine kinase (RTK) 
inhibitors with inhibitors of the downstream PI3K/AKT pathway.  Amplifications or activating 
mutations in EGFR or ERBB2 consistently predicted synergy from RTK + PI3K/AKT pathway 
inhibition across multiple independent drugs and data sets (Figure 6B and 6D).  Less direct 
relationships were also observed including combined AKT inhibition with EGFR inhibition in 
the ERBB2 mutant setting or FGFR inhibition in the EGFR mutant setting. Consistent with 
earlier observations, EGFR and ERBB2 mutations were predictive of respective 
monotherapy responses (Supp. Figure 8), indicating that off-target effects are unlikely 
despite kinase domain homology. Combinations inhibiting multiple points within the 
PI3K/AKT pathway also showed synergy in the presence of upstream activation from 
mutations in PIK3CA or deleterious events in PTEN (Figure 6B). Inhibition of the 
metalloproteinase ADAM17, known to influence RTK activity 18, also showed synergistic 
responses in a common subset of cell lines when combined with inhibitors of PI3K, AKT or 
MTOR, with a notable exception of antagonism unique to PIK3CB/D selective inhibition in 
PIK3CA mutant cell lines (Figures 6D and 6E). Amplification and activating mutations in 
Androgen Receptor (AR) were also found to be associated with antagonistic effects for 
combinations targeting AKT and several MAPKs or RTKs, particularly MAP2K and IGF1R 
inhibitors (Figure 6B).  
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Discussion 
The results of the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge 
shed important light on the best strategies and limits to predict drug synergy. By evaluating 
predictions from a large number of teams, we were able to uncover important strategies for 
predicting drug synergy from molecular and chemical traits. As with most DREAM 
Challenges, we observed that the machine learning method itself has little impact on overall 
performance, and that selective incorporation of biological knowledge can help overcome 
issues of overfitting. Aggressive pre-filtering that considers drug targets and gene relevance 
to cancer was successfully used by best performers to limit model complexity and to improve 
model generalizability. Despite the complexity of the problem, many teams achieved robust 
model performances, reaching the upper-bound of performance levels based on variability in 
experimental replicates. This was further confirmed when top performing models were 
applied to an independent data set, demonstrating robustness to assay variability, and 
context heterogeneity.  
 
For pre-clinical data analyses, biological hypothesis discovery and mechanistic 
understanding is a more directly actionable goal than predictive accuracy. Models derived in 
pre-clinical data may prove the concept of predictability, hence our emphasis in SC1B to 
show prediction with data readily retrievable from a patient. However these models are 
unlikely to translate without further training in patient data since cell line panels do not 
comprehensively represent patient tumor characteristics. That said, predictive features and 
biological rationale revealed by these models can be directly tested and used to drive further 
research. We put special emphasis on incentivizing and retrieving this information, but found 
this challenging within a competition format that focuses on performance according to an 
objective scoring metric. In addition, accumulative small effects can explain good 
performance but are difficult to capture in post-hoc analysis with univariate test statistics.  
Given that this and prior DREAM Challenges indicate the machine learning method is less 
critical to performance than selection of biological features, we strongly advocate for the use 
of learners and mechanistic models with increased interpretability. 
 
A comprehensive assessment of the predictive value of monotherapy was not completed in 
the Challenge format, in part due to initial miss-annotation of data, however retrospective 
analyses suggested it offered no significant improvement to well performing models (Supp. 
Fig. 9).  Despite minimal predictivity from monotherapy itself as a feature, biomarkers 
predictive of monotherapy response do show predictivity of combination benefit. More 
synergy is also found where both drugs target downstream of a commonly interacting 
protein.  Collectively these observations advocate for a more biologically rationalized 
approach, for example assembling a biomarker rationale by walking up- and downstream of 
the drug target to identify activated pathway components influencing monotherapy activity. 
Alternatively, more generic signatures of dynamic (e.g. transcriptional) output may first be 
used to identify a mechanistic rationale 19,20,21,22 to which causative genetic or epigenetic 
events can then be inferred and aligned as predictive features 23,24. A surprising result of our 
Challenge, however, suggested only modest improvement to prediction from inclusion of all 
data in SC1A compared to only genetics in SC1B.  
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A notable absence from the Challenge was the use of mathematical, boolean or logic based 
mechanistic pathway modelling approaches 25–29, likely due to the intensity of model 
creation. The dynamic nature of mechanistic models may offer an advantage by enabling 
consideration of the heterogeneity that exists across even apparently ‘clonal’ cell line 
populations 21. The increasing availability of published pre-derived mechanistic models for 
many cancer relevant pathways may soon make such an approach more viable. Given the 
strong benefit seen from inclusion of prior-knowledge, and as text based artificial intelligence 
technology matures, NLP and cognitive computational approaches to harness knowledge 
from world literature may also become of significant benefit. 
 
Despite the limitations of the format, we were able to extract important insights to biomarkers 
for drug combinations. Given the dominance of RTK and PI3K/AKT pathway targeting 
agents in the Challenge data, it was not surprising that these revealed some of our strongest 
combination-feature relationships. In multiple cases this aligned to a two-hit hypothesis 
targeting the activating driver with a downstream pathway component. These included 
synergies between EGFR and AKT inhibitors in the presence of activating EGFR mutations 
30, or AKT1/2 with pan-PI3K inhibitors in the presence of pathway activating mutations in 
PIK3CA or PTEN.  In some cases the biomarker rationale for AKT inhibitor synergy with RTK 
or MAPK inhibition was less direct and indicative of crosstalk and feedback signaling 
previously reported 31.  Interestingly antagonism was observed in cell lines harboring 
activating mutations of AR 32–35. Feedback signaling resulting from AKT inhibition has been 
seen to drive AR activity which in turn can lead to the activation of the MAPK cascade 35,36, 
attenuating respectively targeting drug activity. 
 
Synergy observed between ADAM17 and PI3K/AKT pathway inhibitors may work through 
independent inhibition of multiple cancer hallmarks, or via a more direct mechanism whereby 
inhibition of ADAM17 driven proteolysis and shedding of RTKs18 stabilizes and increases 
signaling through PI3K/AKT 37,38. Notably ADAM17 predominantly influences RTK’s other 
than EGFR/ERBB218, and no benefit is seen in cells with mutations in these genes. 
Interestingly ADAM17 inhibition showed a unique antagonism with PIK3CB/D selective 
inhibitors within the PIK3CA mutant setting. Reduced synergy may result from a lessened 
dependency on PI3K paralogues in the presence of constitutively activated PIK3CA, or 
reduced benefit from ADAM17 loss in the extreme luminal/epithelial physiology of PIK3CA 
mutants. The apparent antagonism, however, suggests feedback following PIK3CB/D 
inhibition enhances mutant PIK3CA expression/activity. Indeed PIK3CB inhibition has been 
shown to result in elevated expression and activity of PIK3CA 39, and may also relieve the 
inhibitory effects of substrate competition or dimerization between PIK3CA and PIK3CB/D. 
 
Looking forward, future Challenges should further address the question of how to optimize 
translation of preclinical results into the clinic 40.  Where this Challenge addressed prediction 
of synergy for known drug combinations, an ability to predict truly novel beneficial drug 
combinations should also be explored. Furthermore the space of therapeutic combinations 
should be extended to include >2 drugs, covering targets in independent cell types such as 
subclonal tumor cell populations or cells of the tumor microenvironment and immune 
system3.  These approaches can be complemented by adaptive and sequential strategies 
reactive to monitoring of the patient tumor and physiology. Success in these areas will be 
dependent on the availability and access to large-scale data needed for model development 
and validation. Public-private partnerships - as exemplified by this Challenge and the 
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generosity of AstraZeneca to share their private data with the research community - will be 
critical to future efforts. We believe that the pharmaceutical and biotech industry will greatly 
benefit from these pre-competitive collaborations that accelerate basic research insights, 
and their translation into the clinic.  
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Online Methods 
Drug combinations screening 
Cell suspensions are counted using a haemocytometer and cells are re-suspended in full 
growth medium containing Pen/Strep to a final density for different cell line densities and for 
different seeding densities into 384 well cell culture plate. A volume of cells as determined by 
cell count and dependent on cell type was added to each well of a Greiner 384-well plate 
using a Multidrop Combi liquid handler and then incubated at 37C and 5% CO2 overnight in 
a rotating incubator. After seeding, plates were shaken to distribute the cells more evenly at 
the bottom of the wells and left to stand on the bench for 1hr to allow even settling of cells. 
All plates were dosed with compounds solubilized in DMSO or PBS, or DMSO alone to 
provide comparable treatment and max control wells. Plates were dosed with compounds or 
DMSO only on an automated ECHO 555 acoustic reformatting system using the 
preconfigured DMSO and Aqueous calibration with DMSO normalized at final concentration 
of 0.14%v/v . After 5 days of incubation 5ul of 2uM Sytox Green working solution was added 
to each well of the 384-well plates (0.133uM final concentration) and the plates incubated for 
1hr at room temperature. After incubation plates were read by the Acumen laser scanner to 
detect the number of Sytox Green stained cells. The total fluorescent intensity across the 
well was then read and the number of dead cells calculated by dividing this total 
fluorescence by the fluorescence of a single cell. The plates were re-read on the Acumen to 
give a total cell count. A live cell count was then determined by subtracting the dead cell 
count from the total cell count.  

Quantifying combination synergy and antagonism 
Monotherapy dose-responses of each drug in a combination was modeled as a sigmoidal 
curve and fitted to a classical Hill equation. In order to identify synergy or antagonism, an 
additive effect was first derived based on single agent dose-response curves using the 
Loewe model (Fitzgerald 2006; Geary 2013). The Loewe model relies on the isobole 
equation which was solved numerically for all drug concentration values in order to calculate  
A(a,b) and then derive S(a,b)=E(a,b)-A(a,b). the synergy distribution S(a,b) was summarized 
d by integrating S(a,b) in logarithmic concentration space, what we called total synergy using 
Combenefit v1.31 41 

Molecular characterisation 
The 85 cell lines were molecularly characterized, including: 

1. Mutations from whole exome sequencing with Illumina HiSeq 2000 Agilent 
SureSelect (EGAS00001000978) 

2. Copy number variants from Affymetrix SNP6.0 microarrays (EGAS00001000978) 
3. Gene expression from Affymetrix Human Genome U219 array plates (E-MTAB-3610) 
4. DNA methylation from Infinium HumanMethylation450 v1.2 BeadChip (GSE68379) 

 
Mutations - Mutations were called with CAVEMAN 42 and PINDEL 43 as reported in 11. 
Variants were provided without further filtering, including putative passenger mutations, 
germline variants and potential cell line artefacts, which are in total 75,281 mutations in 85 
cell lines.  
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Copy number events - Copy number variants (CNVs) are called with the PICNIC 44 
algorithm using the human genome build 38 as the reference. CNVs might be wild type, 
deletion or amplification of certain segments in a chromosome. One or multiple genes can 
fall within such segments. We reported copy number for the major and minor allele on gene 
and segment level. 
 
Gene expression - Gene expression was processed as described in 11 including Robust 
Multi-array Average (RMA) normalization with the R-package ‘affy’ (Gautier, Cope, Bolstad, 
& Irizarry, 2004). Gene expression for 83 cell lines across 17,419 genes (HGNC labels) was 
reported; no expression was available for MDA-MB-175-VII and NCI-H1437.  
 
DNA methylation - We reported for 82 cell lines the beta and M values 45 for 287,450 
probes; no methylation was available for the cell lines SW620, KMS-11 and MDA-MB-175-
VII. In an additional processing step, CpG sites were compressed to CpG ilse with the 
definition from UCSC genome browser 46, resulting in a total of 26,313 CpG ilse based on 
either M or beta values. 

Drug properties 
The identity of all compounds was anonymized, but for all agents the putative targets are 
revealed. The gene names of the protein targets are listed with ’*’ denoting any character if 
the target is a protein family. Furthermore, for 58 compounds the Molecular weight, H-bond 
acceptors, H-bond donors, calculated octanol-water partition coefficient, Lipinski’s rule of 5, 
and their SMILES (Simplified Molecular Input Line Entry Specification) are provided. Drugs 
were grouped into pathways and biological processes manually according to their protein 
targets (Supp. Table 1). 

Challenge organization 
The Challenge consisted of 2 sub-challenges, each with multiple rounds: a leaderboard, 
validation, bonus and collaborative round. sub-challenge 1 had 4 leaderboard rounds that 
lasted 8, 6, 5, and 5 weeks, while sub-challenge 2 had 3 leaderboard rounds that lasted 12, 
7, and 5 weeks. Participants were given a leaderboard dataset to build a model and 
generate 3 prediction files per leaderboard round. Scores were returned to participants so 
that they can improve their model throughout these rounds for their one submission to the 
final round which was scored against a held-out dataset. The final round lasted for 2 weeks 
which was then followed by a 9 week bonus round and 10 week collaborative round.  

Challenge pharmacology data splits 
In sub-challenge 1, participants were asked to predict drug synergy of 167 combinations in 
the panel of 85 cell lines. The synergy data of each drug combination was partitioned into 3 
sets: a training data set (3/6-50%), a leaderboard set (1/6-16.7%), and validation set (2/6-
33%) of treated cell lines. sub-challenge 2 leveraged data for remaining 740 drug 
combinations not overlapping with those used in sub-challenge 1, although data for some of 
the same compounds (in combination with different compounds), homologous compounds 
(i.e. same target, but different chemical structure), and cell lines were included. A 
leaderboard set (370 combinations) and a final validation set (370 combinations) were 
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randomly split, which are mutually exclusive from each other as well as from sub-challenge 
1.  

Challenge Scoring Metrics 
Sub-challenge SC1, Primary Metric - The primary metric was an average weighted 
Pearson correlation (𝜌") of the predicted versus observed synergy scores across each 
individual drug combination, 𝑖. The weight for a given drug combination 𝑖 was 𝑛% − 1where 
𝑛% is the number of cell lines treated with the drug combination. This resulted in the following 
primary metric for SC1A&B, 

𝜌" = )*+,	.*/
*01

)*+,/
*01

, 

where 𝑁 = 167were the tested drug combinations. 
 
Sub-challenge SC1, Tie-Breaking Metric - The tie-breaking metric was identical to the 
primary metric except that it was applied to the subset of drug combinations that have at 
least one cell line with synergy score 𝑆6% ≥ 20in the held-out test set (𝑆6%= synergy score at 
cell line c and drug combination i). Neither the subset of drug combinations nor its size (𝑁 =
118) was revealed to participants prior to final evaluation.  
 
Sub-challenge SC2, Primary Metric - The primary metric was a sequential three-way 
ANOVA, which tested the separation of held-out synergy scores by predicted synergy (= 1) 
and predicted non-synergy (= 0). In the sequential three-way ANOVA (type 1), we controlled 
for systematic drug and cell line effects, and evaluated variance explained by a given team’s 
synergy predictions. We define the primary metric as  

𝑆𝐴	 = 	−𝑠𝑔𝑛	×𝑙𝑜𝑔,A(𝑝), 
where 𝑠𝑔𝑛 is the sign of the effect size (positive or negative separation by prediction), and𝑝 
is the p-value (F-statistic) computed from the ANOVA distinguishing predicted synergy (= 1) 
from predicted non-synergy (= 0) across all experimentally measured synergy scores.  
 
Sub-challenge SC2, Tie-Breaking Metric - As the tie-breaking metric, we used balanced 
accuracy (BAC) using discretized synergy scores 𝑆6% ≥ 20	  
 
Applying the Tie-Breaking Metric - In each sub-challenge, we estimated a Bayes Factor 
(BF) using a paired bootstrapped approach to determine whether a team’s score was 
statistically indistinguishable from another. In the event that a team’s scores were 
determined to be statistically equivalent, we then applied the tie-breaking metric. To estimate 
the BF, we sample with replacement from the M observations of the given sub-challenge and 
computing the primary metric (pm) for each team 1000 times. For a given team, T, 𝐾F was 
computed by 

𝐾F =
𝑝𝑚F,% 	< 	 𝑝𝑚JKLM,%

,AAA
%N, 	

𝑝𝑚F,% 	≥ 	 𝑝𝑚JKLM,%
,AAA
%N, 	

 

Where 𝑝𝑚JKLM,% is the bootstrapped primary metric at iteration i for the team with the highest 
primary metric (non-bootstrapped).  
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Assessing performance of individual combinations 
Combinations defined as poorly predicted had an average predicted vs observed Pearson 
correlation across teams in the range seen with a random predictor (-0.25 and 0.25; Supp. 
Fig 8). In contrast, well predicted combinations had an average Pearson correlation across 
teams of above 0.5.  
 
Independent validation on O'Neil et al Merck screen 
In order to assess the utility of features and the predictability of the learning algorithms in 
new contexts, we provided the participants an independent large-scale oncology 
combination screen published recently 4. The O'Neil et al dataset consists of 22,737 
experimental endpoints covering 583 doublet combinations across 39 diverse cancer cell 
lines. 38 experimental compounds and approved drugs were included in this combination 
screen using a 4-by-4 dosing regimen. Raw cell viability measures for each combination 
experiment were processed through Combenefit 41 and dose response surfaces were tested 
against the Loewe synergy model (same as in the Challenge). While there are 6 approved 
drugs, 49 targets, and 10 cell lines in common between the Challenge and O'Neil et al 
datasets, the total number of exact experiments (Compound A – Compound B – Cell line) 
overlapping is below 100, giving the participants a highly independent validation set for their 
prediction algorithms. This information was provided to best performing teams in the 
Challenge, along with a dictionary of curated chemical structures and putative targets for 
each. Prediction models were trained on the released Challenge dataset and made synergy 
score predictions on the O'Neil et al dataset. Metrics for SC1 and SC2 were used to assess 
prediction performance.  
 
Individual Prediction Models 
Full description and implementation of models used by teams in the final submission to 
DREAM can be downloaded from:  
www.Synapse.org/AstraZeneca_Sanger_Drug_Combination_Challenge_Leaderboards. Top 
performing prediction models in SC1 and SC2 made use of genetic features relating to the 
gene targets of the drugs. Feature selection from the models enabled nomination of putative 
biomarkers for drug combination synergy (see Supplementary Material). 

Ensemble Models 
Sub-challenge 2 participant models were aggregated using two types of ensemble models 
Spectral Meta-Learner (SML) and Random Aggregation. SML choses predictions from n 
methods to aggregate based on an estimation of balanced accuracy for each method without 
using actual labels 13,47. Random Aggregation is the traditional way that people aggregate 
models by giving equal weight to each method. We randomly pick n methods (do this 10 
times) and for n methods we compute the average balanced accuracy and the error. 

Monotherapy Biomarkers and Synergy enrichment 
Monotherapy markers are the mutational status of genes, either mutated or copy number 
altered, from the pan-cancer binary event matrix (BEM) 11, which separate the monotherapy 
response into sensitive versus non-response. The likelihood of separation was estimated 
with a Wilcox Rank Sum test. From most significant monotherapy marker to lowest in 0.1 
steps of -log10(p-value), we accumulative evaluated the percentage of synergistic 
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combinations with at least one monotherapy marker. This analysis was bootstrapped 10 
times with 80% of the pharmacology data. 

Synergy Biomarkers 
A short list of putative synergy biomarkers were derived from the 5 highest ranked features 
of well predicted drug combinations (Pearson > 0.5) from the two best performers NAD and 
DMIS. Features were ranked based on their feature weight or importance for given well 
predicting model. This gene-to-combination short list, was filtered for associations predicted 
by both teams, or genes biological related to the drug target defined as either the gene being 
the target itself, a short distance to it in OmniPath signaling network (2 molecules up- or 
downstream) or GO term similarity 48 larger than 0.7. This resulted in a list of 47 gene-to-
combination associations that we further studied. A gene within this list is considered mutant 
if it was deleted, amplified (more than 7 copies) or mutated in any sense, resulting in an 
extended BEM 11. We calculated the p-value for each suggested association with an ANOVA 
correcting for tissue of origin and multiple hypothesis testing via Benjamini Hochberg. The 
effect sizes is the mean difference in synergy score between mutant and wild type cell lines. 
 
For external validation of those putative biomarkers of synergy, we focused on drug 
combinations in O’Neil et al. 2016 4, ALMANAC 8 and additional experimental data from 
AstraZeneca (supplemental table 3). We validated biomarkers in two different contexts, (i) 
for cell lines overlapping with DREAM, considered as biological replicates, and (ii) cells non-
overlapping for predictions on novel cell lines.  
 
Literature evidence for the shortlisted combination-biomarker associations was identified 
through PubMed search. The aim was to identify published evidence of (i) the combination-
biomarker association, (ii) the combination but not the specific biomarker, and (iii) either one 
of the targets and the biomarker association. The publications were further categorized into 
in vitro, in vivo, and preclinical studies. Publications that discuss the specific combination-
biomarker association have been highlighted in red (Supp. Table 4). In summary, synergy 
biomarker were derived from best performer models, and highlighted based external 
validation as well as literature support.  
 
Accession codes. 
Full description of generation methods provided to all participants in this Challenge can be 
downloaded from https://www.synapse.org/DrugCombinationChallenge, while full data is 
available from https://openinnovation.astrazeneca.com/data-library.html.  
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Figures 

 
Figure 1: Drug combinations and cell lines profiled. (A) Molecular characterization of the cell lines 
included genetics, epigenetics and transcriptomics. (B) Participants were encouraged to mine external 
data and pathway resources. (C) Participants were provided the putative targets and chemical 
structures for ~⅓ of cell lines to predict synergistic combinations. (D) The cell line panel contained 85 
cell lines from 6 different cancer types. (E) The drug portfolio comprised approximately half oncogenic 
signaling targeting agents, and half cytotoxic compounds of which 14 were untargeted 
chemotherapies (F) Compounds split by the putative targeted pathway. (G) Sparse data was split into 
training set, leaderboard and independent test set for sub-challenge 1 and 2 and color coded 
accordingly, see legend in panel G.  
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Figure 2: Performance of teams in the DREAM challenge. (A) Participant performance in SC1A 
and SC1B – the distribution of performance of random predictions was used to estimate a lower limit, 
and the distribution of synergy correlations between biological replicates were used to estimate the 
upper limit. (B) Participant performance ranked in sub-challenge 2 based on the primary metric, 3-way 
ANOVA. Distribution of bootstrap prediction performances for each team are shown by each boxplot 
with the dot showing their actual performance. (C) Participant performance plotted with upper and 
lower limits for SC2 based on the tie-break metric. Performance of random predictions were used to 
estimate the lower limit, and the performance of biological replicates were used to estimate the upper 
limit. (D) Ensemble models compared to the performance of individual models ranked from best to 
poorest performing in sub-challenge 2. SML is an ensemble of the best performing models based on 
estimation of their balanced accuracy. Random Aggregation is an ensemble combining a random 
combination of models. Standard error of mean represented by error bars are estimated from 10 
random splits of the data. 
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Figure 3: Feature impact. Drug target annotation is key in top performing algorithms, as is the meta 
information about variants including their functional impact and tumor driver gene status. (A) Cross 
validation based distributions of NAD primary metric of SC1B when replacing or adding drug/cell line 
label with respective features (baseline model has just drug and cell line label). *P<0.05, **P<0.01, 
and ***P<0.001 compared to baseline model (B) Heatmap of decrease in performance (average 
weighted Pearson correlation) of SC1B for DMIS support vector regression method when two 
feature types are removed at once (rows and columns).  
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Figure 4: Features of poorly and well predicted combinations. (A) Heatmap of Pearson 
correlation between observed and predicted synergy scores for 118 combinations across 73 teams 
participating in SC1A/B. Algorithms used by each team is marked in the matrix below. (B) 
Combinations of pathways targeted. Size of node is proportional to number of drugs targeting specific 
pathway and width of edges is proportional to the number of drug combinations. (C) Types of 
interactions between the nearest neighbouring gene and the two drug targets of poorly and well 
predicted combinations. Boxplots show the difference in the proportion of interactions of each type for 
poorly and well predicted combinations (t-test). (D) Proportion of poorly and well predicted 
combinations for different network distances (minimum number of interactions in the OmniPath 
shortest path) between the two targets of a drug combination.  
 
 
 

 
Figure 5: Translatability of top performing DREAM models to an independent screen by O'Neil 
et al4. Performance of 1A models for predicting synergy scores in the O'Neil et al dataset by the best 
performing teams are plotted along with distributions of predictions from the random model and 
replicate experiments. Performance of predictions are shown for (A) all experiments in the O’Neil et al 
data set, and three subsets of the data set; (B) experiments that tested same cell lines as DREAM, 
(C) tested similar drugs as in DREAM (one drug in the combination with the same target), and (D) 
tested similar combinations as in DREAM (same targets for both drugs in the combination).  
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Figure 6: Post-hoc analysis of putative synergy biomarkers. (A) Bootstrap and accumulative 
select combinations based on likelihood of one drug within combination being a monotherapy marker 
on its own. (B) Validation of biomarker predictions in new cell lines and independently screened drug 
combinations by O’Neil at al. 2016. (C) Synergy markers suggested by DMIS and NAD, when 
focusing on top weighted features from predictive models filtered for biological relatedness to drug 
targets, ‘***’=5%, ‘**’=20% and ‘*’=35% FDR. (D) Comparison of ADAM17 combined with PIK3CB/D 
against ADAM17 in combination with pan-PI3K3C inhibitor. (E) Network cartoon of PI3K signaling and 
role of ADAM17. 
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