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Many areas of research suffer from poor reproducibility. This problem is particularly acute 

in computationally intensive domains where results rely on a series of complex 

methodological decisions that are not well captured by traditional publication approaches. 

Various guidelines have emerged for achieving reproducibility, but practical implementation 

of these practices remains difficult. This is because reproducing published computational 

analyses requires installing many software tools plus associated libraries, connecting tools 

together into the complete pipeline, and specifying parameters. Here we present a suite of 

recently emerged technologies which make computational reproducibility not just possible, 

but, finally, practical in both time and effort. By combining a system for building highly 

portable packages of bioinformatics software, containerization and virtualization 

technologies for isolating reusable execution environments for these packages, and an 

integrated workflow system that automatically orchestrates the composition of these 

packages for entire pipelines, an unprecedented level of computational reproducibility can 

be achieved.  
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Reproducible computational practices are critical to continuing progress within the life sciences. 

Reproducibility assures the high quality of published research by facilitating the review process 

that involves replication and validation of results by independent investigators. Further, 

reproducibility speeds up research progress by promoting reuse and repurposing of published 

analyses to different datasets or even to other disciplines. The importance of these benefits is 

clear, and vigorous discourse in the literature over the past several years1–7  has led to 

reproducibility guidelines at the level of individual journals as well as funding agencies.  

However, achieving reproducibility on a practical, day-to-day level (and thus following these 

guidelines) still requires overcoming substantial technical challenges that are beyond the 

abilities of most life sciences researchers. There have been successful efforts aimed at addressing 

some of these challenges: Galaxy8, GenePattern9, Jupyter10, R Markdown11, and VisTrails12. These 

environments automatically record details of analyses as they progress and therefore implicitly 

make them reproducible. Yet they still fall short from achieving full reproducibility because 

they fail to preserve the full computing environment in which analyses have been performed. 

For example, consider an analysis executed on Galaxy, a Web-based scientific workbench used 

throughout the world. An analysis executed on a particular Galaxy server might include tools 

not found elsewhere, and therefore cannot be reproduced outside that server. Another example 

is a Jupyter notebook that includes tools specific to a particular platform and a distinct set of 

software libraries. There is absolutely no guarantee that such a notebook will produce the same 

results on a different computer. Here we introduce a solution that addresses all aspects of 

computational reproducibility by preserving the exact environment in which an analysis has 

been performed and enabling that environment to be recreated and used on other computing 

platforms.  

While the need for reproducibility is clear and initial guidelines are beginning to emerge, 

research practices will not change until reproducible analysis becomes fast and automated.  To 

make reproducibility practical, we have developed a three-layer technology stack composed of 

open, well-tested, and community supported components (Fig. 1). This three-layer design 

reflects steps necessary to make an analysis fully reproducible: (1) managing software 

dependencies, (2) isolating analyses from the idiosyncrasies of local computational 

environments, and (3) virtualizing entire analyses for complete portability and preservation 

against time.  
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The first step, managing software dependencies, ensures that one can obtain the exact versions 

of all software used in a given analysis. Because most software tools rely on external libraries 

and analysis workflows use multiple tools, it is necessary to record versions of multiple tools 

and libraries. Given a multitude of operating systems and local configurations, ensuring the 

consistency of analysis software is a considerable challenge. Conda (https://conda.io/), a 

powerful and robust open source package and environment manager, has been developed to 

address this issue. It is programming language and operating system independent, does not 

require administrative privileges, and provides isolated virtual execution environments. These 

features make Conda exceptionally well-suited for use on existing high-performance computing 

(HPC) environments as well as cloud infrastructure because precise control over the execution 

environment does not depend on system-level configuration or access. Conda explicitly 

supports installation of specific tool versions, even old ones, and allows the creation of 

“environments” where specific tool versions are installed and run. It is straightforward to create 

and maintain Conda package definitions, and this feature has led to rapid uptake of Conda by 

the scientific community. Leveraging Conda, Bioconda (https://Bioconda.github.io) is a 

community project dedicated to data analysis in life sciences that contains over 2,700 tool 

packages. Bioconda provides the top layer of our reproducibility stack. Bioconda packages are 

well maintained and include a testing system to ensure their quality. They are built in a minimal 

environment to allow maximum portability and are provided as compiled binaries which are 

archived, ensuring the exact executables used for an analysis can always be obtained. Conda 

environments and package management are agnostic to the underlying operating system. In 

contrast to other solutions such as Debian-Med13 or linuxbrew (http://linuxbrew.sh), Conda 

allows multiple versions of any software tool at the same time, provides isolated environments, 

and runs on all major Linux distributions, MacOS, and Windows.  

While Conda and Bioconda provide an excellent solution for packaging software components 

and their dependencies, archiving them, and recreating analysis environments, they are still 

dependent on and can be influenced by the host computer system14. An additional level of 

isolation to solve this problem is provided by containerization platforms (or, simply, containers) 

such as Docker, Singularity, or rkt. Containers are run directly on the host operating system’s 

“kernel” but encapsulate every other aspect of the runtime environment, providing a level of 

isolation that is far beyond of what Conda environments can provide. From inside a container it 

is very difficult to access other containers or the host system itself. Containers are easy to create, 
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which is a great strength of this technology. Yet it is also its Achilles heel, because the ways in 

which containers are created need to be trusted and, again, reproducible. This is why we 

generate containers automatically from Bioconda packages, and these automatically-created 

containers form the second layer of our reproducibility stack (Fig. 1). This has several 

advantages. First, container creation requires no user intervention, every container is created 

automatically and consistently using exactly the same process. A user of the container knows 

exactly what the container will include and how to use it. Second, this approach allows creation 

of large numbers of containers; in particular we automatically generate and archive a container 

for every Bioconda package. Third, this approach can easily target multiple container types. We 

currently build containers for Docker, rkt, and Singularity, and register them with Quay 

(https://quay.io). Since we build standard containers, other registries (e.g. DockerHub 15, 

BioShaDock16 or Dockstore17) can also be used. Because this container creation approach does 

not rely on the specification format of any particular system, additional container platforms and 

registries can easily be added as they become available. Finally, in addition to creating 

containers for single Bioconda packages, it is possible to automatically create containers for 

combinations of packages. This is useful when a step in an analysis workflow has multiple 

dependencies. Given any combination of packages with version, we can generate a uniquely 

named container which contains all of the required dependencies. When the combinations of 

dependencies required are known in advance these containers can be created automatically as 

well, for example we can create containers for all combinations of tools dependencies used in 

the Galaxy ToolShed (https://galaxyproject.org/toolshed)18.  

Containers provide isolated and reproducible compute environments but still depend on the 

operating system kernel and underlying hardware. An even greater isolation can be achieved 

through virtualization, which runs analysis within an emulated virtual machine (VM) with 

precisely defined hardware specifications. Virtualization, which provides the third layer of our 

reproducibility stack (Fig. 1), can be achieved via commercial clouds, on public clouds such as 

Jetstream (https://jetstream-cloud.org/), or by using virtual machine applications on a local 

computer (such as VirtualBox). While introducing this layer adds complexity and overhead, it 

provides maximal isolation, security, and resistance to time as emulated environments can be 

recreated in the future, regardless of whether the physical hardware still exists.  

To make it easy for analysis environments and workflow engines to adopt this solution, we 

have implemented it in a Python library called  galaxy-lib. Given a set of required software 
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packages and versions, galaxy-lib provides utilities to either create a Conda environment with 

the required packages available, or to run the analysis with an appropriate container. Thus, a 

workflow can be executed in which every step of the analysis runs either using a dedicated 

conda environment or an isolated container. Support for this reproducibility stack has been 

integrated into both the Galaxy platform and the Common Workflow Language reference 

implementation19. Additional isolation and reproducibility can be achieved by running in a 

virtualized or cloud environment, for example using Galaxy CloudMan20 to run Galaxy on 

Amazon or Jetstream.  

Reproducibility in computational life sciences is now truly possible. It is no longer a 

technological issue of “How do we achieve reproducibility?” Instead it is now an educational 

(or even sociological) issue of “How to make sure that the community uses existing practices?” 

In other words, how do we set a typical researcher (i.e., a graduate student or a post-doc) 

performing data analyses on the path of performing them reproducibly? While there are now 

several platforms that enable reproducibility, the technologies we describe here are both very 

general and easy to use. Thus, we offer the following recommendations: 

1. Carefully define a set of tools for a given analysis. In many cases such as variant 

discovery, DNA/Protein interactions assays, and transcriptome analyses, best practice tool 

sets have been established by consortia such as 1000 Genomes, ENCODE, and 

modENCODE. In other, less common cases, selection of appropriate tools must be done by 

consulting published studies, Q&A sites, and trusted, community supported blogs. There is 

no escape from this ‒ methodological decision are as much a part of research as deciding on 

what cell lines to use or how to fine tune a qPCR assay. To put this discussion on a practical 

footing, consider the simplest possible analysis of RNAseq data in which one needs to map 

reads against a genome, assemble transcripts, and estimate their abundance. The most basic 

set of tool for an analysis like this might include Trimmomatic21 to trim the reads, HISAT222 

to map the reads to a genome, StringTie23 to assemble and quantify transcripts, and 

Ballgown24 to perform differential expression testing. 

2. Use tools from the Bioconda registry and help it grow.  The registry at 

https://Bioconda.github.io provides the list of available packages. The three tools from our 

example are all available in Bioconda and can be used directly (Fig. 1). If a tool is not already 

available, one can either write a Bioconda recipe for the tool in question or request the tool 

to be wrapped by the Bioconda community by opening an issue at the project’s GitHub 

5 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint 

https://paperpile.com/c/fsf71K/c6aC
https://paperpile.com/c/fsf71K/UiIG
https://paperpile.com/c/fsf71K/JCtv
https://paperpile.com/c/fsf71K/BZcy
https://paperpile.com/c/fsf71K/1f8n
https://paperpile.com/c/fsf71K/5ZAk
https://bioconda.github.io/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/


page. Note that using Bioconda-enabled tools is not just “good behavior for enabling 

reproducibility”. It is the easiest way to use these tools. First, it makes installation easy. 

Conda automatically obtains and installs all necessary dependencies, so the only 

requirement for installing, say, StringTie is opening a shell and typing “conda install 

stringtie”.  Second, it makes analyses reproducible. Simply providing the output of 

“conda env export” with a manuscript allows anyone to easily obtain the exact version of 

the software used as well as all its dependencies.  

3. Adopt containers to guarantee consistency of results. Analysis tools installed with 

Bioconda can be used directly. However the consistency of results (ability to guarantee that 

the same version of a tool gives exactly the same output every time it is run on a given input 

dataset) can be influenced by local computational environment. Because every Bioconda 

package is automatically packaged as a container the tools can be run from within the 

container in isolation providing a guarantee of result consistency. An example of this 

process for our RNA-seq example is shown in Fig. 1.  As container technologies become 

widely available, we see this as the preferred way to use analysis tools in the majority of 

research scenarios. 

4. Use virtualization to make analyses “resistant to time”. Containers still depend on the host 

operating system, which will become outdated with time along with the hardware. To make 

an analysis “time proof” it is possible to use virtualization by encapsulating all tools, their 

dependencies, and operating system with a virtual machine image (VM).  Virtualization has 

a higher barrier to entry and VMs alone have been criticized as being a "black box". 

However virtualization enables time independence. Thus we recommend at least recording 

exactly the OS and hardware environment used for analysis so it can be recreated using VM 

technologies in the future. Executing analysis within a archived VM will always afford 

maximum reproducibility, and this will become easier as more compute resources move 

towards cloud-style operations. 

In conclusion, we are reaching the point where not performing data analyses reproducibly 

becomes unjustifiable and inexcusable.  Aside from hardening the software, the main challenges 

ahead are in education and outreach that will be critical for fostering the next generation of 

researchers. There are also substantial “cultural” differences among research fields in the degree 

of software openness that will need to be tackled. For example, genomics (which the authors 

represent and therefore are biased toward) has traditionally been quick in adopting new 
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paradigms, while, for example, proteomics has been much slower25. We believe that this work is 

the first step toward making computational life sciences as robust as well established 

quantitative and engineering disciplines. After all ‒ our health depends on it! 
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Figure 1. Software stack of interconnected technologies  that enables  complete computational 

reproducibility. It uses  an example of the most basic RNA-seq analysis  involving four tools. Our stack 

includes  three components: (1) the cross-platform package manager Conda (https://conda.io) for installing 

analysis  tools  across  operating systems, including virtualized environments  that include all tools  and 

dependencies  at  specified  versions  for performing a computational analysis; (2) lightweight software 

containers  such as  Docker or Singularity for using virtual environments  and tool installations  across 

different computing clusters  both local and in the cloud; and (3) Hardware virtualization to achieve 

complete isolation and reproducibility. We have implemented this  stack in the Galaxy scientific 

workbench (https://galaxyproject.org), enabling any Galaxy server to easily and automatically install all 

requirements  for each Galaxy analysis  workflow. This  stack is  also integrated into the Common 

Workflow Language (CWL; http://www.commonwl.org) reference implementation. Integration of our 

reproducibility stack into Galaxy and CWL demonstrates, for the first time, how analysis  workflows  can 

be shared, rerun, and reproduced across  platforms  with no manual setup.  
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