

Practical computational reproducibility in the life sciences

Bjorn Gruning1, John Chilton2, Johannes Köster3, Ryan Dale4, Jeremy Goecks5, Rolf Backofen6,
Anton Nekrutenko7, James Taylor8.

1Albert-Ludwigs-University, Freiburg Germany. orcid.org/0000-0002-3079-6586.
2The Pennsylvania State University, University Park PA USA. orcid.org/0000-0002-6794-0756.
3University of Duisburg-Essen, Essen Germany. orcid.org/0000-0001-9818-9320.
4National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda MD USA. orcid.org/0000-0003-2664-3744
5Oregon Health & Sciences University, Portland Oregon USA. orcid.org/0000-0002-4583-5226
6Albert-Ludwigs-University, Freiburg Germany. orcid.org/0000-0001-8231-3323
7The Pennsylvania State University, University Park PA USA. orcid.org/0000-0002-5987-8032
8Johns Hopkins University, Baltimore MD USA. orcid.org/0000-0003-4285-6985.

Correspondence should be addressed to JT (james@taylorlab.org), AN (anton@nekrut.org), and RB

(backofen@informatik.uni-freiburg.de).

Many areas of research suffer from poor reproducibility. This problem is particularly acute

in computationally intensive domains where results rely on a series of complex

methodological decisions that are not well captured by traditional publication approaches.

Various guidelines have emerged for achieving reproducibility, but practical implementation

of these practices remains difficult. This is because reproducing published computational

analyses requires installing many software tools plus associated libraries, connecting tools

together into the complete pipeline, and specifying parameters. Here we present a suite of

recently emerged technologies which make computational reproducibility not just possible,

but, finally, practical in both time and effort. By combining a system for building highly

portable packages of bioinformatics software, containerization and virtualization

technologies for isolating reusable execution environments for these packages, and an

integrated workflow system that automatically orchestrates the composition of these

packages for entire pipelines, an unprecedented level of computational reproducibility can

be achieved.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

Reproducible computational practices are critical to continuing progress within the life sciences.

Reproducibility assures the high quality of published research by facilitating the review process

that involves replication and validation of results by independent investigators. Further,

reproducibility speeds up research progress by promoting reuse and repurposing of published

analyses to different datasets or even to other disciplines. The importance of these benefits is

clear, and vigorous discourse in the literature over the past several years1–7 has led to

reproducibility guidelines at the level of individual journals as well as funding agencies.

However, achieving reproducibility on a practical, day-to-day level (and thus following these

guidelines) still requires overcoming substantial technical challenges that are beyond the

abilities of most life sciences researchers. There have been successful efforts aimed at addressing

some of these challenges: Galaxy8, GenePattern9, Jupyter10, R Markdown11, and VisTrails12. These

environments automatically record details of analyses as they progress and therefore implicitly

make them reproducible. Yet they still fall short from achieving full reproducibility because

they fail to preserve the full computing environment in which analyses have been performed.

For example, consider an analysis executed on Galaxy, a Web-based scientific workbench used

throughout the world. An analysis executed on a particular Galaxy server might include tools

not found elsewhere, and therefore cannot be reproduced outside that server. Another example

is a Jupyter notebook that includes tools specific to a particular platform and a distinct set of

software libraries. There is absolutely no guarantee that such a notebook will produce the same

results on a different computer. Here we introduce a solution that addresses all aspects of

computational reproducibility by preserving the exact environment in which an analysis has

been performed and enabling that environment to be recreated and used on other computing

platforms.

While the need for reproducibility is clear and initial guidelines are beginning to emerge,

research practices will not change until reproducible analysis becomes fast and automated. To

make reproducibility practical, we have developed a three-layer technology stack composed of

open, well-tested, and community supported components (Fig. 1). This three-layer design

reflects steps necessary to make an analysis fully reproducible: (1) managing software

dependencies, (2) isolating analyses from the idiosyncrasies of local computational

environments, and (3) virtualizing entire analyses for complete portability and preservation

against time.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/aTs9+bdKH+BVy9+rhFV+oWyu+h4r2+gnpR
https://paperpile.com/c/fsf71K/AD0DK
https://paperpile.com/c/fsf71K/yWCHG
https://paperpile.com/c/fsf71K/j5UmG
https://paperpile.com/c/fsf71K/GcpCV
https://paperpile.com/c/fsf71K/zL7LJ
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

The first step, managing software dependencies, ensures that one can obtain the exact versions

of all software used in a given analysis. Because most software tools rely on external libraries

and analysis workflows use multiple tools, it is necessary to record versions of multiple tools

and libraries. Given a multitude of operating systems and local configurations, ensuring the

consistency of analysis software is a considerable challenge. Conda (https://conda.io/), a

powerful and robust open source package and environment manager, has been developed to

address this issue. It is programming language and operating system independent, does not

require administrative privileges, and provides isolated virtual execution environments. These

features make Conda exceptionally well-suited for use on existing high-performance computing

(HPC) environments as well as cloud infrastructure because precise control over the execution

environment does not depend on system-level configuration or access. Conda explicitly

supports installation of specific tool versions, even old ones, and allows the creation of

“environments” where specific tool versions are installed and run. It is straightforward to create

and maintain Conda package definitions, and this feature has led to rapid uptake of Conda by

the scientific community. Leveraging Conda, Bioconda (https://Bioconda.github.io) is a

community project dedicated to data analysis in life sciences that contains over 2,700 tool

packages. Bioconda provides the top layer of our reproducibility stack. Bioconda packages are

well maintained and include a testing system to ensure their quality. They are built in a minimal

environment to allow maximum portability and are provided as compiled binaries which are

archived, ensuring the exact executables used for an analysis can always be obtained. Conda

environments and package management are agnostic to the underlying operating system. In

contrast to other solutions such as Debian-Med13 or linuxbrew (http://linuxbrew.sh), Conda

allows multiple versions of any software tool at the same time, provides isolated environments,

and runs on all major Linux distributions, MacOS, and Windows.

While Conda and Bioconda provide an excellent solution for packaging software components

and their dependencies, archiving them, and recreating analysis environments, they are still

dependent on and can be influenced by the host computer system14. An additional level of

isolation to solve this problem is provided by containerization platforms (or, simply, containers)

such as Docker, Singularity, or rkt. Containers are run directly on the host operating system’s

“kernel” but encapsulate every other aspect of the runtime environment, providing a level of

isolation that is far beyond of what Conda environments can provide. From inside a container it

is very difficult to access other containers or the host system itself. Containers are easy to create,

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://conda.io/
https://bioconda.github.io/
https://paperpile.com/c/fsf71K/HKG7
http://linuxbrew.sh/
https://paperpile.com/c/fsf71K/YMW5
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

which is a great strength of this technology. Yet it is also its Achilles heel, because the ways in

which containers are created need to be trusted and, again, reproducible. This is why we

generate containers automatically from Bioconda packages, and these automatically-created

containers form the second layer of our reproducibility stack (Fig. 1). This has several

advantages. First, container creation requires no user intervention, every container is created

automatically and consistently using exactly the same process. A user of the container knows

exactly what the container will include and how to use it. Second, this approach allows creation

of large numbers of containers; in particular we automatically generate and archive a container

for every Bioconda package. Third, this approach can easily target multiple container types. We

currently build containers for Docker, rkt, and Singularity, and register them with Quay

(https://quay.io). Since we build standard containers, other registries (e.g. DockerHub 15,

BioShaDock16 or Dockstore17) can also be used. Because this container creation approach does

not rely on the specification format of any particular system, additional container platforms and

registries can easily be added as they become available. Finally, in addition to creating

containers for single Bioconda packages, it is possible to automatically create containers for

combinations of packages. This is useful when a step in an analysis workflow has multiple

dependencies. Given any combination of packages with version, we can generate a uniquely

named container which contains all of the required dependencies. When the combinations of

dependencies required are known in advance these containers can be created automatically as

well, for example we can create containers for all combinations of tools dependencies used in

the Galaxy ToolShed (https://galaxyproject.org/toolshed)18.

Containers provide isolated and reproducible compute environments but still depend on the

operating system kernel and underlying hardware. An even greater isolation can be achieved

through virtualization, which runs analysis within an emulated virtual machine (VM) with

precisely defined hardware specifications. Virtualization, which provides the third layer of our

reproducibility stack (Fig. 1), can be achieved via commercial clouds, on public clouds such as

Jetstream (https://jetstream-cloud.org/), or by using virtual machine applications on a local

computer (such as VirtualBox). While introducing this layer adds complexity and overhead, it

provides maximal isolation, security, and resistance to time as emulated environments can be

recreated in the future, regardless of whether the physical hardware still exists.

To make it easy for analysis environments and workflow engines to adopt this solution, we

have implemented it in a Python library called galaxy-lib. Given a set of required software

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://quay.io/
https://paperpile.com/c/fsf71K/lDhj
https://paperpile.com/c/fsf71K/cUdP
https://paperpile.com/c/fsf71K/21OZ
https://galaxyproject.org/toolshed/
https://paperpile.com/c/fsf71K/q6YL
https://jetstream-cloud.org/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

packages and versions, galaxy-lib provides utilities to either create a Conda environment with

the required packages available, or to run the analysis with an appropriate container. Thus, a

workflow can be executed in which every step of the analysis runs either using a dedicated

conda environment or an isolated container. Support for this reproducibility stack has been

integrated into both the Galaxy platform and the Common Workflow Language reference

implementation19. Additional isolation and reproducibility can be achieved by running in a

virtualized or cloud environment, for example using Galaxy CloudMan20 to run Galaxy on

Amazon or Jetstream.

Reproducibility in computational life sciences is now truly possible. It is no longer a

technological issue of “How do we achieve reproducibility?” Instead it is now an educational

(or even sociological) issue of “How to make sure that the community uses existing practices?”

In other words, how do we set a typical researcher (i.e., a graduate student or a post-doc)

performing data analyses on the path of performing them reproducibly? While there are now

several platforms that enable reproducibility, the technologies we describe here are both very

general and easy to use. Thus, we offer the following recommendations:

1. Carefully define a set of tools for a given analysis. In many cases such as variant

discovery, DNA/Protein interactions assays, and transcriptome analyses, best practice tool

sets have been established by consortia such as 1000 Genomes, ENCODE, and

modENCODE. In other, less common cases, selection of appropriate tools must be done by

consulting published studies, Q&A sites, and trusted, community supported blogs. There is

no escape from this ‒ methodological decision are as much a part of research as deciding on

what cell lines to use or how to fine tune a qPCR assay. To put this discussion on a practical

footing, consider the simplest possible analysis of RNAseq data in which one needs to map

reads against a genome, assemble transcripts, and estimate their abundance. The most basic

set of tool for an analysis like this might include Trimmomatic21 to trim the reads, HISAT222

to map the reads to a genome, StringTie23 to assemble and quantify transcripts, and

Ballgown24 to perform differential expression testing.

2. Use tools from the Bioconda registry and help it grow. The registry at

https://Bioconda.github.io provides the list of available packages. The three tools from our

example are all available in Bioconda and can be used directly (Fig. 1). If a tool is not already

available, one can either write a Bioconda recipe for the tool in question or request the tool

to be wrapped by the Bioconda community by opening an issue at the project’s GitHub

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/c6aC
https://paperpile.com/c/fsf71K/UiIG
https://paperpile.com/c/fsf71K/JCtv
https://paperpile.com/c/fsf71K/BZcy
https://paperpile.com/c/fsf71K/1f8n
https://paperpile.com/c/fsf71K/5ZAk
https://bioconda.github.io/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

page. Note that using Bioconda-enabled tools is not just “good behavior for enabling

reproducibility”. It is the easiest way to use these tools. First, it makes installation easy.

Conda automatically obtains and installs all necessary dependencies, so the only

requirement for installing, say, StringTie is opening a shell and typing “conda install

stringtie”. Second, it makes analyses reproducible. Simply providing the output of

“conda env export” with a manuscript allows anyone to easily obtain the exact version of

the software used as well as all its dependencies.

3. Adopt containers to guarantee consistency of results. Analysis tools installed with

Bioconda can be used directly. However the consistency of results (ability to guarantee that

the same version of a tool gives exactly the same output every time it is run on a given input

dataset) can be influenced by local computational environment. Because every Bioconda

package is automatically packaged as a container the tools can be run from within the

container in isolation providing a guarantee of result consistency. An example of this

process for our RNA-seq example is shown in Fig. 1. As container technologies become

widely available, we see this as the preferred way to use analysis tools in the majority of

research scenarios.

4. Use virtualization to make analyses “resistant to time”. Containers still depend on the host

operating system, which will become outdated with time along with the hardware. To make

an analysis “time proof” it is possible to use virtualization by encapsulating all tools, their

dependencies, and operating system with a virtual machine image (VM). Virtualization has

a higher barrier to entry and VMs alone have been criticized as being a "black box".

However virtualization enables time independence. Thus we recommend at least recording

exactly the OS and hardware environment used for analysis so it can be recreated using VM

technologies in the future. Executing analysis within a archived VM will always afford

maximum reproducibility, and this will become easier as more compute resources move

towards cloud-style operations.

In conclusion, we are reaching the point where not performing data analyses reproducibly

becomes unjustifiable and inexcusable. Aside from hardening the software, the main challenges

ahead are in education and outreach that will be critical for fostering the next generation of

researchers. There are also substantial “cultural” differences among research fields in the degree

of software openness that will need to be tackled. For example, genomics (which the authors

represent and therefore are biased toward) has traditionally been quick in adopting new

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

paradigms, while, for example, proteomics has been much slower25. We believe that this work is

the first step toward making computational life sciences as robust as well established

quantitative and engineering disciplines. After all ‒ our health depends on it!

Acknowledgements

The authors are grateful to BioConda, BioContainers, and Galaxy communities as without these

resources this work would not be possible. Nate Coraor provided critical advice on the project

and edited the manuscript. This project was supported by NIH Grants U41 HG006620 and R01

AI134384-01 as well as NSF Grant 1661497 to JT, AN, and JG.

References

1. Nekrutenko, A. & Taylor, J. Next-generation sequencing data interpretation: enhancing

reproducibility and accessibility. Nature Publishing Group 13, 667–672 (2012).

2. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

3. McNutt, M. Reproducibility. Science 343, 229 (2014).

4. Glenn Begley, C. Reproducibility: Six red flags for suspect work. Nature 497, 433–434 (2013).

5. Begley, C. G., Buchan, A. M. & Dirnagl, U. Robust research: Institutions must do their part

for reproducibility. Nature 525, 25–27 (2015).

6. Leek, J. T. & Peng, R. D. Opinion: Reproducible research can still be wrong: adopting a

prevention approach. Proc. Natl. Acad. Sci. U. S. A. 112, 1645–1646 (2015).

7. Leek, J. T. & Peng, R. D. Statistics. What is the question? Science 347, 1314–1315 (2015).

8. Goecks, J., Nekrutenko, A., Taylor, J. & Team, G. Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the life

sciences. Genome Biol. 11, R86 (2010).

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://paperpile.com/c/fsf71K/O4pw
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

9. Reich, M., Liefeld, T., Gould, J., Lerner, J. & Tamayo, P. GenePattern 2.0 - Nature Genetics.

Nat. Genet. (2006).

10. Kluyver, T. et al. Jupyter Notebooks-a publishing format for reproducible computational

workflows. in ELPUB 87–90 (books.google.com, 2016).

11. Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L. & Horton, N. J. R Markdown:

Integrating A Reproducible Analysis Tool into Introductory Statistics. arXiv [stat.OT]

(2014).

12. Scheidegger, C. E., Vo, H. T., Koop, D., Freire, J. & Silva, C. T. Querying and Re-using

Workflows with VsTrails. in Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data 1251–1254 (ACM, 2008).

13. Möller, S. et al. Community-driven computational biology with Debian Linux. BMC

Bioinformatics 11 Suppl 12, S5 (2010).

14. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is

automated using continuous analysis. Nat. Biotechnol. 35, 342–346 (2017).

15. Cook, J. Docker Hub. in Docker for Data Science 103–118 (Apress, Berkeley, CA, 2017).

16. Moreews, F. et al. BioShaDock: a community driven bioinformatics shared Docker-based

tools registry. F1000Res. 4, 1443 (2015).

17. O’Connor, B. D. et al. The Dockstore: enabling modular, community-focused sharing of

Docker-based genomics tools and workflows. F1000Res. 6, 52 (2017).

18. Blankenberg, D. et al. Dissemination of scientific software with Galaxy ToolShed. Genome

Biol. 15, 403 (2014).

19. Amstutz, P. et al. Common Workflow Language, v1.0. (2016).

doi:10.6084/m9.figshare.3115156.v2

20. Afgan, E. et al. Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/c6aC
http://paperpile.com/b/fsf71K/c6aC
http://paperpile.com/b/fsf71K/c6aC
http://paperpile.com/b/fsf71K/c6aC
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

11, S4 (2010).

21. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics 30, 2114–2120 (2014).

22. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory

requirements. Nat. Methods 1–6 (2015).

23. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from

RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

24. Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and

expression analysis. Nat. Biotechnol. 33, 243–246 (2015).

25. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source

software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

Figure 1. Software stack of interconnected technologies that enables complete computational

reproducibility. It uses an example of the most basic RNA-seq analysis involving four tools. Our stack

includes three components: (1) the cross-platform package manager Conda (https://conda.io) for installing

analysis tools across operating systems, including virtualized environments that include all tools and

dependencies at specified versions for performing a computational analysis; (2) lightweight software

containers such as Docker or Singularity for using virtual environments and tool installations across

different computing clusters both local and in the cloud; and (3) Hardware virtualization to achieve

complete isolation and reproducibility. We have implemented this stack in the Galaxy scientific

workbench (https://galaxyproject.org), enabling any Galaxy server to easily and automatically install all

requirements for each Galaxy analysis workflow. This stack is also integrated into the Common

Workflow Language (CWL; http://www.commonwl.org) reference implementation. Integration of our

reproducibility stack into Galaxy and CWL demonstrates, for the first time, how analysis workflows can

be shared, rerun, and reproduced across platforms with no manual setup.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/200683doi: bioRxiv preprint

https://conda.io/
https://galaxyproject.org/
http://www.commonwl.org/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

O
S

VE
N

V
(C

on
da

)

Co
nt

ai
ne

r

VM

O
bt

ai
n

so
ur

ce
 c

od
e

of
 th

e
to

ol
 a

nd
 it

s
de

pe
nd

en
ci

es
Co

m
pi

le
In

st
al

l
Co

nf
ig

ur
e

$P
AT

H
Ru

n

In
st

al
l p

ac
ka

ge

Ru
n

to
ol

Ru
n

to
ol

 w
ith

in
 c

on
ta

in
er

In
st

an
tia

te
 V

M
Ru

n
th

e
en

tir
e

an
al

ys
is

 w
ith

in
 th

e
VM

>
gi
t
cl
on
e
hi
sa
t2

>
ma
ke

>
su
do
 m
ak
e
in
st
al
l

>
hi
sa
t2
 -
-v
er
si
on

>
co
nd
a
in
st
al
l
hi
sa
t2

>
hi
sa
t2
 -
-v
er
si
on

>
do
ck
er
 r
un
 -
-r
m

qu
ay
.i
o/
bi
oc
on
ta
in
er
s/

hi
sa
t2
 -
-v
er
si
on

Reproducibility stack

Le
as

t
re

pr
od

uc
ib

le
M

os
t

re
pr

od
uc

ib
le

.
C

C
-B

Y
 4

.0
 In

te
rn

at
io

na
l l

ic
en

se
a

ce
rt

ifi
ed

 b
y

pe
er

 r
ev

ie
w

)
is

 th
e

au
th

or
/fu

nd
er

, w
ho

 h
as

 g
ra

nt
ed

 b
io

R
xi

v
a

lic
en

se
 to

 d
is

pl
ay

 th
e

pr
ep

rin
t i

n
pe

rp
et

ui
ty

. I
t i

s
m

ad
e

av
ai

la
bl

e
un

de
r

T
he

 c
op

yr
ig

ht
 h

ol
de

r
fo

r
th

is
 p

re
pr

in
t (

w
hi

ch
 w

as
 n

ot
th

is
 v

er
si

on
 p

os
te

d
O

ct
ob

er
 1

0,
 2

01
7.

;

ht
tp

s:
//d

oi
.o

rg
/1

0.
11

01
/2

00
68

3
do

i:
bi

oR
xi

v
pr

ep
rin

t

https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

