bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Practical computational reproducibility in the life sciences

Bjorn Gruning', John Chilton?, Johannes Koster’, Ryan Dale?, Jeremy Goecks®, Rolf Backofen®,
Anton Nekrutenko’, James Taylor®.

1Albert-Ludwigs—University, Freiburg Germany. orcid.org/0000-0002-3079-6586.

*The Pennsylvania State University, University Park PA USA. orcid.org/0000-0002-6794-0756.

3University of Duisburg-Essen, Essen Germany. orcid.org/0000-0001-9818-9320.

“National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda MD USA. orcid.org/0000-0003-2664-3744
5Oregon Health & Sciences University, Portland Oregon USA. orcid.org/0000-0002-4583-5226
6Albert-Luclwigs—Urliversity, Freiburg Germany. orcid.org/0000-0001-8231-3323

"The Pennsylvania State University, University Park PA USA. orcid.org/0000-0002-5987-8032

8]ohns Hopkins University, Baltimore MD USA. orcid.org/0000-0003-4285-6985.

Correspondence should be addressed to JT (james@taylorlab.org), AN (anton@nekrut.org), and RB

(backofen@informatik.uni-freiburg.de).

Many areas of research suffer from poor reproducibility. This problem is particularly acute
in computationally intensive domains where results rely on a series of complex
methodological decisions that are not well captured by traditional publication approaches.
Various guidelines have emerged for achieving reproducibility, but practical implementation
of these practices remains difficult. This is because reproducing published computational
analyses requires installing many software tools plus associated libraries, connecting tools
together into the complete pipeline, and specifying parameters. Here we present a suite of
recently emerged technologies which make computational reproducibility not just possible,
but, finally, practical in both time and effort. By combining a system for building highly
portable packages of bioinformatics software, containerization and virtualization
technologies for isolating reusable execution environments for these packages, and an
integrated workflow system that automatically orchestrates the composition of these
packages for entire pipelines, an unprecedented level of computational reproducibility can

be achieved.


https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Reproducible computational practices are critical to continuing progress within the life sciences.
Reproducibility assures the high quality of published research by facilitating the review process
that involves replication and validation of results by independent investigators. Further,
reproducibility speeds up research progress by promoting reuse and repurposing of published
analyses to different datasets or even to other disciplines. The importance of these benefits is
clear, and vigorous discourse in the literature over the past several years'” has led to

reproducibility guidelines at the level of individual journals as well as funding agencies.

However, achieving reproducibility on a practical, day-to-day level (and thus following these
guidelines) still requires overcoming substantial technical challenges that are beyond the
abilities of most life sciences researchers. There have been successful efforts aimed at addressing
some of these challenges: Galaxy®, GenePattern’, Jupyter', R Markdown", and VisTrails'. These
environments automatically record details of analyses as they progress and therefore implicitly
make them reproducible. Yet they still fall short from achieving full reproducibility because
they fail to preserve the full computing environment in which analyses have been performed.
For example, consider an analysis executed on Galaxy, a Web-based scientific workbench used
throughout the world. An analysis executed on a particular Galaxy server might include tools
not found elsewhere, and therefore cannot be reproduced outside that server. Another example
is a Jupyter notebook that includes tools specific to a particular platform and a distinct set of
software libraries. There is absolutely no guarantee that such a notebook will produce the same
results on a different computer. Here we introduce a solution that addresses all aspects of
computational reproducibility by preserving the exact environment in which an analysis has
been performed and enabling that environment to be recreated and used on other computing

platforms.

While the need for reproducibility is clear and initial guidelines are beginning to emerge,
research practices will not change until reproducible analysis becomes fast and automated. To
make reproducibility practical, we have developed a three-layer technology stack composed of
open, well-tested, and community supported components (Fig. 1). This three-layer design
reflects steps necessary to make an analysis fully reproducible: (1) managing software
dependencies, (2) isolating analyses from the idiosyncrasies of local computational
environments, and (3) virtualizing entire analyses for complete portability and preservation

against time.


https://paperpile.com/c/fsf71K/aTs9+bdKH+BVy9+rhFV+oWyu+h4r2+gnpR
https://paperpile.com/c/fsf71K/AD0DK
https://paperpile.com/c/fsf71K/yWCHG
https://paperpile.com/c/fsf71K/j5UmG
https://paperpile.com/c/fsf71K/GcpCV
https://paperpile.com/c/fsf71K/zL7LJ
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

The first step, managing software dependencies, ensures that one can obtain the exact versions
of all software used in a given analysis. Because most software tools rely on external libraries
and analysis workflows use multiple tools, it is necessary to record versions of multiple tools
and libraries. Given a multitude of operating systems and local configurations, ensuring the

consistency of analysis software is a considerable challenge. Conda (https://conda.io/), a

powerful and robust open source package and environment manager, has been developed to
address this issue. It is programming language and operating system independent, does not
require administrative privileges, and provides isolated virtual execution environments. These
features make Conda exceptionally well-suited for use on existing high-performance computing
(HPC) environments as well as cloud infrastructure because precise control over the execution
environment does not depend on system-level configuration or access. Conda explicitly
supports installation of specific tool versions, even old ones, and allows the creation of
“environments” where specific tool versions are installed and run. It is straightforward to create
and maintain Conda package definitions, and this feature has led to rapid uptake of Conda by
the scientific community. Leveraging Conda, Bioconda (https://Bioconda.github.io) is a
community project dedicated to data analysis in life sciences that contains over 2,700 tool
packages. Bioconda provides the top layer of our reproducibility stack. Bioconda packages are
well maintained and include a testing system to ensure their quality. They are built in a minimal
environment to allow maximum portability and are provided as compiled binaries which are
archived, ensuring the exact executables used for an analysis can always be obtained. Conda
environments and package management are agnostic to the underlying operating system. In

contrast to other solutions such as Debian-Med" or linuxbrew (http://linuxbrew.sh), Conda

allows multiple versions of any software tool at the same time, provides isolated environments,

and runs on all major Linux distributions, MacOS, and Windows.

While Conda and Bioconda provide an excellent solution for packaging software components
and their dependencies, archiving them, and recreating analysis environments, they are still
dependent on and can be influenced by the host computer system'. An additional level of
isolation to solve this problem is provided by containerization platforms (or, simply, containers)
such as Docker, Singularity, or rkt. Containers are run directly on the host operating system’s
“kernel” but encapsulate every other aspect of the runtime environment, providing a level of
isolation that is far beyond of what Conda environments can provide. From inside a container it

is very difficult to access other containers or the host system itself. Containers are easy to create,


https://conda.io/
https://bioconda.github.io/
https://paperpile.com/c/fsf71K/HKG7
http://linuxbrew.sh/
https://paperpile.com/c/fsf71K/YMW5
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

which is a great strength of this technology. Yet it is also its Achilles heel, because the ways in
which containers are created need to be trusted and, again, reproducible. This is why we
generate containers automatically from Bioconda packages, and these automatically-created
containers form the second layer of our reproducibility stack (Fig. 1). This has several
advantages. First, container creation requires no user intervention, every container is created
automatically and consistently using exactly the same process. A user of the container knows
exactly what the container will include and how to use it. Second, this approach allows creation
of large numbers of containers; in particular we automatically generate and archive a container
for every Bioconda package. Third, this approach can easily target multiple container types. We
currently build containers for Docker, rkt, and Singularity, and register them with Quay
(https://quay.io). Since we build standard containers, other registries (e.g. DockerHub *,
BioShaDock' or Dockstore') can also be used. Because this container creation approach does
not rely on the specification format of any particular system, additional container platforms and
registries can easily be added as they become available. Finally, in addition to creating
containers for single Bioconda packages, it is possible to automatically create containers for
combinations of packages. This is useful when a step in an analysis workflow has multiple
dependencies. Given any combination of packages with version, we can generate a uniquely
named container which contains all of the required dependencies. When the combinations of
dependencies required are known in advance these containers can be created automatically as
well, for example we can create containers for all combinations of tools dependencies used in

the Galaxy ToolShed (https://galaxyproject.org/toolshed)".

Containers provide isolated and reproducible compute environments but still depend on the
operating system kernel and underlying hardware. An even greater isolation can be achieved
through virtualization, which runs analysis within an emulated virtual machine (VM) with
precisely defined hardware specifications. Virtualization, which provides the third layer of our

reproducibility stack (Fig. 1), can be achieved via commercial clouds, on public clouds such as

Jetstream (https://jetstream-cloud.org/), or by using virtual machine applications on a local
computer (such as VirtualBox). While introducing this layer adds complexity and overhead, it
provides maximal isolation, security, and resistance to time as emulated environments can be

recreated in the future, regardless of whether the physical hardware still exists.

To make it easy for analysis environments and workflow engines to adopt this solution, we

have implemented it in a Python library called galaxy-lib. Given a set of required software


https://quay.io/
https://paperpile.com/c/fsf71K/lDhj
https://paperpile.com/c/fsf71K/cUdP
https://paperpile.com/c/fsf71K/21OZ
https://galaxyproject.org/toolshed/
https://paperpile.com/c/fsf71K/q6YL
https://jetstream-cloud.org/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

packages and versions, galaxy-lib provides utilities to either create a Conda environment with
the required packages available, or to run the analysis with an appropriate container. Thus, a
workflow can be executed in which every step of the analysis runs either using a dedicated
conda environment or an isolated container. Support for this reproducibility stack has been
integrated into both the Galaxy platform and the Common Workflow Language reference
implementation”. Additional isolation and reproducibility can be achieved by running in a
virtualized or cloud environment, for example using Galaxy CloudMan® to run Galaxy on

Amazon or Jetstream.

Reproducibility in computational life sciences is now truly possible. It is no longer a
technological issue of “How do we achieve reproducibility?” Instead it is now an educational
(or even sociological) issue of “How to make sure that the community uses existing practices?”
In other words, how do we set a typical researcher (i.e., a graduate student or a post-doc)
performing data analyses on the path of performing them reproducibly? While there are now
several platforms that enable reproducibility, the technologies we describe here are both very

general and easy to use. Thus, we offer the following recommendations:

1. Carefully define a set of tools for a given analysis. In many cases such as variant
discovery, DNA/Protein interactions assays, and transcriptome analyses, best practice tool
sets have been established by consortia such as 1000 Genomes, ENCODE, and
modENCODE. In other, less common cases, selection of appropriate tools must be done by
consulting published studies, Q&A sites, and trusted, community supported blogs. There is
no escape from this — methodological decision are as much a part of research as deciding on
what cell lines to use or how to fine tune a qPCR assay. To put this discussion on a practical
footing, consider the simplest possible analysis of RNAseq data in which one needs to map
reads against a genome, assemble transcripts, and estimate their abundance. The most basic
set of tool for an analysis like this might include Trimmomatic* to trim the reads, HISAT2*
to map the reads to a genome, StringTie® to assemble and quantify transcripts, and
Ballgown™ to perform differential expression testing.

2. Use tools from the Bioconda registry and help it grow. The registry at
https://Bioconda.github.io provides the list of available packages. The three tools from our
example are all available in Bioconda and can be used directly (Fig. 1). If a tool is not already
available, one can either write a Bioconda recipe for the tool in question or request the tool

to be wrapped by the Bioconda community by opening an issue at the project’s GitHub


https://paperpile.com/c/fsf71K/c6aC
https://paperpile.com/c/fsf71K/UiIG
https://paperpile.com/c/fsf71K/JCtv
https://paperpile.com/c/fsf71K/BZcy
https://paperpile.com/c/fsf71K/1f8n
https://paperpile.com/c/fsf71K/5ZAk
https://bioconda.github.io/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

page. Note that using Bioconda-enabled tools is not just “good behavior for enabling
reproducibility”. It is the easiest way to use these tools. First, it makes installation easy.
Conda automatically obtains and installs all necessary dependencies, so the only
requirement for installing, say, StringTie is opening a shell and typing “conda install
stringtie”. Second, it makes analyses reproducible. Simply providing the output of
“conda env export” with a manuscript allows anyone to easily obtain the exact version of
the software used as well as all its dependencies.

3. Adopt containers to guarantee consistency of results. Analysis tools installed with
Bioconda can be used directly. However the consistency of results (ability to guarantee that
the same version of a tool gives exactly the same output every time it is run on a given input
dataset) can be influenced by local computational environment. Because every Bioconda
package is automatically packaged as a container the tools can be run from within the
container in isolation providing a guarantee of result consistency. An example of this
process for our RNA-seq example is shown in Fig. 1. As container technologies become
widely available, we see this as the preferred way to use analysis tools in the majority of
research scenarios.

4. Use virtualization to make analyses “resistant to time”. Containers still depend on the host
operating system, which will become outdated with time along with the hardware. To make
an analysis “time proof” it is possible to use virtualization by encapsulating all tools, their
dependencies, and operating system with a virtual machine image (VM). Virtualization has
a higher barrier to entry and VMs alone have been criticized as being a "black box".
However virtualization enables time independence. Thus we recommend at least recording
exactly the OS and hardware environment used for analysis so it can be recreated using VM
technologies in the future. Executing analysis within a archived VM will always afford
maximum reproducibility, and this will become easier as more compute resources move

towards cloud-style operations.

In conclusion, we are reaching the point where not performing data analyses reproducibly
becomes unjustifiable and inexcusable. Aside from hardening the software, the main challenges
ahead are in education and outreach that will be critical for fostering the next generation of
researchers. There are also substantial “cultural” differences among research fields in the degree
of software openness that will need to be tackled. For example, genomics (which the authors

represent and therefore are biased toward) has traditionally been quick in adopting new


https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

paradigms, while, for example, proteomics has been much slower®. We believe that this work is
the first step toward making computational life sciences as robust as well established

quantitative and engineering disciplines. After all — our health depends on it!

Acknowledgements

The authors are grateful to BioConda, BioContainers, and Galaxy communities as without these
resources this work would not be possible. Nate Coraor provided critical advice on the project
and edited the manuscript. This project was supported by NIH Grants U41 HG006620 and R01
Al134384-01 as well as NSF Grant 1661497 to JT, AN, and JG.

References

1. Nekrutenko, A. & Taylor, J. Next-generation sequencing data interpretation: enhancing
reproducibility and accessibility. Nature Publishing Group 13, 667-672 (2012).

2. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452-454 (2016).

3. McNutt, M. Reproducibility. Science 343, 229 (2014).

4. Glenn Begley, C. Reproducibility: Six red flags for suspect work. Nature 497, 433434 (2013).

5. Begley, C. G., Buchan, A. M. & Dirnagl, U. Robust research: Institutions must do their part
for reproducibility. Nature 525, 25-27 (2015).

6. Leek, ]. T. & Peng, R. D. Opinion: Reproducible research can still be wrong: adopting a
prevention approach. Proc. Natl. Acad. Sci. U. S. A. 112, 1645-1646 (2015).

7. Leek, ]. T. & Peng, R. D. Statistics. What is the question? Science 347, 1314-1315 (2015).

8. Goecks, J., Nekrutenko, A., Taylor, J. & Team, G. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the life

sciences. Genome Biol. 11, R86 (2010).


https://paperpile.com/c/fsf71K/O4pw
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/aTs9
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/bdKH
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/BVy9
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/rhFV
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/oWyu
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/h4r2
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/gnpR
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
http://paperpile.com/b/fsf71K/AD0DK
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

9. Reich, M,, Liefeld, T., Gould, J., Lerner, J. & Tamayo, P. GenePattern 2.0 - Nature Genetics.
Nat. Genet. (2006).

10. Kluyver, T. et al. Jupyter Notebooks-a publishing format for reproducible computational
workflows. in ELPUB 87-90 (books.google.com, 2016).

11. Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L. & Horton, N. J. R Markdown:
Integrating A Reproducible Analysis Tool into Introductory Statistics. arXiv [stat.OT]
(2014).

12. Scheidegger, C. E., Vo, H. T., Koop, D., Freire, J. & Silva, C. T. Querying and Re-using
Workflows with VsTrails. in Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data 1251-1254 (ACM, 2008).

13. Moller, S. et al. Community-driven computational biology with Debian Linux. BMC
Bioinformatics 11 Suppl 12, S5 (2010).

14. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is
automated using continuous analysis. Nat. Biotechnol. 35, 342-346 (2017).

15. Cook, J. Docker Hub. in Docker for Data Science 103-118 (Apress, Berkeley, CA, 2017).

16. Moreews, F. et al. BioShaDock: a community driven bioinformatics shared Docker-based
tools registry. F1000Res. 4, 1443 (2015).

17. O’Connor, B. D. et al. The Dockstore: enabling modular, community-focused sharing of
Docker-based genomics tools and workflows. FI000Res. 6, 52 (2017).

18. Blankenberg, D. et al. Dissemination of scientific software with Galaxy ToolShed. Genome
Biol. 15, 403 (2014).

19. Amstutz, P. et al. Common Workflow Language, v1.0. (2016).
doi:10.6084/m9.figshare.3115156.v2

20. Afgan, E. et al. Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics


http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/yWCHG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/j5UmG
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/GcpCV
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/zL7LJ
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/HKG7
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/YMW5
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/lDhj
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/cUdP
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/21OZ
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/q6YL
http://paperpile.com/b/fsf71K/c6aC
http://paperpile.com/b/fsf71K/c6aC
http://paperpile.com/b/fsf71K/c6aC
http://paperpile.com/b/fsf71K/c6aC
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

21.

22,

23.

24.

25.

aCC-BY 4.0 International license.

11, 54 (2010).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114-2120 (2014).

Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory
requirements. Nat. Methods 1-6 (2015).

Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nat. Biotechnol. 33, 290-295 (2015).

Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and
expression analysis. Nat. Biotechnol. 33, 243-246 (2015).

Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source

software for rapid proteomics tools development. Bioinformatics 24, 2534-2536 (2008).


http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/UiIG
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/JCtv
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/BZcy
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/1f8n
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/5ZAk
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
http://paperpile.com/b/fsf71K/O4pw
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Most
reproducible

.

m
sy
=S
i
E.
i
=2
TRk
& K
= -]
= - g
;&ﬂ a =
w oD
e - &2
E.._’E o
E&Z o
w
S s

'< Container

yoeys Ayjiqdnpoaday

10


https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/200683; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Figure 1. Software stack of interconnected technologies that enables complete computational
reproducibility. It uses an example of the most basic RNA-seq analysis involving four tools. Our stack
includes three components: (1) the cross-platform package manager Conda (https://conda.io) for installing
analysis tools across operating systems, including virtualized environments that include all tools and
dependencies at specified versions for performing a computational analysis; (2) lightweight software
containers such as Docker or Singularity for using virtual environments and tool installations across
different computing clusters both local and in the cloud; and (3) Hardware virtualization to achieve
complete isolation and reproducibility. We have implemented this stack in the Galaxy scientific
workbench (https://galaxyproject.org), enabling any Galaxy server to easily and automatically install all
requirements for each Galaxy analysis workflow. This stack is also integrated into the Common

Workflow Language (CWL; http://www.commonwl.org) reference implementation. Integration of our

reproducibility stack into Galaxy and CWL demonstrates, for the first time, how analysis workflows can

be shared, rerun, and reproduced across platforms with no manual setup.

11


https://conda.io/
https://galaxyproject.org/
http://www.commonwl.org/
https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

SISA—-—

c3esTy
/SISUTE1UOD0Tq /0T " Aenb

WI-—- Unx I93

UOTSIDA-—

z3esty

Z3esTy TTe3ISUT epuod

UOTSIDA——

TTe3sut

o3 eu

ziesty

opns

a1qdnpoadau
ISON

a1qnpoadau

Iseaq

INA U3 UIYIM SISA[BUR 213U SU3 UNy
anarenuessyy WA

Jauiejuo)

(epuo))
AN3A

HLvd$ indyuod

J1esuj mo

a)idwo)
sapuapuadap
S)l pue 001 83 JO 9P 92IN0S UIRIGO

yoels Aiqnpoaday


https://doi.org/10.1101/200683
http://creativecommons.org/licenses/by/4.0/

