
 

1 

 

Predicting aging of brain metabolic topography using variational 

autoencoder 

 

Hongyoon Choi1,*, Hyejin Kang1, Dong Soo Lee1,2,3,*, for the Alzheimer’s Disease 

Neuroimaging Initiative† 

1Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; 

2Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science 

and Technology, Seoul National University, Seoul, Republic of Korea; 3Korea Brain Research Institute, Daegu, 

Korea 

 

†
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and 

implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

 

*Correspondence and Reprint Request 

Hongyoon Choi, MD. Ph.D. 

Department of Nuclear Medicine, Seoul National University Hospital 

28 Yongon-Dong, Jongno-Gu, Seoul, 110-744, Korea 

Tel: +822-2072-2802, Fax: +822-745-0345, E-mail: chy1000@snu.ac.kr 

 

Dong Soo Lee, MD.,Ph.D. 

Department of Nuclear Medicine, Seoul National University Hospital 

28 Yongon-Dong, Jongno-Gu, Seoul, 110-744, Korea 

Tel: 82-2-2072-2501, Fax: 82-2-2072-7690, E-mail: dsl@plaza.snu.ac.kr 

 

[Running Title] Predicting aging of brain PET 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200865doi: bioRxiv preprint 

https://doi.org/10.1101/200865


 

2 

 

Abstract 

Predicting future brain topography can give insight into neural correlates of aging and neurodegeneration. Due 

to variability in aging process, it has been challenging to precisely estimate brain topographical change 

according to aging. Here, we predict age-related brain metabolic change by generating future brain 18F-

Fluorodeoxyglucose PET. A cross-sectional PET dataset of cognitively normal subjects with different age was 

used to develop a generative model. The model generated PET images using age information and characteristic 

individual features. Predicted regional metabolic changes were correlated with the real changes obtained by 

follow-up data. This model was applied to produce a brain metabolism aging movie by generating PET at 

different ages. Normal population distribution of brain metabolic topography at each age was estimated as well. 

In addition, a generative model using APOE4 status as well as age as inputs revealed a significant effect of 

APOE4 status on age-related metabolic changes particularly in the calcarine, lingual cortex, hippocampus and 

amygdala. It suggested APOE4 could be a factor affecting individual variability in age-related metabolic 

degeneration in normal elderly. This predictive model may not only be extended to understanding cognitive 

aging process, but apply to development of a preclinical biomarker for various brain disorders. 
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Introduction 

Understanding the normal aging change in the brain is essential to understand neural correlates of cognitive 

aging and to investigate various neurodegenerative diseases including Alzheimer’s disease (1). In particular, 

brain metabolism which can be measured by 18F-fluorodeoxyglucose (FDG) PET has been regarded as a key 

biomarker for neurodegenerative disorders. Identifying brain metabolic topography associated with aging could 

give insight into the neural basis of age-related cognitive decline and help differentiate normal aging from 

neurodegenerative disorders.  

Although the relationship between cerebral glucose metabolism and aging has been repeatedly studied, there 

has been controversy about which brain regions show significant age-related metabolic decline (2-6). Individual 

genetic background and healthy status as well as underlying brain disease gives rise to the individual variability 

in age-related metabolic change (7, 8). Due to this variability, we have not been able to predict individual aged 

brain understandably. Therefore, instead of consideration of individual variability, previous studies have focused 

on the trend of overall aging changes using cross-sectional imaging data with statistical models such as linear 

regression. Even though this statistical analysis could provide overall brain metabolic changes, it was difficult to 

individually apply to estimate how far a given subject’s brain metabolism is from the normal population at the 

same age. This individual evaluation of brain metabolism can be extended to the differentiation between normal 

and abnormal aging process. It requires normal population distribution database of all ages, however, it has been 

challenging to build a database of the population distribution of normal brain metabolism for each age from the 

cross-sectional data with subjects of various age distribution.  

Here, we develop a model for predicting future brain metabolic topography by generating brain PET image. 

In this study, we utilize variational autoencoder (VAE), a type of unsupervised learning methods, which can 

generate images from some representations (VAE) (9). We applied it to predicting FDG brain PET at different 

ages. Each FDG PET image combined with the subject’s current age information was represented by low-

dimensional features and then PET images corresponding different ages were generated. We also generated 

population distribution data of normal brain metabolic topography at different ages, which represented 

variability om individual metabolic activity at each age. As an application of our approach to discovering factors 

that potentially affect brain aging, we further investigated whether APOE4 status impacted on the age-related 

metabolic change by using a generative model that uses age and APOE4 information.  
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Results 

Prediction of future brain metabolic change 

The VAE-based model was designed to represent FDG PET images and corresponding subjects’ age to latent 

features (Fig. 1A). The posterior part of this model, a generator component, could produce PET images from 

any values of the latent features and age information. The model was trained by baseline PET images of 393 

cognitively normal subjects.  

To generate future brain PET images, we firstly obtained latent features of a subject’s baseline PET image 

using the encoder. We assumed that these were not changed according to aging as characteristic individual 

features. The features of a subject were entered into the generator with any age, which could generate the 

subject’s virtual brain PET at different ages (Fig. 1B). The model was tested by cognitively healthy subjects who 

underwent both baseline and follow-up PET. Follow-up PET scans were obtained for 26 subjects after 4 years 

from baseline and for 11 subjects after 5 years. Predicted metabolic change was compared with corresponding 

real metabolic change computed by follow-up PET data. Each predicted future brain PET and real follow-up 

PET was subtracted by corresponding baseline PET for the comparison (Fig. 1C). As a result, delta maps, the 

future brain PET subtracted by baseline, obtained from real follow-up PET showed individual variability. 

Corresponding predicted future brain PET also showed those variable patterns (Fig. 1D). A subject showed 

prominently decreased metabolism in the cerebral cortices, while another showed relatively increased 

metabolism in the frontal cortex (Fig. 1D). The delta map obtained by real follow-up was positively correlated 

with that obtained by prediction (fig. S1).  

To compare predicted future brain PET and real follow-up PET quantitatively, mean metabolic changes of 

116 predefined brain regions across all subjects were calculated. Averaged predicted changes in regional 

metabolism was significantly correlated with the real changes obtained by real follow-up data (r= 0.59, p < 

0.001 and r=0.59, p < 0.001 for 4-year and 5-year follow-up, respectively; Fig. 2A and B). Bland-Altman plot 

showed the difference between predicted and real regional metabolic activities (Fig. 2C and D). The 95% 

confidence interval of the prediction error of regional metabolic activity was -0.027 – 0.027 for 4-year follow-up 

and -0.027 – 0.048 for 5-year follow-up. In addition, individually predicted and real metabolic changes were 

compared. To show how individual prediction of metabolic change was similar with the real change, voxelwise 

correlations of individual delta maps obtained by follow-up and prediction were calculated. We could find a 

trend of high correlation between the two delta maps of same subject though the prediction of metabolic change 
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was failed in some subjects (fig. S2). The similarity between predicted and real metabolic change was not 

significantly affected by subjects’ age, gender, follow-up diagnosis, APOE4 and baseline mini-mental state 

examination.  

 

Generating overall brain metabolism aging movie 

We applied our model to the assessment of overall regional metabolic changes. To investigate overall 

patterns of age-related brain metabolism, representative brain images were generated by using different age and 

mean value of each latent feature across all subjects (Fig. 3A). The representative FDG brain PET generated 

from the age of 50 to 90 is presented in Fig. 3B. To visualize the age-related change definitely, the generated 

FDG PET with different age was subtracted by generated PET of the age of 50 (Fig. 3C and D; fig. S3).  

Fig. 3D showed that age-related metabolism decline was mainly found in the cingulate cortex. Using 

predefined brain regions of interests, metabolic activity of each brain region was extracted according to aging 

(Fig. 3E). Red dotted lines represent estimated metabolic decline using the generated PET by entering mean 

latent features. Solid lines represent real metabolic decline obtained by 4-year (Blue) and 5-year (Green) follow-

up data (Fig. 3E). The curves estimated by the VAE model explained that overall metabolic decline with aging 

was nonlinear. Approximately before 75, age-related metabolic decline was steep in the posterior cingulate and 

caudate and then the decline became slower after 75.  

 

Distribution of regional metabolic activity at each age 

Most brain imaging data including our subjects consist of imaging with various ages. Thus, it has been hard 

to obtain population distribution of normal brain at each age. Randomly resampled latent features could generate 

population distribution of regional brain metabolic activity for all ages (Fig. 4A). Generated brain PET data 

from resampled latent features provide the variety of regional metabolic activity. Histograms of each brain 

region at different ages were drawn (Fig. 4B). As aforementioned representative brain metabolic changes, 

histograms of posterior cingulate and caudate showed a trend of left shifting according to aging. Distribution of 

overall aging patterns of regional metabolism was also exhibited (Fig. 4C, fig. S4). Dotted lines represent 95% 

confidence intervals of regional metabolic activity.  

We found individual variability in regional brain metabolism at different ages. The individual variability was 

determined by the distribution of latent features. To show how each latent feature affects brain metabolism, PET 
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images were generated by changing latent features. Brain metabolic patterns were changed according to latent 

features as shown in Fig. 5. As an example, increased feature 1 was associated with decreased brain metabolism 

in the posterior temporal and occipital cortices and increased feature 2 was associated with increased frontal 

metabolism.  

 

APOE4 status and age-related metabolic change 

Because clinical variables affect age-related metabolic change and its variability, we further investigated 

whether APOE4 status impacts on metabolic changing patterns. Another VAE model was trained using two 

conditions, age and APOE4 status (Fig. 6A). This model can generate virtual brain PET images according to the 

age and APOE4 status. Thus, age-related metabolic change according to APOE4 can be estimated by inputting 

APOE4 positive and negative states, respectively (Fig. 6A). We identified that APOE4 could affect variability of 

age-related metabolic change. The FDG PET images generated by average latent features and APOE4 positive 

and negative status at different ages were subtracted by generated PET of the age of 50 (Fig. 6B). We found that 

metabolic decline in occipital lobe was faster in APOE4 carriers. Distribution of regional metabolism according 

to APOE4 status was estimated (Fig. 6C). Using distribution of metabolic difference between brain metabolism 

generated by APOE4 status, the significance of difference in regional metabolism was estimated (fig. S5). 

Regional metabolic activity of the calcarine and lingual cortex was significantly higher in APOE4 carrier than 

APOE4 noncarrier before 60, while that of the hippocampus and amygdala was significantly lower in APOE4 

carrier at 50 (Fig. 6D). Regional metabolic activity of posterior cingulate, precuneus and caudate, where rapid 

age-related metabolic decline was found, did not show significant difference in accordance with APOE4 status. 

Metabolic change in APOE4 carriers and noncarriers of all brain regions was represented with 95% confidence 

intervals (fig. S6).  
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Figure 1. Metabolic change prediction by generating future brain PET. (A) VAE model which consists of encoder and generator was 

trained by PET images of cognitively normal subjects. The encoder represents input PET images to 10 latent features. The generator 

generates virtual PET image from any values of latent features and age information. (B) The VAE-based model could generate future brain 

PET individually using baseline PET image. A subject’s brain PET was encoded into latent features. We hypothesized that these latent 

features were unchanged across age. Future brain PET was generated by entering future age and the latent features. (C) Predicted 

individually generated PET was compared with real follow-up data. For comparison, delta maps obtained by subtracting baseline from 

prediction or follow-up images were generated. (D) Representative cases follow-up PET and individually predicted PET. According to the 

follow-up data, there was comparable individual variability in metabolic change. A subject showed globally decreased metabolism (left) 

while another subject showed increased metabolism in the frontotemporal cortex (right). Predicted future PET could also reflect the 

individual variability.  
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Figure 2. Comparison of predicted metabolic change with real follow-up data. Regional metabolic change from baseline was 

averaged across subjects for predicted and follow-up data. Averaged predicted and real changes across the brain regions were significantly 

correlated for 4-year follow-up images (r = 0.59, p < 0.001) (A) and 5-year follow-up images (r = 0.59, p < 0.001) (B). Bland-Altman plots 

were drawn for the comparison of predicted and real regional metabolic activity for 4-year (C) and 5-year PET images (D). The 95% 

confidence interval of the error of predicted regional metabolism was -0.027 – 0.027 for 4-year follow-up and -0.027 – 0.048 for 5-year 

follow-up. MAPE was 1.07% for 4-year follow-up and 1.76% for 5-year follow-up.  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/200865doi: bioRxiv preprint 

https://doi.org/10.1101/200865


 

9 

 

 

Figure 3. Overall brain metabolism aging movie by generating representative PET of each age. (A) Using VAE-based model, 

representative FDG PET images of different age were generated to identify overall age-related metabolic pattern. Mean latent feature values 

across all trained subjects were entered into generator for representative PET images. (B) Using mean latent features, representative PET 

images were generated according to aging. (C) Compared with the representative PET of age of 50, subtraction images were generated. (D) 

Surface visualization of the subtraction map revealed that age-related decline was mainly found in the cingulate cortex. (E) Age-related 

metabolic change in specific brain regions was plotted. Solid lines represent real metabolic change data for 4-year follow-up (blue) and 5-

year follow-up (green). Red dotted lines represent regional metabolic changes estimated by virtually generated PET images.  
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Figure 4. Estimating population distribution of brain metabolism at each age. (A) Population distribution of brain metabolic 

topography was estimated by resampling latent features. Generated brain PET was repeatedly generated by random latent feature values 

sampled from normal distribution. Distribution of regional metabolism was estimated for all ages. (B) Histograms of distribution of 

metabolic activity were drawn for putamen, caudate, posterior cingulate, anterior cingulate and precuneus at different ages. (C) Confidence 

intervals of metabolic changes could be estimated by the distribution. Dotted lines represent 95% confidence interval of regional metabolic 

activity.   
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Figure 5. Brain metabolic topography according to latent features. As the encoder of VAE compressed PET image into 10 latent 

features, variability in brain metabolism is determined by these 10 features. To assess metabolic patterns determined by latent features, brain 

PET images were generated according to different latent feature values. An example of the two latent features, increased first latent feature 

(x-axis) was associated with decreased metabolism in posterior temporal and occipital cortices. Increased second latent feature (y-axis) was 

associated with increased metabolism in the frontotemporal cortices at age of 50.  
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Figure 6. APOE4 status and age-related brain metabolic change. (A) We investigated whether APOE4 status affect age-related 

metabolic change patterns. A conditional generative model was developed using APOE4 status as well as age. PET images according to 

different ages were generated for APOE4 carrier and noncarrier, respectively. Resampled features provide distribution difference of brain 

metabolic topography between APOE4 carriers and noncarreirs. (B) Delta maps were generated by subtracting 50-year-old generated images. 

Metabolic decline was relatively faster in occipital regions of APOE4 carrier. (C) Histograms of regional metabolic activity were drawn for 

APOE4 carriers and noncarriers. Before 60, distribution of metabolism of calcarine, lingual cortex, hippocampus and amygdala was 

different according to APOE4 status. (D) Age-related regional metabolic activity changes were plotted. Red dots represented APOE4 carriers 

and blue dots represented APOE4 noncarriers. Bars represented standard deviations calculated by the distribution. Nonparametric testing 

revealed the statistical significance. Asterisks represent uncorrected p < 0.05.   
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Discussion 

In this study, we predicted aging of brain metabolic topography by using a generative model. Brain 

metabolic changes are highly variable as aging process and cognitive changes are affected by several individual 

factors. Our model aimed at generating PET images according to the age trained by cross-sectional PET image 

data combined with different ages. The model could provide predicted future metabolic decline and validated by 

real follow-up data. Our results estimate population distribution of normal brain metabolism at each age. This 

approach was extended to investigate the effect of APOE4 status on the variability of regional brain metabolism 

at different ages.  

Our generative model could find population distribution of brain metabolic topography for each age as well 

as predict age-related metabolic change. Cognitive aging and age-related functional decrease is accompanied by 

increased individual variability (10). This individual variability is affected by several factors including life 

experience, genetic backgrounds and susceptibility to neuropathology (11). Furthermore, cognitive variability in 

individuals across time tends to occur mainly after the age of 60 (12). Increased individual variability in aging 

has been supported by several functional neuroimaging studies (13-15). Nonetheless, age-related brain 

metabolism change has been briefly estimated by observing overall correlation between age and metabolism (2-

6). This previous approach could not consider individual variability in age-related metabolism (10, 16). 

Furthermore, it has been difficult to estimate age-dependent normal population distribution of brain image data 

as the data consist of subjects with different ages. A conventional linear regression model based on overall 

metabolic changes estimated by all baseline scans failed to estimate personal variability in metabolic decline 

patterns (fig. S7). That was because the model only estimated same decline patterns for all subjects by 

calculating voxelwise linear regression based on the population.  

According to our model, the variability of brain metabolism was represented by the latent features. They 

determine age-related metabolism patterns because generator used only the latent features and age as inputs. In 

other words, latent features could reflect individual factors which affect the variability in metabolic topography. 

Each latent feature represented specific metabolic topography patterns which could be indirectly identified by 

generating images according to different feature values as shown in Fig. 5. In this regard, random resampling of 

the latent features generated variable brain metabolic topography, which could be used for estimating population 

distribution. Our result, population distribution of brain metabolism at each age can be applied to quantitatively 

define regional abnormality in individuals. Using this distribution, we can define how far a given individual 
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brain PET is from the normal population. Thus, this distribution may help to develop quantitative biomarker 

which represents abnormal aging process of individual brain metabolism.   

Our model could predict regional patterns of individual future brain metabolic change, while future 

prediction of metabolic change was incorrect in quite a few cases. As shown in fig. S2, the predicted delta maps 

were not correlated with real delta maps in individuals at right-lower portions of the matrix. Nonetheless, overall 

regional metabolic changes obtained by the prediction were highly correlated with those of real follow-up data 

as shown in Fig. 2. That was because VAE eventually extracted age-associated metabolic topography patterns 

from overall variation of brain metabolism in the training samples. In other words, because of the high 

variability in age-related brain metabolic changes, VAE-based model generated future brain PET image by 

approximating global age-related patterns of training samples. It is closely related to the limitation of VAE 

which tends to generate averaged and blurry images and lack of variety in generated images (17). In addition, 

not only aging but several cognitive, healthy and nutritional factors affect brain metabolic patterns (18, 19). 

Because of the multiple factors affecting brain metabolism, accurate individual prediction is substantially 

difficult. In this study, we simply assumed that other factors of future brain PET except age are unchanged. As 

multiple factors could determine metabolic topography, the generative model with multiple conditions such as 

cognitive score may improve future PET prediction. Furthermore, combination of another generative model 

such as generative adversarial model may improve the prediction accuracy (20).  

Population distribution of metabolic topography revealed that APOE4 carriers showed higher metabolism in 

the calcarine and lingual cortex, while lower metabolism in the hippocampus and amygdala before 55. The 

difference in these regions were not found after 60, which suggested that age-related metabolic changes of these 

regions were greater in APOE4 carriers than noncarriers. The relationship between APOE4 and brain 

metabolism in normal elderly has been investigated in previous studies as well (21). The regions which showed 

difference metabolism in accordance with APOE4 status were partly different as the previous study showed that 

metabolic decline was faster in composite region-of-interests including posterior cingulate, precuneus and lateral 

parietal cortices (21). Beside, another study using functional MRI showed APOE4 status affected the 

differentiation of functional networks including hippocampal and visual networks though they used different 

modality (22). Structural MRI study showed that APOE4 carriers tended to have thicker cortex in 

temporooccipital areas and steeper age-related decline in cortical thickness (23). Although the regions related to 

APOE4 were partly different according to the studies, our result supports APOE4 carriers could affect functional 
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brain aging patterns. Additionally, by estimating population distribution, we could identify regional metabolic 

difference at all ages. Our approach can be extended to investigation of the association between other clinical 

variables and age-related changes. It can eventually help find the factors that determine the individual variability 

in aging.  

To our knowledge, this is the first report that applies a generative model to estimate aging of high 

dimensional medical data. As an extended application of our approach, PET data according to interpretable 

features, such as sex and cognitive scores, can be generated by using conditional VAE which aimed at 

synthesizing virtual data from the conditional distribution (24, 25). This conditional generative model can be 

used for various problems in neuroimaging analyses. For example, the model may be used for predicting several 

task-specific functional brain images from a single image data. Virtual task-related brain images can be 

predicted by inputting tasks as conditional inputs of VAE model. Furthermore, this approach would improve 

conventional statistical voxelwise analyses of neuroimaging data. An important limitation of the voxelwise 

analysis is the presence of multiple covariates (26, 27). So far, covariates such as subject’s age and brain volume 

have been handled as nuisance variables using general linear model. Instead, virtual neuroimaging data in same 

conditions can be generated by this approach. For instance, we can compare brain images of different groups by 

generating virtual data with controlled covariates such as same age and brain volume.  

As a deep generative model may be able to precisely predict high dimensional data, future application will 

be extended to various medical implications. Recently, generative models have been used in various biomedical 

fields as well as neuroimaging data. A generative model was applied to generating novel molecular fingerprints 

as an artificial intelligence drug discovery framework (28). As a recently developed application to medical 

image processing, generative model was used for automatic lesion segmentation (29). 

In our study, we predict aging of metabolic topography by generating PET images. In spite of individual 

variability in age-related change, future regional metabolic changes were precisely predicted. Population 

distribution of normal brain metabolism at different ages was estimated. It revealed that regional metabolic 

decline was different according to the APOE4 status. This brain metabolic change prediction method can 

provide a plausible explanation of individual variability in cognitive aging. Furthermore, we expect that this 

approach will be extended to the development of preclinical biomarker for several neurodegenerative disorders 

as well as defining abnormal brain aging.   
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Materials and Methods 

Subjects 

In this study, the data included subjects recruited in Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

with FDG PET images (http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD, VA Medical Center and University of 

California San Francisco. ADNI recruited subjects from over 50 sites across the US and Canada. The primary 

purpose of ADNI has been to test whether serial imaging and biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early AD. For up-to-

date information, see http://www.adni-info.org. Written informed consent to cognitive testing and neuroimaging 

prior to participation was obtained, approved by the institutional review boards of all participating institutions. 

393 cognitively normal subjects without Alzheimer’s dementia or mild cognitive impairment performed baseline 

FDG PET (Age: 73.7 ± 5.9, range 56.1-90.1). These PET data and their age information were used for 

developing the model. All subjects underwent clinical and cognitive assessment at the time of acquisition. APOE 

genotyping was performed on DNA samples obtained from blood. For detailed information on DNA sample 

preparation and genotyping, see http://www.adni-info.org. For 393 subjects, 113 (28.8%) were APOE4 carriers 

and 280 (71.2%) were APOE4 noncarriers.  

 

FDG PET preparation 

All the PET images were downloaded from ADNI database. FDG PET images were acquired 30 to 60 min 

and the images were averaged across the time frames and standardized to have same voxel size (1.5 x 1.5 x 1.5 

mm). PET images were acquired in the 57 sites participating in ADNI, scanner-specific smoothing was 

additionally applied (30). PET images were spatially normalized to the Montreal Neurological Institute (MNI) 

space using statistical parametric mapping (SPM8, www.fil.ion.ucl.ac.uk/spm). Each PET image was divided by 

mean FDG uptake of the cerebellum for normalization. 

 

Variational autoencoder for PET volumes 

We utilized VAE model to generate virtual PET data according to age information. VAE-based PET image 

generation is summarized in Fig. 1A. VAE is a type of unsupervised learning methods which could represent the 

high-dimensional data to low-dimensional features. The major strength of the VAE is to generate virtual data 
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from latent features. VAE consisted of two components, encoder and generator. Encoder reduces the dimension 

of data by compressing them to latent features and generator produces the data from any values of latent features. 

The generator of VAE is a probabilistic generator which assumes that the data were generated from some 

conditional distribution and an unobserved variable z in latent space. Thus, the probabilistic generator can be 

defined by ����|��. θ represents the parameters of generator. The posterior distribution ����|�� can be 

obtained by prior distribution p(z), ����|��~ ��������|��. Variational Bayes learns both parameters, ����|�� 

and an approximation 
���|�� to the intractable true posterior ����|��. This is achieved by the loss function,  

L��, θ� �  ���~����|�	�log ����|��� �  ���
���|�� � ������ 

where KL is Kullback-Leibler divergence between the learnt latent distribution and the prior distribution �����, 

acting as a regularization term (9). The first term represents reconstruction loss of autoencoder.  

In this study, we applied VAE with age information to generate PET image, so used VAE conditioning on 

another description of the data, y (i.e. age information). This model is aimed to generate data from the 

conditional distribution as well as latent features z. Thus, the probabilistic generator and the encoder can be 

defined by ����|�, �� and 
���|�, ��, respectively. The loss function is changed to,  

L��, θ� � ���~����|�	�log ����|�, ��� �  ���
���|�, �� � ������ 

To train VAE, data X and age information y were encoded into parameters in a latent features Z, and decoder 

network reconstructs data from the latent features and y assuming latent features have normal distribution 

around encoded feature z. In practice, generator input was resampled by the encoded latent features z assuming 

normal distribution:�
������� � �������
 � ��� � �, where � represents a random variable (9).  

 

Network architecture and training 

To encode 3-dimensional PET volume, we used multiple 3D convolutional layers for encoding. Specific 

parameters for network architecture are summarized in fig. S8. After the multiple convolutional and pooling 

layers, 3D feature volumes are changed to 1-dimensional features. These features are merged by age information 

of each subject and additionally connected to hidden layers and, finally, connected to 10 latent features. 

Accordingly, initial PET volume with 79×95×68 matrix is compressed into 10 dimensional features. Conversely, 

the generator consists of convolutional and upsampling layers. Upsampling simply repeats each dimension of 

the data. Input variables of the generator include 10 latent features and age information. The generator decodes 
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these inputs to PET volume.  

This conditional VAE model was trained by gradient descent algorithm (Adadelta) (31) and took 50 epochs 

for the training. The VAE was implemented using a deep learning library, Keras (ver. 1.2.2) with Theano (ver. 

0.9.0) backend (32). 10% of all PET data were used for validation set to determine epoch number and 

hyperparameters for the neural network architecture.  

 

Estimation of metabolic activity in brain regions 

Regional metabolic activity of brain regions was obtained using predefined volume-of-interests (VOI), 

automated anatomical labeling (AAL) template. As all PET images were spatially normalized to MNI template, 

mean metabolic activity value of each brain region was simply obtained by masking specific brain region.  

 

Prediction of future PET and comparison with follow-up PET 

4-year follow-up FDG brain PET scans were obtained in 26 cognitively normal subjects who underwent 

baseline PET scans. 5-year follow-up FDG brain PET scans were acquired in 11 cognitively normal subjects. 

Longitudinal change in brain metabolism was evaluated in these subjects. Using baseline PET images of the 

subjects and age, we generated future PET images. To generate individual future PET image, firstly, baseline 

PET image was represented into latent features using the encoder. We hypothesized that these latent features 

were unchanged regardless of subject’s age. 10 latent features of a subject and future age (i.e. baseline age + 4 or 

5) were used for generator. We compared real follow-up PET and predicted PET by using delta maps. To 

measure similarity between predicted and real metabolic changes, voxelwise correlation coefficient was 

calculated. Similarity measurements were individually obtained. We statistically tested whether other variables 

including baseline age, gender, APOE4 status, MMSE and follow-up diagnosis affected the prediction of 

metabolic changes. The similarity measurements, correlation coefficients, of the group according to the APOE4 

status, gender and follow-up diagnosis were statistically compared using independent t-test. They were 

correlated with continuous variables (age and MMSE) using Pearson correlation.  

In addition, overall predicted and real regional changes were calculated by AAL map. Overall regional 

metabolic change was calculated by mean value across all subjects. The correlation between regional metabolic 

changes of predicted and real follow-up PET across brain regions was tested by Pearson correlation. For 

visualizing the similarity between predicted and real metabolic changes, Bland-Altman plots were drawn. 95% 
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confidence interval for error of predicted regional metabolic change was calculated.  

 

Generation of age-related metabolic change movie 

The overall age-related metabolic change pattern was evaluated by the generator model. Firstly, PET data of 

all subjects were represented by 10 latent features using encoder. The mean feature values were entered into the 

generator with different age information between age of 50 and 100. Thus, we could obtain representative PET 

image of each age. To visualize age-related metabolic change, we generate subtraction map. Generated PET 

images with different age was subtracted by a representative brain PET generated by age of 50. These 

subtraction maps were also visualized by an animation.  

 

Population distribution of regional metabolic activity at each age 

We estimated population distribution of regional metabolic activity by resampling generated PET images. 10 

latent features were randomly resampled assuming each latent feature has normal distribution. Mean and 

standard deviation of each latent feature were determined by the feature values of all subjects. 1000 resampled 

brain PET images were generated and regional metabolic activity was obtained. Population distribution of 

metabolic activity of each region was drawn by histograms and age-related changes with confidence intervals 

were drawn.  

 

Metabolic topography according to latent features 

To assess the relationship between latent features and brain metabolic patterns, brain PET images were 

generated by changing values of the latent features. Mean values of latent features were used for generating PET 

except two features for estimating effects on brain metabolism. These two features were changed from -2.0 to 

2.0 and generated virtual PET images for plotting.  

 

Variability in age-related metabolic change according to APOE4 status 

To evaluate age-related metabolic change patterns according to the APOE4 status, another VAE model was 

trained. Conditional VAE with age and APOE4 status information was used, so, conditional variable, y, includes 

age and APOE4 status as different dimensions. The training process and network architectures were same with 

conditional VAE with age only.  
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The overall age-related metabolic change patterns according to APOE4 status was evaluated as population 

distribution estimation. Randomly resampled latent features and different age values were entered into the 

generator with each APOE4 status respectively. PET images of each age and APOE4 status were generated and 

regional metabolic activity was obtained by predefined regions. Population distribution of regional metabolic 

activity was estimated for APOE4 carriers and noncarriers. To find statistically different regions, we calculated 

the difference between regional metabolic activity generated by APOE4 carriers and noncarriers. To define 

statistical significance, p-values were computed by distribution of the difference. They were proportion values 

that represented the difference was less than or more than 0. Brain regions with different metabolic activity were 

found at each age. The difference with uncorrected p-value less than 0.05 was regarded as significant brain 

regions.  
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Supplementary Materials 

Fig. S1. Voxelwise correlation between predicted and real metabolic changes.  

Fig. S2. Similarity between predicted and real metabolic changes for individual subjects.  

Fig. S3. Overall brain metabolism aging patterns.  

Fig. S4. Regional metabolic changes of all brain regions.  

Fig. S5. Distribution of difference of regional metabolic activity between APOE4 carriers and noncarriers.  

Fig. S6. Age-related metabolic changes according to APOE4 status.  

Fig. S7. Age-related metabolic change estimated by linear regression.  

Fig. S8. Network architecture of variational autoencoder model.  
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