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Abstract  

The functions of numerous bacterial proteins remain unknown because of the variety of their 

sequences. The performances of existing prediction methods are highly weak toward these proteins, 

leading to the annotation of “hypothetical protein” deposited in NCBI database. Elucidating the 

functions of these unannotated proteins is an urgent task in computational biology. We report a 

method about secondary structure element alignment called SSEalign based on an effective training 

dataset extracting from 20 well-studied bacterial genomes. The experimentally validated same genes 

in different species were selected as training positives, while different genes in different species were 

selected as training negatives. Moreover, SSEalign used a set of well-defined basic alignment 

elements with the backtracking line search algorithm to derive the best parameters for accurate 

prediction. Experimental results showed that SSEalign achieved 91.2% test accuracy, better than 

existing prediction methods. SSEalign was subsequently applied to identify the functions of those 

unannotated proteins in the latest published minimal bacteria genome JCVI-syn3.0.  Results indicated 

that At least 99 proteins out of 149 unannotated proteins in the JCVI-syn3.0 genome could be 

annotated by SSEalign. In conclusion, our method is effective for the identification of protein 

homology and the annotation of uncharacterized proteins in the genome. 

 

1 Introduction 

Because of the recent advance of DNA sequencing technology, abundant protein sequences are 

deposited in the NCBI RefSeq database and EBI UniProt database [1]. Unfortunately, the annotations 

remain unknown for a large amount of these sequences. Elucidating the function of the unannotated 

protein is an important topic of research in computational biology. It is a common task to annotate 

newly identified proteins by homology search in protein sequence databases of known other species. 

In molecular biology, homology is described as a relationship where two genes share a common 

ancestor, such as the relationship of human p53 gene and the mouse p53 gene. Homology can be 

divided into orthology and paralogy according to whether they are present in the same species. In this 

study, we mainly focused on the homology in different species, i.e. orthology. 

Protein sequence comparison is the primary way for establishing homology. The routine method for 

annotation of protein-coding genes is identification of homologs by sequence alignment. For closely 

related proteins, homolog can easily be detected using conventional BLAST algorithm [2]. However, a 
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remarkable challenge exists in the field because many evolutionarily distantly related proteins may 

vary highly at the amino acid level, especially for bacterial proteins. The failure of homology detection 

of a protein will lead to “hypothetical protein” or “uncharacterized protein” in its annotation. 

In this study, we report a method that is specifically designed for homology identification of 

hypothetical proteins. Many tools are currently available for the detection of distantly related homology 

[3-5]. The two well-established tools are phmmer [4] and HHpred [5], both of which are widely used in 

homology identification in different species. Although these tools are supposed to be highly sensitive 

for remote homology detection, their performance in detecting protein homology in bacteria is sub-

optimal. This problem is particularly important in the novel genome annotation, which relies on 

sequence alignment to annotate the function of translated proteins. The reason for their failures is that 

they have used datasets of protein homology with a wide range of identities but not datasets within 

bacteria, whose alignment identity of protein homology often fall into the twilight zone (≤35%) [6]. To 

overcome this shortcoming, we strictly restricted the training dataset to be protein homology in the 

bacteria and specifically optimized parameters for detecting homology in this situation. 

In synthetic biology, one of the key focuses is how to build a minimal artificial cell which can provide 

suitable chassis for basic functional study. In 2010, the first version of minimal bacterial genome 

JCVI-syn1.0 had been reported by Gibson group with completely chemical synthesis, subsequently, 

this genome had been transplanted into the cell of Mycoplasma capricolum whose nucleus has been 

removed. This artificial genome had finally been demonstrated to possess the potential to self-

replication and alive in the basic culture medium [7]. Later, transposon mutagenesis technique [8] was 

applied to the genes of JCVI-syn1.0 to identify dispensable genes. Finally, a more compressed 

genome JCVI-syn3.0, which is smaller than any genomes of autonomously replicating cells reported 

before, was obtained [9]. The JCVI-syn3.0 genome is approximately 531kbp in size and consists of 

473 essential genes (438 protein-coding and 35 RNA-coding genes). The 438 protein-coding genes 

were then annotated by searching against TIGRfam database [10] and divided into two groups: 

  (a) kno3.0 genes: 289 genes whose functions are clearly known, including those genes whose 

functions are extensively studied and can be supported by multiple aspects of the evidence, such as 

genomic context and the structure information. 

  (b) unk3.0 genes: 149 genes whose functions are ambiguous and even completely unknown. As all 

these genes are essential for living organisms, we hypothesize that the 149 encoded proteins with 

unknown function should share homology with proteins in other bacteria.   

Previous studies have suggested that the evolution rate of the protein secondary structure (SS) is 

much slower than that of the amino acid [11]. After the evolution of million years, the amino acid 

sequences have greatly changed but their structures have not been disrupted. The protein secondary 

structure is also the basis of the tertiary structure of a protein and it can serve as a bridge that links 

the primary sequence and the tertiary structure for the functional analysis.  

The tools for protein secondary structure prediction have been extensively studied since the 1990s. 

These tools can be typically divided into two different categories: template-based prediction and ab 

initio prediction. Many of these computational methods are based on the close templates but a few for 

ab initio prediction. Among these tools, three of them (JPRED4 [12], PsiPred [13] and SSpro [14]) 
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have been widely used for protein secondary structure prediction. JPRED4 is a web-based tool and 

the query sequence has a limit of protein length (≤800 amino acids), making it not suitable for SS 

prediction in this study. PsiPred is a template-based tool for secondary structure prediction. 

Considering that close templates could not be available for the protein homology in the twilight zone, 

PsiPred is also not suitable for SSEalign. Recently, a study reported a comparison of the prediction 

accuracy of these tools using third-party datasets. They found that SSpro has the best prediction 

accuracy for CullPDB and CB513 datasets [15]. Furthermore, the ab initio prediction method had 

been highly improved recently, which makes it possible to predict the secondary structure of those 

proteins in the twilight zone. Therefore, SSpro with ab initio strategy was employed to conduct 

secondary structure prediction in SSEalign. 

In this study, we first trained our method in 20 well-studied bacteria to show the performance of the 

SSEalign. The line search optimization approach was used to derive the best scoring matrix for this 

application. The derived parameters were then applied to identify the homology among JCVI-syn3.0 

genome and several other well-annotated bacteria. Lastly, six variables were used to evaluate our 

homology results. 

 

2 Materials and Methods 

2.1 Benchmark Dataset 

The main objective of this work is to investigate how secondary structure information can be used 

to identify the corresponding homology for a set of protein sequences in bacteria.  We need a set of 

protein sequences (benchmark dataset) with known homology information to train and to test our 

method. Thus, the protein-coding genes in following 20 well-studied bacteria [16] were selected as 

benchmark dataset: Bacillus anthracis, Bacillus subtilis, Bifidobacterium longum, Clostridium 

botulinum, Clostridium tetani, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, 

Lactobacillus acidophilus, Mycobacterium tuberculosis, Mycoplasma genitalium, Pseudomonas 

aeruginosa, Rickettsia prowazekii, Salmonella typhimurium, Staphylococcus aureus, Streptococcus 

pneumoniae, Streptococcus thermophilus, Thermotoga maritima, Vibrio cholerae, Yersinia pestis. 

Genome annotation files of these 20 bacteria were obtained in Ensembl database [17].  

The benchmark dataset consisted overall positive and negative samples. The positive samples 

were composed of all homologous protein pairs in different species, for example, protein rpiL in E. coli 

and B. subtilis. After applying this criterion, 75,206 protein pairs were deposited into the positive 

dataset. If we select all the protein pairs as negative controls, the number of samples will be 

extremely large, leading to an extreme imbalance when compared with the positive dataset. Such 

imbalance will in turn dramatically affect the performance evaluation of model training in this type of 

machine learning problem [18, 19]. Therefore, only 75,206 non-homologous protein pairs were 

randomly picked to constitute negative dataset. To validate the robustness of our method, we 

repeatedly conducted this procedure of random sampling for 100 times to obtain different negative 

dataset for the downstream analysis.  
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  In literature, the benchmark dataset usually divided into a training and a testing dataset: the former 

is for the training the model, while the latter is for testing it. We randomly divided the benchmark 

dataset into training and test datasets using the ratio of 9:1 (10-fold cross-validation). Thus, the 

training dataset consisted of 67685 homologous (TRN-POS) and 67685 non-homologous (TRN-NEG) 

pairs, which the testing dataset consisted of 7521 homologous (TST-POS) and 7521 non-homologous 

(TST-NEG) pairs. 

 

2.2 The Basic Alignment Elements (BAEs) in SSEalign 

After obtaining the training dataset, the SSpro toolkits were used to conduct the protein secondary 

structure prediction using the ab initio prediction model with default parameters. The training dataset 

containing information of secondary structure element (SSE) was then created (Figure 1). To better 

show the actual performance of our method, the sequence with simple repeats were excluded. It has 

long been recognized that three different types of protein secondary structure are present in nature. In 

this study, the one-character alphabet was used to represent these secondary structures:  

H = Helix (mainly alpha helix);  

E = Sheet (mainly beta sheet);   

C = Random coil; 

To better evaluate the performance of our method, sequences with simple repeats were excluded.  

The EMBOSS-stretcher tool [20] was used to conduct the global sequence alignment of the SSEs of 

protein pairs. EMBOSS (European Molecular Biology Open Software Suite) is a free open source 

software for molecular biology. Within the EMBOSS, the stretcher tool is an effective package for 

global alignment.  After finishing this process, the alignments were segregated into eight basic 

alignment elements. 

 

 Eight possible BAEs could be found in the secondary structure alignment generated by SSEalign: 

 

   HH = H coordinates with H in the SSEalign 

   EE = E coordinates with E in the SSEalign 

   CC = C coordinates with C in the SSEalign  

   HE = H coordinates with E, or E coordinates with H in the SSEalign 

 HC = H coordinates with C, or C coordinates with H in the SSEalign 

 EC = E coordinates with C, or C coordinates with E in the SSEalign 

 

GN = number of gaps in the SSEalign 

GO = number of gap openings in the SSEalign 

 

2.3 Scoring system of SSEalign 

It is very probable that the contribution of eight BAEs was very different in the sequence alignment. 

To optimize the performance of the SSEalign, we developed a customized evaluation index: Widen 
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(Weighted identity), to evaluate the alignment. The Widen value varies in the range [0%, 100%] and it 

can be recognized as the analog of “alignment score” generated by BLAST. Then, similarity of a two-

sequence alignment can be described by the index Widen: Widen = 0%, totally different; Widen = 

100%, completely identical. The formula of Widen is shown in formula (1) 

100%
( )

iden

HEC

i i

i S

i i GO GO GN GN GO

i S

N

Widen
N N N N



  





 
  




                                         (1) 

HECS is the set of all the possible BAEs consisted of three types of secondary structures in the 

sequence alignment,
 
 i.e. { , , , , , }HECS HH EE CC HE HC EC .

 

idenS is the set of all the identical matches of BAEs , i.e. { , , }idenS HH EE CC
.   

i is the coefficient of BAEs, i.e. [ , , , , , ]HH EE CC HE HC EC        

iN is the number of correspondent BAEs in the alignment.  

GN is the coefficient of gap, i.e. penalty for gap extension. 

GNN is the number of gaps in the alignments. 

GO is the coefficient of gap openings, i.e. penalty for opening the first gap in the alignment 

GON is the number of gap openings excluding those gaps at both ends. 

2.4 Optimization method in training dataset 

In this optimization process, we try to minimize the overlap of Widen values of positive and negative 

dataset: The Widen values of the positive dataset could be as large as possible meanwhile the Widen 

values of negative dataset could be as small as possible. Thus, we defined the following formula (2) 

to indicate the separation degree of the positive and negative dataset: 

Separation Degree ( ) POS NEG

POS NEG

D
 


 





                                                                       (2) 

POS is the mean of Widen values in the positive dataset.  

NEG is the mean of Widen value of values in the negative dataset.  

POS is the standard deviation of Widen values in the positive dataset.  

NEG is the standard deviation of Widen values in the negative dataset. 

To maximize the separation degree in our study, the backtracking line search approach was applied 

to derive the best scoring coefficient   to separate the positive and negative dataset. The 

backtracking line search approach is an efficient iterative method to find extreme points based on a 

start point.  In this optimization process, we used the following 
0  as a start point to derive the best 

scoring matrix.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/200915doi: bioRxiv preprint 

https://doi.org/10.1101/200915
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 [ , , , , , , , ] [1,1,1, 1, 1, 1, 1, 1]HH EE CC HE HC EC GN GO              
 

2.5 Criterion for homology identification 

False discovery rate (FDR) was introduced to identify the appropriate threshold of Widen value for 

homology identification. The FDR is defined as the expected ratio of false positives among the 

predicted significant results and serves as a more convincing scale than p-value scale because of its 

directly useful interpretation [21]. The FDR will be 0.5 if identifying homology by random selection. 

FDR value was defined in the following formula (3). 

False Discovery Rate   
0

0

0 0

( )
( )

( ) ( )

NEG

POS POS

F w
R w

F w F w



                                                          (3) 

w0 is the given Widen value.  

POSF is the complementary cumulative distribution function of Widen values of the positive dataset.  

NEGF is the complementary cumulative distribution function of Widen values of the negative dataset.  

The FDR values towards different Widen values were calculated. The criterion FDR=0.01 was 

frequently used as a cutoff in previous biological studies [22-24]. Thus, this cutoff was also adopted in 

the study for the homology identification. 

2.6 The performance of SSEalign and compared methods on testing dataset 

Currently, several tools were published for distantly related homology identification, such as 

phmmer  and HHpred . The phmmer is a toolkit of HMMER3 which detect the homology via sequence 

profile comparison while the HHpred is a toolkit of HHsuite which detect the homology by HMM-HMM 

comparison. These tools were benchmarked with our SSEalign tool based on testing datasets. For 

phmmer, a cutoff e-value≤1e-5 was used in the all-against-all strategy in the testing dataset. For 

HHpred, each protein was searching against the testing dataset with HHBlits as the HMM generation 

method.  

To illustrate the performance of SSEalign and compared methods, the ROC (Receiver Operating 

Characteristic) curves were plotted. The ROC curve plots true positive rate (Sensitivity) against the 

false positive rate (1-Specficity) and their definitions were shown in formulas (4) and (5) 

100%
TN

Specificity
TN FP

 


                                                                                      (4) 

100%
TP

Sensitivity
TP FN

 


                                                                                        (5) 

In the formulas, TP: true positives; FN: false negatives; TN: true negatives; and FP: false positives. 

The best prediction model could produce a point with the coordinate (0,1), which indicates 100% 

true positive rate and 0% false positive rate. To avoid the threshold setting bias, the area under the 

curve (AUC) was frequently used to show the performance quality of binary classification methods [25, 
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26]. A completely random guess will yield the AUC value 0.5, while a perfect model will yield the AUC 

value 1.0.  

2.7 SSEalign Application: JCVI-syn3.0 genome annotation 

Very recently, Gibson group has published the latest minimal bacterial genome JCVI-syn3.0 which 

was only consisted of 473 genes (438 protein-coding genes and 35 RNA-coding genes).  The 438 

protein-coding genes can be divided into 289 proteins with clear function (kno3.0 dataset) and 149 

proteins with unknown functions (unk3.0 dataset). 

The method of pairwise BLAST with the cutoff E-value≤1e-5 was applied in the kno3.0 dataset to 

identify the homology among the genomes of JCVI-syn3.0 and the 20 selected bacteria. The numbers 

of shared genes in the 20 bacteria were further enumerated. The top three species (E. coli, B. subtilis 

and H. influenzae) sharing the highest number of genes with JCVI-syn3.0 were selected for SSEalign 

analysis. The secondary structures of unk3.0 protein and proteins in these three selected bacteria 

were then predicted by the toolkit SSpro. The pairwise global sequence alignments of the generated 

secondary structure elements were conducted by EMBOSS-stretcher with the scoring matrix derived 

from the process of “Optimization Method”. The hitting sequences with FDR ≤ 0.01 were designated 

as homologous protein candidates.  

To evaluate the prediction accuracy of our method, the following six parameters of homologous 

protein candidates were applied.  

(a) Protein domain: We hypothesize that homologous proteins tend to share the same protein 

domains. The domain information of these proteins was predicted by Pfam [27] and InterProScan [13] 

by using the default parameters. If the protein pairs of homology candidates share the same domains, 

then the two homologous protein candidates were considered supported in the parameter of protein 

domain. 

(b) Feature binding site: We hypothesize that feature binding sites, such as ATP-binding site and 

metal binding site, are conserved in homologous proteins during evolution. The homologs of unk3.0 

proteins in E. coli, B. subtilis and H. influenzae were singled out to conduct the multiple sequence 

alignments by CLUSATLX using default parameters. The feature binding sites of these proteins in the 

three species were then retrieved from the UniProt database. If the corresponding featured binding 

sites could be found in unk3.0 proteins, the homologous protein pairs were considered supported in 

the parameter of feature binding sites. 

   (c) Gene synteny: We hypothesize that homologs tend to share the same gene synteny in different 

genomes, which means the upstream and downstream genes were the same for a certain gene in 

different species [28]. The gene loci of proteins in each genome were identified by searching against 

the corresponding genome with tBLASTn. It has been reported that average length of synteny block 

among distant species is about 150kbp [29]. Thus, the neighboring genes within 75kbp upstream and 

75kbp downstream of a certain gene were compared in each species. The homologous protein pairs 

with the same corresponding gene synteny were considered supported in the parameter of gene 

synteny.  
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   (d) Protein-protein interaction: As these genes were known as minimal essential genes, we 

hypothesize that their encoded proteins tend to interact with each other [30]. The protein-protein 

interaction (PPI) datasets of E. coli were obtained from BioGrid database, which includes PPI network 

of E. coli genes curated from most recently published papers [31]. The PPI network of homologous 

proteins of JCVI-syn3.0 predicted by BLAST (kno3.0) and SSEalign (unk3.0) in E. coli were then 

constructed by Cytoscape [24]. If the homologous proteins predicted by SSEalign in E. coli can 

interact with those predicted by BLAST, the homologous protein pairs were considered supported in 

the parameter of protein-protein interaction. 

   (e) Essential gene: We hypothesize that the genes in JCVI-syn3.0 are also essential genes in other 

species. We collected 296, 271 and 431 essential genes of E. coli, B. subtilis and H. influenzae, 

respectively, from previous studies [32-34]. If the homologous genes were also essential genes in E. 

coli, B. subtilis or H. influenzae, these homologous gene pairs were considered supported in the 

parameter of essential gene. 

  (f) Phylogenetic topology: We hypothesize that homologous proteins tend to cluster with each other 

in the phylogenetic tree [35]. The unk3.0 proteins and their homologs in other bacteria were selected 

to construct phylogenetic trees by CLUSTALX and MEGA [36]. If the unk3.0 protein and its homologs 

can be clustered in a single branch in the phylogenetic tree, the homologous protein pair was 

considered supported in the parameter of phylogenetic tree topology. 

The rigorous criteria for these parameters were applied to the homologous protein candidates to 

check if they were supported in each parameter. The number of supported parameters for each 

homologous protein pair was then calculated and the cumulative distribution was plotted. The 

homologous protein candidates which have support in at least three parameters were considered as 

homologs in this study. 

 

3 Results and Discussion 

3.1 The performance of SSEalign and compared method 

   After screening proteins within 20 well-studied bacteria, 75,206 homologous protein pairs (positive 

samples) and 75,206 randomly selected non-homologous protein pairs (negative samples) were 

selected as the benchmark dataset. The benchmark dataset was divided into training datasets 

(67,685 homologous and 67,685 non-homologous pairs) and testing datasets (7,521 homologous and 

7,521 non-homologous pairs) by the 10-fold cross-validation. The secondary structure elements 

(SSEs) of training dataset were then predicted by the SSpro toolkits to get the Training-SSE dataset.  

Subsequently, the global alignment was applied to the protein pairs in positive and negative 

datasets. The numbers of basic alignment elements (BAEs) of each alignment were then recorded 

and transformed into the alignment information matrix. This alignment information matrix and the 

initial values of scoring matrix 
0 [1,1,1, 1, 1, 1, 1, 1]       were inputted into the backtracking line 

search script in MATLAB software to derive the best scoring matrix for SSEalign. After many 

thousands of iterations, we obtained the best scoring matrix for each BAE of the global alignment. We 
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found that the prediction accuracy was not affected by the random selection of negative dataset, 

indicating that the SSEalign is robust in the different negative datasets. 

The best scoring matrix for each BAE of the global alignment were showed in following equation: 

      [1.796,2.374,0.351, 2.478, 0.557, 0.460, 1.157, 2.737]best                      

In this equation, the indicated values were the correspondent coefficients of [HH, EE, CC, HE, HC, 

EC, GN, GO], respectively. As expected, the helix (H) and sheet (E) are more indicative in sequence 

than the random coil (C), with identity coefficients of 1.796 and 2.374, respectively. Thus, the penalty 

scores of "HC" and "EC" are obviously smaller than that of "HE". A “GO” penalty score of -2.737 and 

“GN” score of -1.157 indicate that sequences differ greatly in length will not be homologous because 

abundant gaps will be present in the global alignment. Such gaps will significantly reduce the Widen 

value and alignments containing large numbers of gaps will be neglected during the homology 

identification. 

Figure 2 shows the FDR of homology identification by different Widen values. Based on these 

results, the Widen value of 59.18% when FDR is 0.01 was identified. This indicated that the false 

possibility to identify two homologous sequences in the region of Widen≥59.18%, was lower than 1%. 

This Widen value was used as the significance cutoff in subsequent analysis. 

The comparison of performance of SSEalign and other available tools for homology identification 

based on the testing dataset were shown in Figure 3. For this dataset, the AUC values for three tools 

(SSEalign, HHpred and phmmer) were 0.912, 0.841 and 0.804, respectively. The SSEalign has an 

obvious better performance when compared with HHpred and phmmer, implying that our method is 

robust for homology identification in different species. The prominent performance of SSEalign will 

help us to re-annotate those proteins with unknown functions, especially for the bacterial proteins 

because their diversities were much higher than proteins of higher organisms. 

 

3.3 Annotation of the genome JCVI-syn3.0 

The genome JCVI-syn3.0 consisted of 438 protein-coding genes and 35 RNA-coding genes. The 

protein-coding genes could further be divided into kno3.0 dataset whose function was known and 

unk3.0 dataset whose function was unknown. A total of 289 proteins were present in the kno3.0 

dataset and their identities could be easily identified by BLAST with a cutoff e-value≤1e-5.  We found 

that the kno3.0 proteins shared 268 homologs with predicted proteins of E. coli. The numbers of 

homologs of the kno3.0 dataset in B. subtilis and H. influenzae were also very high (243 and 231, 

respectively).  

Clustering of these 289 proteins showed that the top categories were 50S ribosomal proteins, 30S 

ribosomal proteins and DNA polymerases, which constituted 11.2% (30/289), 7.4% (20/289) and 

3.3% (9/289), respectively (Table 1). The 50S and 30S ribosomal proteins are the basic components 

of prokaryotic ribosomes and they are highly conserved among all the species. Thus, these proteins 

can be easily annotated by conventional methods.  

We then identified homologs of the unk3.0 proteins in three bacteria (E. coli, B. subtilis and H. 

influenzae) using the SSEalign. Homologs with an FDR cutoff≤0.01 were selected as homology 

candidates for further evaluation. The performance of SSEalign is satisfactory because homology 
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candidates could be found in 91.3% (136/149) of the unk3.0 proteins. We then assigned these 136 

proteins into different functional categories by DAVID enrichment analysis and the results were shown 

in Table 2. The two largest groups of proteins were nucleotide-binding proteins (45 members, 30.2% 

of unk3.0) and ATP-binding proteins (43 members, 28.9% of unk3.0). The nucleotide-binding was a 

critical step for gene replication and transcription while ATP-binding was the determinant process for 

energy production and utilization in metabolic processes. Thus, it is not surprising that these proteins 

are essential for living cells. A relatively small group of proteins was transferases (40 proteins, 26.8% 

of unk3.0), which were commonly used for transferring the acetyl, methyl and phosphate group during 

the cell cycle, making them indispensable in the minimal bacterial genome It is well known that 

transferases and proteins for binding were highly diverse in different species [37], leading to the 

failure in previous homology identification because they fell into the twilight zone when searching 

against the TIGRfam database. However, the secondary structures of these proteins were highly 

conserved in all species, explaining why SSEalign has such an excellent performance for the 

annotation of these proteins. 

Subsequently, the identified homologs were further evaluated using six parameters (protein domain, 

feature binding site, gene synteny, protein interaction, essential gene and phylogenetic topology) to 

validate the reliability of our method. Such parameters are independent functional supports of 

homology pairs identified by SSEalign. We found that 94.1% (128/136) of homologous proteins were 

supported by at least two parameters and 72.8% (99/136) of them were even supported by three or 

more parameters (Figure 4). Table 3 showed the identified homologs of the unk3.0 dataset with the 

top 10 Widen value in E. coli. Among these proteins, most of them were supported by at least four 

parameters, including MMSYN_0371 (annotated as cydC) and MMSYN1_0039 (annotated as ftsH).  

The cydC and ftsH proteins are two kinds of highly diverse proteins in bacteria and the homology 

identifications of these two proteins in the new species by previous published computational biology 

method is very challenging [38, 39]. But their secondary structure is extremely conserved so our 

method can successfully detect it in JCVI-syn3.0. 

The MMSYN1_0371 and MMSYN1_0039 shared extremely low FDR values, 3.2E-6 and 6.4E-6, 

with E. coli proteins cydC and ftsH, respectively. The multiple sequence alignment of ftsH proteins in 

4 genomes (JCVI-syn3.0, E. coli, B. subtilis and H. influenzae) showed that 191 amino acids were 

exactly conserved. For the gene synteny analysis of ftsH, the gyrA is in its adjacent upstream region 

and the lysS is in its adjacent downstream region, which is consistent with their loci in the B. subtilis 

(Figure 5). In summary, these evaluation results further suggested that our annotation results of 

unk3.0 proteins by SSEalign were very convincing. 

 

4 Conclusion 

In conclusion, we developed a novel method to identify protein homology in the bacteria. The 

optimization method of backtracking line search was applied to obtain the best scoring matrix for 

secondary structure element alignment. Performance results on testing dataset showed that the 

SSEalign achieved a ROC value as high as 0.912, obviously better than existing prediction methods. 

The SSEalign was then applied to the minimal bacterial genome JCVI-syn3.0 to identify homologs of 
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proteins that cannot be annotated using previous methods. Among these proteins, 99 members of 

them were considered homologous between the JCVI-syn3.0 genome and other well-studied bacteria. 

These genes have not been annotated in this genome before and may reveal new information about 

the essential mechanisms in living organisms. We have the confidence that the SSEalign and the 

evaluation strategy reported in this study are also useful for re-annotation of those proteins with the 

annotation of "hypothetical proteins" or "uncharacterized proteins" in the NCBI RefSeq database or 

EBI UniProt database. In conclusion, our method can remarkably fill the gaps in genome biology and 

expand the territory of systems biology.   
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 Captions for Figures and Tables  

 

Figure 1 – The flowchart of the SSEalign pipeline. SSE: secondary structure element; TRN-POS: 

positive samples in training dataset; TRN-NEG: negative samples in training dataset; BAEs: basic 

alignment elements, i.e. [HH, EE, CC, HE, HC, EC, GN, GO]; SD: Standard Deviation. 

 

Figure 2 –The FDR of homology identification by different Widen value. The dashed line shows the 

Widen value to achieve FDR=0.01 

 

Figure 3 - performance of SSEalign and compared method on the testing dataset. The red, blue and 

black curves indicate the performance of SSEalign, HHpred and phmmer, respectively. 

 

Figure 4 – The numbers of proteins supported by different parameters. The x-axis indicated the 

number of six parameters: protein domain, feature binding site, gene synteny, protein-protein 

interaction, essential gene and phylogenetic topology. The y-axis indicates the number of proteins 

supported by the number of parameters in the correspondent x-axis. 

 

Figure 5 – Gene synteny analysis of ftsH in genomes of JCVI-syn3.0 and B.subtilis. The numbers are 

the correspondent gene loci of in the genome. For the ftsH, its upstream and downstream genes are 

gyrA and lysS, respectively, in both JCVI-syn3.0 and B. subtilis genome  

 

 

Table 1 – The main categories of identified proteins of kno3.0 dataset 

Table 2 – The main categories of identified proteins of unk3.0 dataset 

Table 3 – The top 10 identified protein of unk3.0 protein in E.coli genome. The p-value indicated that 

the possibility to achieve a correspondent Widen value by random selection. The FDR value indicated 

that the expected false discovery rate of claimed homology of these two proteins 
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Figure 1 – The flowchart of the SSEalign pipeline. 
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Figure 2- The FDR of homology identification by different Widen value 

 

 

 

 

 

Figure 3 - performance of SSEalign and compared method on the testing dataset. 
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Figure 4 – The numbers of proteins supported by different parameters. 

 

 

Figure 5 – Gene synteny analysis of ftsH in genomes of JCVI-syn3.0 and B.subtilis. 
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Table 1 – The main categories of identified proteins of kno3.0 dataset 

No. Category 
Member 

number 

Proportion 

of kno3.0 
Genes 

1 50S ribosomal protein 30 11.20% rplA~rplX, rpmA~rplJ  

2 30S ribosomal protein 20 7.40% rpsB~rpsU  

3 DNA polymerase 9 3.30% dnaA~dnaX  

4 ATP synthase  8 3.00% atpA~atpH  

5 RNA polymerase  5 1.70% rpoA~rpoE  

6 Protein translocase  5 1.70% secA~secY  

 

 

 

 

Table 2 – The main categories of identified proteins of unk3.0 dataset 

No. Group name 
Member 

number 

Proportion 

of unk3.0 

Enrichment  

p-value 

1 Nucleotide-binding protein 45 30.2% 2.1E-14 

2 ATP-binding protein 43 28.9% 3.6E-14 

3 Transferase 40 26.8% 9.5E-07 

4 Hydrolase 26 17.4% 9.8E-06 

5 Transport protein 21 14.1% 2.8E-05 

6 Metal-binding 20 13.4% 2.2E-06 

7 Lyase 19 12.8% 1.6E-07 

8 Ligase 18 12.1% 7.6E-09 

9 Nucleotidyltransferase 12 8.1% 8.4E-07 

10 Helicase 11 7.4% 6.3E-09 

 

 

 

 

 

Table 3 – The top 10 identified protein of unk3.0 protein in E.coli genome 
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Query ID 
Homolog 

in E. coli 
Description  Widen% FDR 

MMSYN1_0350 hupA 
DNA-binding protein HU-alpha  

96.32 4.8E-07 

MMSYN1_0504 rsmI ATP-binding/permease protein 

CydC 

91.65 2.8E-06 

MMSYN1_0371 cydC Ribosomal RNA small subunit 

methyltransferase I  

91.33 3.2E-06 

MMSYN1_0872 ychF 
Ribosome-binding ATPase YchF 

90.39 4.5E-06 

MMSYN1_0372 cydD ATP-binding/permease protein 

CydD 

89.75 5.6E-06 

MMSYN1_0039 ftsH ATP-dependent zinc 

metalloprotease FtsH  

89.4 6.4E-06 

MMSYN1_0054 bcp 
Peroxiredoxin bcp  

89.38 6.4E-06 

MMSYN1_0326 znuB High-affinity zinc uptake system 

membrane protein ZnuB 

87.68 1.2E-05 

MMSYN1_0166 oppC Oligopeptide transport system 

permease protein OppC 

86.84 1.6E-05 

MMSYN1_0164 mreD Rod shape-determining protein 

MreD 

83.04 5.4E-05 
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