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Abstract

Background: In the absence of horizontal gene transfer it is possible to reconstruct the his-
tory of gene families from empirically determined orthology relations, which are equivalent to
event-labeled gene trees. Knowledge of the event labels considerably simplifies the problem of
reconciling a gene tree T with a species trees S, relative to the reconciliation problem without
prior knowledge of the event types. It is well-known that optimal reconciliations in the unlabeled
case may violate time-consistency and thus are not biologically feasible. Here we investigate the
mathematical structure of the event labeled reconciliation problem with horizontal transfer.
Results: We investigate the issue of time-consistency for the event-labeled version of the reconcil-
iation problem, provide a convenient axiomatic framework, and derive a complete characterization
of time-consistent reconciliations. This characterization depends on certain weak conditions on
the event-labeled gene trees that reflect conditions under which evolutionary events are observ-
able at least in principle. We give an O(|V (T )| log(|V (S)|))-time algorithm to decide whether a
time-consistent reconciliation map exists. It does not require the construction of explicit timing
maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph
is acyclic. The algorithms are implemented in C++ using the boost graph library and are freely
available at https://github.com/Nojgaard/tc-recon.
Significance: The combinatorial characterization of time consistency and thus biologically fea-
sible reconciliation is an important step towards the inference of gene family histories with hor-
izontal transfer from orthology data, i.e., without presupposed gene and species trees. The fast
algorithm to decide time consistency is useful in a broader context because it constitutes an at-
tractive component for all tools that address tree reconciliation problems.

Keywords: Tree Reconciliation; Horizontal Gene Transfer; Reconciliation Map; Time-Consistency;
History of gene families
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1 Background
Modern molecular biology describes the evolution of species in terms of the evolution of the
genes that collectively form an organism’s genome. In this picture, genes are viewed as atomic
units whose evolutionary history by definition forms a tree. The phylogeny of species also forms
a tree. This species tree is either interpreted as a consensus of the gene trees or it is inferred from
other data. An interesting formal manner to define a species tree independent of genes and genetic
data is discussed e.g. in [15].

In this contribution, we assume that gene and species trees are given independently of each
other. The relationship between gene and species evolution is therefore given by a reconciliation
map that describes how the gene tree is embedded in the species tree: after all, genes reside in
organisms, and thus at each point in time can be assigned to a species.

From a formal point of view, a reconciliation map µ identifies vertices of a gene tree with
vertices and edges in the species tree in such a way that (partial) ancestor relations given by
the genes are preserved by µ . Vertices in the species tree correspond to speciation events. By
definition, in a speciation event all genes are faithfully transmitted from the parent species into
both (all) daughter species. Some of the vertices in the gene tree therefore correspond to speciation
events. In gene duplications, two copies of a gene are formed from a single ancestral gene and
then keep residing in the same species. In horizontal gene transfer (HGT) events, the original
remains within the parental species, while the offspring copy “jumps” into a different branch of
the species tree. Given a gene tree with event types assigned to its interior vertices, it is customary
to define pairwise relations between genes depending on the event type of their last common
ancestor [16, 20, 22].

Most of the literature on this topic assumes that both the gene tree and the species tree are
known but no information is available of the type of events [17, 35, 44, 42]. The aim is then
to find a mapping of the gene tree T into the species tree S and, at least implicitly, an event-
labeling on the vertices of the gene tree T . Here we take a different point of view and assume
that T and the types of evolutionary events on T are known. This setting has ample practical
relevance because event-labeled gene trees can be derived from the pairwise orthology relation
[24, 22]. These relations in turn can be estimated directly from sequence data using a variety
of algorithmic approaches that are based on the pairwise best match criterion and hence do not
require any a priori knowledge of the topology of either the gene tree or the species tree, see e.g.
[38, 3, 32, 2].

Genes that share a common origin (homologs) can be classified into orthologs, paralogs, and
xenologs depending whether they originated by a speciation, duplication or horizontal gene trans-
fer (HGT) event [16, 22]. Recent advances in mathematical phylogenetics [19, 24] have shown
that the knowledge of these event-relations (orthologs, paralogs and xenologs) suffices to construct
event-labeled gene trees and, in some case, also a species tree [18, 25, 20].

Conceptually, both the gene tree and species tree are associated with a timing of each event.
Reconciliation maps must preserve this timing information because there are biologically infea-
sible event labeled gene trees that cannot be reconciled with any species tree. In the absence of
HGT, biologically feasibility can be characterized in terms of certain triples (rooted binary trees
on three leaves) that are displayed by the gene trees [25]. In the presence of HGT such triples
give at least necessary conditions for a gene tree being biologically feasible [18]. In particular,
the timing information must be taken into account explicitly in the presence of HGT. That is, gene
trees with HGT that must be mapped to species trees only in such a way that some genes do not
travel back in time.

There have been several attempts in the literature to handle this issue, see e.g. [14] for a review.
In [33, 7] a single HGT adds timing constraints to a time map for a reconciliation to be found.
Time-consistency is then defined as the existence of a topological order of the digraph reflecting all
the time constraints. In [40] NP-hardness was shown for finding a parsimonious time-consistent
reconciliation based on a definition for time-consistency that in essence considers pairs of HGTs.
However, the latter definitions are explicitly designed for binary gene trees and do not apply to
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non-binary gene trees, which are used here to model incomplete knowledge of the exact gene
phylogenies. Different algorithmic approaches for tackling time-consistency exist [14] such as
the inclusion of “time-zones” known for specific evolutionary events. It is worth noting that a
posteriori modifications of time-inconsistent solutions will in general violate parsimony [33]. So
far, no results have become available to determine the existence of time-consistent reconciliation
maps given the (undated) species tree and the event-labeled gene tree.

Here, we introduce an axiomatic framework for time-consistent reconciliation maps and char-
acterize for given event-labeled gene trees T and species trees S whether there exists a time-
consistent reconciliation map. We provide an O(|V (T )| log(|V (S)|))-time algorithm that con-
structs a time-consistent reconciliation map if one exists.

2 Notation and Preliminaries
We consider rooted trees T = (V,E) (on LT ) with root ρT ∈V and leaf set LT ⊆V . A vertex v ∈V
is called a descendant of u∈V , v�T u, and u is an ancestor of v, u�T v, if u lies on the path from
ρT to v. As usual, we write v≺T u and u�T v to mean v�T u and u 6= v. The partial order �T is
known as the ancestor order of T ; the root is the unique maximal element w.r.t �T . If u �T v or
v �T u then u and v are comparable and otherwise, incomparable. We consider edges of rooted
trees to be directed away from the root, that is, the notation for edges (u,v) of a tree is chosen
such that u �T v. If (u,v) is an edge in T , then u is called parent of v and v child of u. It will be
convenient for the discussion below to extend the ancestor relation �T on V to the union of the
edge and vertex sets of T . More precisely, for the edge e = (u,v) ∈ E we put x≺T e if and only if
x �T v and e ≺T x if and only if u �T x. For edges e = (u,v) and f = (a,b) in T we put e �T f
if and only if v �T b. For x ∈ V , we write LT (x) := {y ∈ LT | y �T x} for the set of leaves in the
subtree T (x) of T rooted in x.

For a non-empty subset of leaves A ⊆ L, we define lcaT (A), or the least common ancestor
of A, to be the unique �T -minimal vertex of T that is an ancestor of every vertex in A. In case
A = {u,v}, we put lcaT (u,v) := lcaT ({u,v}). We have in particular u = lcaT (LT (u)) for all u ∈V .
We will also frequently use that for any two non-empty vertex sets A,B of a tree, it holds that
lca(A∪B) = lca(lca(A), lca(B)).

A phylogenetic tree is a rooted tree such that no interior vertex in v ∈ V \LT has degree two,
except possibly the root. If LT corresponds to a set of genes G or species S, we call a phylogenetic
tree on LT gene tree or species tree, respectively. In this contribution we will not restrict the gene
or species trees to be binary, although this assumption is made implicitly or explicitly in much of
the literature on the topic. The more general setting allows us to model incomplete knowledge of
the exact gene or species phylogenies. Of course, all mathematical results proved here also hold
for the special case of binary phylogenetic trees.

In our setting a gene tree T = (V,E) on G is equipped with an event-labeling map t : V ∪E→
I∪{0,1}with I = {•,�,4,�} that assigns to each interior vertex v of T a value t(v)∈ I indicating
whether v is a speciation event (•), duplication event (�) or HGT event (4). It is convenient to
use the special label � for the leaves x of T . Moreover, to each edge e a value t(e) ∈ {0,1} is
added that indicates whether e is a transfer edge (1) or not (0). Note, only edges (x,y) for which
t(x) =4might be labeled as transfer edge. We write E= {e ∈ E | t(e) = 1} for the set of transfer
edges in T . We assume here that all edges labeled “0” transmit the genetic material vertically, that
is, from an ancestral species to its descendants.

We remark that the restriction t|V of t to the vertex set V coincides with the “symbolic dating
maps” introduced in [6]; these have a close relationship with cographs [19, 21, 23]. Furthermore,
there is a map σ : G→ S that assigns to each gene the species in which it resides. The set σ(M),
M ⊆ G, is the set of species from which the genes M are taken. We write (T ; t,σ) for the gene
tree T = (V,E) with event-labeling t and corresponding map σ .

Removal of the transfer edges from (T ; t,σ) yields a forest TE := (V,E \E) that inherits the
ancestor order on its connected components, i.e., �TE iff x�T y and x,y are in same subtree of TE
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[40]. Clearly �TE uniquely defines a root for each subtree and the set of descendant leaf nodes
LTE(x).

In order to account for duplication events that occurred before the first speciation event, we
need to add an extra vertex and an extra edge “above” the last common ancestor of all species in
the species tree S = (V,E). Hence, we add an additional vertex to V (that is now the new root ρS

of S) and the additional edge (ρS, lcaS(S)) to E. Strictly speaking S is not a phylogenetic tree in
the usual sense, however, it will be convenient to work with these augmented trees. For simplicity,
we omit drawing the augmenting edge (ρS, lcaS(S)) in our examples.

3 Observable Scenarios
The true history of a gene family, as it is considered here, is an arbitrary sequence of speciation,
duplication, HGT, and gene loss events. The applications we envision for the theory developed,
here, however assume that the gene tree and its event labels are inferred from (sequence) data,
i.e., (T ; t,σ) is restricted to those labeled trees that can be constructed at least in principle from
observable data. The issue here are gene losses that may completely eradicate the information on
parts of the history. Specifically, we require that (T ; t,σ) satisfies the following three conditions:

(O1) Every internal vertex v has degree at least 3, except possibly the root which has degree at
least 2.

(O2) Every HGT node has at least one transfer edge, t(e) = 1, and at least one non-transfer edge,
t(e) = 0;

(O3) (a) If x is a speciation vertex, then there are at least two distinct children v,w of x such that
the species V and W that contain v and w, resp., are incomparable in S.
(b) If (v,w) is a transfer edge in T , then the species V and W that contain v and w, resp., are
incomparable in S.

Condition (O1) ensures that every event leaves a historical trace in the sense that there are at
least two children that have survived in at least two of its subtrees. If this were not the case, no
evidence would be left for all but one descendant tree, i.e., we would have no evidence that event
v ever happened. We note that this condition was used e.g. in [25] for scenarios without HGT.
Condition (O2) ensures that for an HGT event a historical trace remains of both the transferred
and the non-transferred copy. If there is no transfer edge, we have no evidence to classify v as
a HGT node. Conversely, if all edges were transfers, no evidence of the lineage of origin would
be available and any reasonable inference of the gene tree from data would assume that the gene
family was vertically transmitted in at least one of the lineages in which it is observed. In par-
ticular, Condition (O2) implies that for each internal vertex there is a path consisting entirely of
non-transfer edges to some leaf. This excludes in particular scenarios in which a gene is trans-
ferred to a different “host” and later reverts back to descendants of the original lineage without
any surviving offspring in the intermittent host lineage. Furthermore, a speciation vertex x cannot
be observed from data if it does not “separate” lineages, that is, there are two leaf descendants
of distinct children of x that are in distinct species. However, here we only assume to have the
weaker Condition (O3.a) which ensures that any “observable” speciation vertex x separates at
least locally two lineages. In other words, if all children of x would be contained in species that
are comparable in S or, equivalently, in the same lineage of S, then there is no clear historical trace
that justifies x to be a speciation vertex. In particular, most-likely there are two leaf descendants
of distinct children of x that are in the same species even if only TE is considered. Hence, x would
rather be classified as a duplication than as a speciation upon inference of the event labels from
actual data. Analogously, if (v,w) ∈ E then v signifies the transfer event itself but w refers to the
next (visible) event in the gene tree T . Given that (v,w) is a HGT-edge in the observable part, in
a “true history” v is contained in a species V that transmits its genetic material (maybe along a
path of transfers) to a contemporary species Z that is an ancestor of the species W containing w.
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Figure 1: Left: A “true” evolutionary scenario for a gene tree with leaf set G evolving along the tube-
like species trees is shown. The symbol “x” denotes losses. All speciations along the path from the root
ρT to the leaf a are followed by losses and we omit drawing them.
Middle: The observable gene tree is shown in the upper-left. The orthology graph G = (G,E) (edges
are placed between genes x,y for which t(lca(x,y)) = •) is drawn in the lower part. This graph is a
cograph and the corresponding non-binary gene tree T on G that can be constructed from such data is
given in the upper-right part (cf. [19, 20, 22] for further details).
Right: Shown is species trees S on S = σ(G) with reconciled gene tree T . The reconciliation map µ

for T and S is given implicitly by drawing the gene tree T within S. Note, this reconciliation is not
consistent with DTL-scenarios [40, 5]. A DTL-scenario would require that the duplication vertex and
the leaf a are incomparable in S.

Clearly, the latter allows to have V �S W which happens if the path of transfers points back to the
descendant lineage of V in S. In this case the transfer edge (v,w) must be placed in the species
tree such that µ(v) and µ(w) are comparable in S. However, then there is no evidence that this
transfer ever happened, and thus v would be rather classified as speciation or duplication vertex.

Assuming that (O2) is satisfied, we obtain the following useful result:

Lemma 1. Let T1, . . . ,Tk be the connected components of TE with roots ρ1, . . . ,ρk, respectively. If
(O2) holds, then, {LTE(ρ1), . . . ,LTE(ρk)} forms a partition of G.

Proof. Since LTE(ρi)⊆V (T ), it suffices to show that LTE(ρi) does not contain vertices of V (T )\
G. Note, x ∈ LTE(ρi) with x /∈G is only possible if all edges (x,y) are removed.

Let x ∈ V with t(x) =4 such that all edges (x,y) are removed. Thus, all such edges (x,y)
are contained in E. Therefore, every edge of the form (x,y) is a transfer edge; a contradiction to
(O2).

We will show in Prop. 1 that (O1), (O2), and (O3) together imply two important properties of
event labeled species trees, (ΣΣΣ1) and (ΣΣΣ2), which play a crucial role for the results reported here.

(ΣΣΣ1) If t(x) = •, then there are distinct children v, w of x in T such that σ(LTE(v))∩σ(LTE(w)) =
/0.

(ΣΣΣ2) If (v,w) ∈ E, then σ(LTE(v))∩σ(LTE(w)) = /0.

Intuitively, (ΣΣΣ1) is true because within a component TE no genetic material is exchanged be-
tween non-comparable nodes. Thus, a gene separated in a speciation event necessarily ends up in
distinct species in the absence of horizontal transfer. It is important to note that we do not require
the converse: σ(LTE(y))∩σ(LTE(y

′)) = /0 does not imply t(lcaT (LTE(y)∪LTE(y
′)) = •, that is, the

last common ancestor of two sets of genes from different species is not necessarily a speciation
vertex.

Now consider a transfer edge (v,w) ∈ E, i.e., t(v) =4. Then TE(v) and TE(w) are subtrees
of distinct connected components of TE. Since HGT amounts to the transfer of genetic material
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across distinct species, the genes v and w must be contained in distinct species X and Y , respec-
tively. Since no genetic material is transferred between contemporary species X ′ and Y ′ in TE,
where X ′ and Y ′ is a descendant of X and Y , respectively we derive (ΣΣΣ1).

Proposition 1. Conditions (O1) – (O3) imply (ΣΣΣ1) and (ΣΣΣ2).

Proof. Since (O2) is satisfied we can apply Lemma 1 and conclude that neither σ(LTE(v)) = /0
nor σ(LTE(w)) = /0. Let x ∈V (T ) with t(x) = •. By Condition (O1) x has (at least two) children.
Moreover, (O3) implies that there are (at least) two children v and w in T that are contained in
distinct species V and W that are incomparable in S. Note, the edges (x,v) and (x,w) remain
in TE, since only transfer edges are removed. Since no transfer is contained in TE, the genetic
material v and w of V and W , respectively, is always vertically transmitted. Therefore, for any leaf
v′ ∈ LTE(v) we have σ(v′)�S V and for any leaf w′ ∈ LTE(w) we have σ(w′)�S W in S. Assume
now for contradiction, that σ(LTE(v))∩σ(LTE(w)) 6= /0. Let z1 ∈ LTE(v) and z2 ∈ LTE(w) with
σ(z1) = σ(z2) = Z. Since Z �S V,W and S is a tree, the species V and W must be comparable in
S; a contradiction to (O3). Hence, Condition (ΣΣΣ1) is satisfied.

To see (ΣΣΣ2), note that since (O2) is satisfied we can apply Lemma 1 and conclude that neither
σ(LTE(v)) = /0 nor σ(LTE(w)) = /0. Let (v,w) ∈ E. By (O3) the species containing V and W are
incomparable in S. Now we can argue along the same lines as in the proof for (ΣΣΣ2) to conclude
that σ(LTE(v))∩σ(LTE(w)) = /0.

From here on we simplify the notation a bit and write σTE(u) := σ(LTE(u)). We are aware
of the fact that condition (O3) cannot be checked directly for a given event-labeled gene tree. In
contrast, (ΣΣΣ1) and (ΣΣΣ2) are easily determined. Hence, in the remainder of this paper we consider
the more general case, that is, gene trees that satisfy (O1), (O2), (ΣΣΣ1), and (ΣΣΣ2).

4 DTL-scenario and Time-Consistent Reconciliation
Maps
In case that the event-labeling of T is unknown, but the gene tree T and a species tree S are given,
the authors in [40, 5] provide an axiom set, called DTL-scenario, to reconcile T with S. This
reconciliation is then used to infer the event-labeling t of T . Instead of defining a DTL-scenario
as octuple [40, 5], we use here the notation established above:

Definition 1 (DTL-scenario). For a given gene tree (T ; t,σ) on G and a species tree S on S the
map γ : V (T )→V (S) maps the gene tree into the species tree such that

(I) For each leaf x ∈G, γ(u) = σ(u).

(II) If u ∈V (T )\G with children v,w, then

(a) γ(u) is not a proper descendant of γ(v) or γ(w), and
(b) at least one of γ(v) or γ(w) is a descendant of γ(u).

(III) (u,v) is a transfer edge if and only if γ(u) and γ(v) are incomparable.

(IV) If u ∈V (T )\G with children v,w, then

(a) t(u) =4 if and only if either (u,v) or (u,w) is a transfer-edge,
(b) If t(u) = •, then γ(u) = lcaS(γ(v),γ(w)) and γ(v),γ(w) are incomparable,
(c) If t(u) =�, then γ(u)� lcaS(γ(v),γ(w)).

DTL-scenarios are explicitly defined for fully resolved binary gene and species trees. Indeed,
Fig. 1 (right) shows a valid reconciliation between a gene tree T and a species tree S that is not
consistent with DTL-scenario. To see this, let us call the duplication vertex v. The vertex v and the
leaf a are both children of the speciation vertex ρT . Condition (IVb) implies that a and v must be
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Figure 2: Shown are two (tube-like) species trees with reconciled gene trees. The reconciliation map
µ for T and S is given implicitly by drawing the gene tree (upper right to the respective species tree)
within the species tree. In the left example, the map µ is unique. However, µ is not time-consistent and
thus, there is no time consistent reconciliation for T and S. In the example on the right hand side, µ is
time-consistent.

incomparable. However, this is not possible since γ(v)�S lcaS(B,C) (Cond. (IVc)) and γ(a) = A
(Cond. (I)) and therefore, γ(v)�S lcaS(B,C) = lcaS(A,B,C)�S γ(a).

The problem of reconciliations between gene trees and species tree is formalized in terms of
so-called DTL-scenarios in the literature [40, 5]. This framework, however, usually assumes that
the event labels t on T are unknown, while a species tree S is given. The “usual” DTL axioms,
furthermore, explicitly refer to binary, fully resolved gene and species trees. We therefore use a
different axiom set here that is a natural generalization of the framework introduced in [25] for
the HGT-free case:

Definition 2. Let T = (V,E) and S = (W,F) be phylogenetic trees on G and S, resp., σ : G→ S
the assignment of genes to species and t : V ∪E → {•,�,4,�}∪{0,1} an event labeling on T .
A map µ : V →W ∪F is a reconciliation map if for all v ∈V it holds that:

(M1) Leaf Constraint. If t(v) =�, then µ(v) = σ(v).

(M2) Event Constraint.

(i) If t(v) = •, then µ(v) = lcaS(σTE(v)).
(ii) If t(v) ∈ {�,4}, then µ(v) ∈ F.

(iii) If t(v) =4 and (v,w) ∈ E, then µ(v) and µ(w) are incomparable in S.

(M3) Ancestor Constraint.
Suppose v,w ∈V with v≺TE w.

(i) If t(v), t(w) ∈ {�,4}, then µ(v)�S µ(w),
(ii) otherwise, i.e., at least one of t(v) and t(w) is a speciation •, µ(v)≺S µ(w).

We say that S is a species tree for (T ; t,σ) if a reconciliation map µ : V →W ∪F exists.

For the special case that gene and species trees are binary, Definition 2 is equivalent to the
definition of a DTL-scenario, which is summarized in the following

Theorem 1. For a binary gene tree (T ; t,σ) and a binary species tree S there is a DTL-scenario
if and only if there is a reconciliation µ for (T ; t,σ) and S.

The proof of Theorem 1 is a straightforward but tedious case-by-case analysis. In order to keep
this section readable, we relegate the proof of Theorem 1 to Section 6. Figure 1 shows an example
of a biologically plausible reconciliation of non-binary trees that is valid w.r.t. Definition 2 but
does not satisfy the conditions of a DTL-scenario.

Condition (M1) ensures that each leaf of T , i.e., an extant gene in G, is mapped to the species
in which it resides. Conditions (M2.i) and (M2.ii) ensure that each inner vertex of T is either
mapped to a vertex or an edge in S such that a vertex of T is mapped to an interior vertex of S if
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and only if it is a speciation vertex. Condition (M2.i) might seem overly restrictive, an issue to
which we will return below. Condition (M2.iii) satisfies condition (O3) and maps the vertices of a
transfer edge in a way that they are incomparable in the species tree, since a HGT occurs between
distinct (co-existing) species. It becomes void in the absence of HGT; thus Definition 2 reduces to
the definition of reconciliation maps given in [25] for the HGT-free case. Importantly, condition
(M3) refers only to the connected components of TE since comparability w.r.t. ≺TE implies that
the path between x and y in T does not contain transfer edges. It ensures that the ancestor order
�T of T is preserved along all paths that do not contain transfer edges.

We will make use of the following bound that effectively restricts how close to the leafs the
image of a vertex in the gene tree can be located.

Lemma 2. If µ : (T ; t,σ)→ S satisfies (M1) and (M3), then µ(u) �S lcaS(σTE(u)) for any u ∈
V (T ).

Proof. If u is a leaf, then by Condition (M1) µ(u) = σ(u) and we are done. Thus, let u be an
interior vertex. By Condition (M3), z�S µ(u) for all z ∈ σTE(u). Hence, if µ(u)≺S lcaS(σTE(u))
or if µ(u) and lcaS(σTE(u))) are incomparable in S, then there is a z ∈ σTE(u) such that z and µ(u)
are incomparable; contradicting (M3).

Condition (M2.i) implies in particular the weaker property “(M2.i’) if t(v) = • then µ(v) ∈
W”. In the light of Lemma 2, µ(v) = lcaS(σTE(v)) is the lowest possible choice for the image of
a speciation vertex. Clearly, this restricts the possibly exponentially many reconciliation maps for
which µ(v)�S lcaS(σTE(v)) for a speciation vertices v to only those that satisfy (M2.i). However,
the latter is justified by the observation that if v is a speciation vertex with children u,w, then there
is only one unique piece of information given by the gene tree to place µ(v), that is, the unique
vertex x in S with children y,z such that σTE(u)⊆ LS(y) and σTE(w)⊆ LS(z). The latter arguments
easily generalizes to the case that v has more than two children in T . Moreover, any observable
speciation node v′ �T v closer to the root than v must be mapped to a node ancestral to µ(v) due
to (M3.ii). Therefore, we require µ(v) = x = lcaS(σTE(v)) here.

If S is a species tree for the gene tree (T, t,σ) then there is no freedom in the construction of
a reconciliation map µ on the set {x ∈ V (T ) | t(x) ∈ {•,�}}. The duplication and HGT vertices
of T , however, can be placed differently. As a consequence there is a possibly exponentially large
set of reconciliation maps from (T, t,σ) to S.

From a biological point of view, however, the notion of reconciliation used so far is too weak.
In the absence of HGT, subtrees evolve independently and hence, the linear order of points along
each path from root to leaf is consistent with a global time axis. This is no longer true in the pres-
ence of HGT events, because HGT events imply additional time-consistency conditions. These
stem from the fact that the appearance of the HGT copy in a distant subtree of S is concurrent
with the HGT event. To investigate this issue in detail, we introduce time maps and the notion of
time-consistency, see Figures 2–4 for illustrative examples.

Definition 3 (Time Map). The map τT : V (T )→ R is a time map for the rooted tree T if x ≺T y
implies τT (x)> τT (y) for all x,y ∈V (T ).

Definition 4. A reconciliation map µ from (T ; t,σ) to S is time-consistent if there are time maps
τT for T and τS for S for all u ∈V (T ) satisfying the following conditions:

(C1) If t(u) ∈ {•,�}, then τT (u) = τS(µ(u)).

(C2) If t(u) ∈ {�,4} and, thus µ(u) = (x,y) ∈ E(S), then τS(y)> τT (u)> τS(x).

Condition (C1) is used to identify the time-points of speciation vertices and leaves u in the
gene tree with the time-points of their respective images µ(u) in the species trees. In particular,
all genes u that reside in the same species must be assigned the same time point τT (u) = τS(σ(u)).
Analogously, all speciation vertices in T that are mapped to the same speciation in S are assigned
matching time stamps, i.e., if t(u) = t(v) = • and µ(u) = µ(v) then τT (u) = τT (v) = τS(µ(u)).
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Figure 3: Shown are a gene tree (T ; t,σ) (right) and two identical (tube-like) species trees S (left and
middle). There are two possible reconciliation maps for T and S that are given implicitly by drawing T
within the species tree S. These two reconciliation maps differ only in the choice of placing the HGT-
event either on the edge (lcaS(C,D),C) or on the edge (lcaS({A,B,C,D}), lcaS(C,D)). In the first case,
it is easy to see that µ would not be time-consistent, i.e., there are no time maps τT and τS that satisfy
(C1) and (C2). The reconciliation map µ shown in the middle is time-consistent.
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a b d d'cb'c'

A B C D
a c' db' cb d'

A B C D
a c' db' cb d'

Figure 4: Shown are a gene tree (T ; t,σ) (right) and two identical (tube-like) species trees S (left and
middle). There are two possible reconciliation maps for T and S that are given implicitly by drawing T
within the species tree S. The left reconciliation maps each gene tree vertex as high as possible into the
species tree. However, in this case only the middle reconciliation map is time-consistent.

To understand the intuition behind (C2) consider a duplication or HGT vertex u. By construc-
tion of µ it is mapped to an edge of S, i.e., µ(u) = (x,y) in S. The time point of u must thus lie
between time points of x and y. Now suppose (u,v) ∈ E is a transfer edge. By construction, u
signifies the transfer event itself. The node v, however, refers to the next (visible) event in the
gene tree. Thus τT (u) < τT (v). In particular, τT (v) must not be misinterpreted as the time of
introducing the HGT-duplicate into the new lineage. While this time of course exists (and in our
model coincides with the timing of the transfer event) it is not marked by a visible event in the
new lineage, and hence there is no corresponding node in the gene tree T .

W.l.o.g. we fix the time axis so that τT (ρT ) = 0 and τS(ρS) = −1. Thus, τS(ρS) < τT (ρT ) <
τT (u) for all u ∈V (T )\{ρT}.

Clearly, a necessary condition to have biologically feasible gene trees is the existence of a
reconciliation map µ . However, not all reconciliation maps are time-consistent, see Fig. 2.

Definition 5. An event-labeled gene tree (T ; t,σ) is biologically feasible if there exists a time-
consistent reconciliation map from (T ; t,σ) to some species tree S.

As a main result of this contribution, we provide simple conditions that characterize (the
existence of) time-consistent reconciliation maps and thus, provides a first step towards the char-
acterization of biologically feasible gene trees.
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Theorem 2. Let µ be a reconciliation map from (T ; t,σ) to S. There is a time-consistent rec-
onciliation map from (T ; t,σ) to S if and only if there are two time-maps τT and τS for T and S,
respectively, such that the following conditions are satisfied for all x ∈V (S):

(D1) If µ(u) = x, for some u ∈V (T ), then τT (u) = τS(x).

(D2) If x�S lcaS(σTE(u)) for some u ∈V (T ) with t(u) ∈ {�,4}, then τS(x)> τT (u).

(D3) If lcaS(σTE(u)∪σTE(v))�S x for some (u,v) ∈ E, then τT (u)> τS(x).

Proof. In what follows, x and u denote vertices in S and T , respectively.
Assume that there is a time-consistent reconciliation map µ from (T ; t,σ) to S, and thus two

time-maps τS and τT for S and T , respectively, that satisfy (C1) and (C2).
To see (D1), observe that if µ(u) = x ∈ V (S), then (M1) and (M2) imply that t(u) ∈ {•,�}.

Now apply (C1).
To show (D2), assume that t(u) ∈ {�,4} and x�S lcaS(σTE(u)). By Condition (M2) it holds

that µ(u) = (y,z)∈ E(S). Together with Lemma 2 we obtain that x�S lcaS(σTE(u))�S z≺S µ(u).
By the properties of τS we have

τS(x)≥ τS(lcaS(σTE(u))≥ τS(z)
(C2)
> τT (u).

To see (D3), assume that (u,v) ∈ E and z := lcaS(σTE(u)∪ σTE(v)) �S x. Since t(u) = 4
and by (M2ii), we have µ(u) = (y,y′) ∈ E(S). Thus, µ(u) ≺S y. By (M2iii) µ(u) and µ(v) are
incomparable and therefore, we have either µ(v) ≺S y or µ(v) and y are incomparable. In either
case we see that y �S z, since Lemma 2 implies that lcaS(σTE(u)) �S µ(u) and lcaS(σTE(v)) �S

µ(v). In summary, µ(u)≺S y�S z�S x. Therefore,

τT (u)
(C2)
> τS(y)≥ τS(z)≥ τS(x).

Hence, conditions (D1)-(D3) are satisfied.
To prove the converse, assume that there exists a reconciliation map µ that satisfies (D1)-(D3)

for some time-maps τT and τS. In the following we will make use of τS and τT to construct a
time-consistent reconciliation map µ ′.

First we define “anchor points” by µ ′(v) = µ(v) for all v∈V (T ) with t(v)∈ {•,�}. Condition
(D1) implies τT (v) = τS(µ(v)) for these vertices, and therefore µ ′ satisfies (C1).

The next step will be to show that for each vertex u ∈ V (T ) with t(u) ∈ {�,4} there is a
unique edge (x,y) along the path from lcaS(σTE(u)) to ρS with τS(x) < τT (u) < τS(y). We set
µ ′(u) = (x,y) for these points. In the final step we will show that µ ′ is a valid reconciliation map.

Consider the unique path Pu from lcaS(σTE(u)) to ρS. By construction, τS(ρS) < τT (ρT ) ≤
τT (u) and by Condition (D2) it we have τT (u) < τS(lcaS(σTE(u))). Since τS is a time map for S,
every edge (x,y) ∈ E(S) satisfies τS(x)< τS(y). Therefore, there is a unique edge (xu,yu) ∈ E(S)
along Pu such that either τS(xu)< τT (u)< τS(yu), τS(xu) = τT (u)< τS(yu), or τS(xu)< τT (u) =
τS(yu). The addition of a sufficiently small perturbation εu to τT (u) does not violate the conditions
for τT being a time-map for T . Clearly εu can be chosen to break the equalities in the latter two
cases in such a way that τS(xu) < τT (u) < τS(yu) for each vertex u ∈ V (T ) with t(u) ∈ {�,4}.
We then continue with the perturbed version of τT and set µ ′(u) = (xu,yu). By construction, µ ′

satisfies (C2).
It remains to show that µ ′ is a valid reconciliation map from (T ; t,σTE) to S. Again, let Pu

denote the unique path from lcaS(σTE(u)) to ρS for any u ∈V (T ).
By construction, Conditions (M1), (M2i), (M2ii) are satisfied. To check condition (M2iii),

assume (u,v) ∈ E. The original map µ is a valid reconciliation map, and thus, Lemma 2 implies
that lcaS(σTE(u)) ≺S µ(u) and lcaS(σTE(v)) �S µ(v). Since µ(u) and µ(v) are incomparable in
S and lcaS(σTE(u)∪σTE(v)) lies on both paths Pu and Pv we have µ(u),µ(v) �S lcaS(σTE(u)∪
σTE(v)) =: x. In particular, x 6= lcaS(σTE(u)) and x 6= lcaS(σTE(v)).
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Conditions (D1) and (D2) imply that τS(x) < τT (u) < τS(lcaS(σTE(u))) and τS(x) < τT (v) ≤
τS(lcaS(σTE(v))). By construction of µ ′, the vertex u is mapped to a unique edge eu = (xu,yu)
and v is mapped either to lcaS(σTE(v)) 6= x or to the unique edge ev = (xv,yv), respectively. In
particular, µ ′(u) lies on the path P′ from x to lcaS(σTE(u)) and µ ′(v) lies one the path P′′ from x
to lcaS(σTE(v)). The paths P′ and P′′ are edge-disjoint and have x as their only common vertex.
Hence, µ ′(u) and µ ′(v) are incomparable in S, and (M2iii) is satisfied.

In order to show (M3), assume that u≺TE v. Since u≺TE v, we have σTE(u)⊆ σTE(v). Hence,
lcaS(σTE(u))� lcaS(σTE(v))�S ρS. In other words, lcaS(σTE(v)) lies on the path Pu and thus, Pv

is a subpath of Pu. By construction of µ ′, both µ ′(u) and µ ′(v) are comparable in S. Moreover,
since τT (u)> τT (v) and by construction of µ ′, it immediately follows that µ ′(u)�S µ ′(v).

Its now an easy task to verify that (M3) is fulfilled by considering the distinct event-labels in
(M3i) and (M3ii), which we leave to the reader.

Interestingly, the existence of a time-consistent reconciliation map from a gene tree T to a
species tree S can be characterized in terms of a time map defined on T , only.

Theorem 3. Let µ be a reconciliation map from (T ; t,σ) to S. There is a time-consistent recon-
ciliation map (T ; t,σ) to S if and only if there is a time map τT such that for all u,v,w ∈V (T ):

(T1) If t(u) = t(v) ∈ {•,�} then

(a) If µ(u) = µ(v), then τT (u) = τT (v).
(b) If µ(u)≺S µ(v), then τT (u)> τT (v).

(T2) If t(u) ∈ {•,�}, t(v) ∈ {�,4} and µ(u)�S lcaS(σTE(v)), then τT (u)> τT (v).

(T3) If (u,v) ∈ E and lcaS(σTE(u)∪σTE(v)) �S lcaS(σTE(w)) for some w ∈ V (T ), then τT (u) >
τT (w)

Proof. Suppose that µ is a time-consistent reconciliation map from (T ; t,σ) to S. By Definition
4 and Theorem 2, there are two time maps τT and τS that satisfy (D1)-(D3). We first show that
τT also satisfies (T1)-(T3), for all u,v ∈ V (T ). Condition (T1a) is trivially implied by (D1). Let
t(u), t(v) ∈ {•,�}, and µ(u)≺S µ(v). Since τT and τS are time maps, we may conclude that

τT (u)
(D1)
= τS(µ(u))< τS(µ(v))

(D1)
= τT (v).

Hence, (T1b) is satisfied.
Now, assume that t(u) ∈ {•,�}, t(v) ∈ {�,4} and µ(u)�S lca(σTE(v)). By the properties of

τS, we have:

τT (u)
(D1)
= τS(µ(u))

(D2)
> τT (v).

Hence, (T2) is fulfilled.
Finally, assume that (u,v) ∈ E, and x := lcaS(σTE(u)∪σTE(v))�S lcaS(σTE(w)) for some w ∈

V (T ). Lemma 2 implies that lcaS(σTE(w))�S µ(w) and we obtain

τT (w)
(D2)
< τS(x)≤ τS(lca(σTE(w)))

(D3)
< τT (u).

Hence, (T3) is fulfilled.
To see the converse, assume that there exists a reconciliation map µ that satisfies (T1)-(T3)

for some time map τT . In the following we construct a time map τS for S that satisfies (D1)-(D3).
To this end, we first set

τS(x) =


−1 if x = ρS

τT (v) else if v ∈ µ−1(x)
∗ else, i.e., µ−1(x) = /0 and x 6= ρS.
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We use the symbol ∗ to denote the fact that so far no value has been assigned to τS(x). Note,
by (M2i) and (T1a) the value τS(x) is uniquely determined and thus, by construction, (D1) is
satisfied. Moreover, if x,y ∈V (S) have non-empty preimages w.r.t. µ and x≺S y, then we can use
the fact that τT is a time map for T together with condition (T1) to conclude that τS(x)> τS(y).

If x ∈ V (S) with a ∈ µ−1(x), then (T2) implies (D2) (by (D1) and setting u = a in (T2)) and
(T3) implies (D3) (by (D1) and setting w = a in (T3)). Thus, (D2) and (D3) is satisfied for all
x ∈V (S) with µ−1(x) 6= /0.

Using our choices τS(ρT ) = 0 and τS(ρS) = −1 for the augmented root of S, we must have
µ−1(ρS) = /0. Thus, ρS �S lcaS(σTE(v)) for any v ∈V (T ). Hence, (D2) is trivially satisfied for ρS.
Moreover, τT (ρT ) = 0 implies τT (u)> τS(ρS) for any u ∈V (T ). Hence, (D3) is always satisfied
for ρS.

In summary, Conditions (D1)-(D3) are met for any vertex x ∈ V (S) that up to this point has
been assigned a value, i.e., τS(x) 6= ∗.

We will now assign to all vertices x∈V (S) with µ−1(x)= /0 a value τS(x) in a stepwise manner.
To this end, we give upper and lower bounds for the possible values that can be assigned to τS(x).
Let x ∈V (S) with τS(x) = ∗. Set

LO(x) = {τS(y) | x≺S y,y ∈V (S) and τS(y) 6= ∗}
UP(x) = {τS(y) | x�S y,y ∈V (S) and τS(y) 6= ∗}.

We note that LO(x) 6= /0 and UP(x) 6= /0 because the root and the leaves of S already have been
assigned a value τS in the initial step. In order to construct a valid time map τS we must ensure
max(LO(x))< τS(x)< min(UP(x)).

Moreover, we strengthen the bounds as follows. Put

lo(x) ={τT (u) | t(u) ∈ {�,4},x�S lcaS(σTE(u))}
up(x) ={τT (u) | (u,v) ∈ E and

lcaS(σTE(u)∪σTE(v))�S x }.

Observe that max(lo(x)) < min(up(x)), since otherwise there are vertices u,w ∈ V (T ) with
τT (w) ∈ lo(x) and τT (u) ∈ up(x) and τT (w) ≥ τT (u). However, this implies that lcaS(σTE(u)∪
σTE(v))�S x� lcaS(σTE(w)); a contradiction to (T3).

Since (D2) is satisfied for all vertices y that obtained a value τS(y) 6= ∗, we have max(lo(x))<
min(UP(x)). Likewise because of (D3), it holds that max(LO(x)) < min(up(x)). Thus we set
τS(x) to an arbitrary value such that

max(LO(x)∪ lo(x))< τS(x)< min(UP(x)∪up(x)).

By construction, (D1), (D2), and (D3) are satisfied for all vertices in V (S) that have already
obtained a time value distinct from ∗. Moreover, for all such vertices with x ≺T y we have
τS(x) > τS(y). In each step we chose a vertex x with τS(x) = ∗ that obtains then a real-valued
time stamp. Hence, in each step the number of vertices that have value ∗ is reduced by one.
Therefore, repeating the latter procedure will eventually assign to all vertices a real-valued time
stamp such that, in particular, τS satisfies (D1), (D2), and (D3) and thus is indeed a time map for
S.

From the algorithmic point of view it is desirable to design methods that allow to check
whether a reconciliation map is time-consistent. Moreover, given a gene tree T and species tree
S we wish to decide whether there exists a time-consistent reconciliation map µ , and if so, we
should be able to construct µ .

To this end, observe that any constraints given by Definition 3, Theorem 2 (D2)-(D3), and
Definition 4 (C2) can be expressed as a total order on V (S)∪V (T ), while the constraints (C1) and
(D1) together suggest that we can treat the preimage of any vertex in the species tree as a “single
vertex”. In fact we can create an auxiliary graph in order to answer questions that are concerned
with time-consistent reconciliation maps.
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Definition 6. Let µ be a reconciliation map from (T ; t,σ) to S. The auxiliary graph A is defined as
a directed graph with a vertex set V (A) =V (S)∪V (T ) and an edge-set E(A) that is constructed
as follows

(A1) For each (u,v) ∈ E(T ) we have (u′,v′) ∈ E(A), where

u′ =

{
µ(u) if t(u) ∈ {�,•}
u otherwise

and

v′ =

{
µ(v) if t(v) ∈ {�,•}
v otherwise

,

(A2) For each (x,y) ∈ E(S) we have (x,y) ∈ E(A).

(A3) For each u ∈V (T ) with t(u) ∈ {�,4} we have (u, lcaS(σTE(u))) ∈ E(A).

(A4) For each (u,v) ∈ E we have (lcaS(σTE(u)∪σTE(v)),u) ∈ E(A)

(A5) For each u ∈V (T ) with t(u) ∈ {4,�} and µ(u) = (x,y) ∈ E(S) we have (x,u) ∈ E(A) and
(u,y) ∈ E(A).

We define A1 and A2 as the subgraphs of A that contain only the edges defined by (A1), (A2), (A5)
and (A1), (A2), (A3), (A4), respectively.

We note that the edge sets defined by conditions (A1) through (A5) are not necessarily disjoint.
The mapping of vertices in T to edges in S is considered only in condition (A5). The following
two theorems are the key results of this contribution.

Theorem 4. Let µ be a reconciliation map from (T ; t,σ) to S. The map µ is time-consistent if
and only if the auxiliary graph A1 is a directed acyclic graph (DAG).

Proof. Assume that µ is time-consistent. By Theorem 2, there are two time-maps τT and τS

satisfying (C1) and (C2). Let τ = τT ∪ τS be the map from V (T )∪V (S)→ R. Let A′ be the
directed graph with V (A′) =V (S)∪V (T ) and set for all x,y ∈V (A′): (x,y) ∈ E(A′) if and only if
τ(x)< τ(y). By construction A′ is a DAG since τ provides a topological order on A′ [26].

We continue to show that A′ contains all edges of A1.
To see that (A1) is satisfied for E(A′) let (u,v) ∈ E(T ). Note, τ(v)> τ(u), since τT is a time

map for T and by construction of τ . Hence, all edges (u,v) ∈ E(T ) are also contained in A′,
independent from the respective event-labels t(u), t(v). Moreover, if t(u) or t(v) are speciation
vertices or leaves, then (C1) implies that τS(µ(u)) = τT (u)> τT (v) or τT (u)> τT (v) = τS(µ(v)).
By construction of τ , all edges satisfying (A1) are contained in E(A′). Since τS is a time map for
S, all edges as in (A2) are contained in E(A′). Finally, (C2) implies that all edges satisfying (A5)
are contained in E(A′).

Although, A′ might have more edges than required by (A1), (A2) and (A5), the graph A1 is a
subgraph of A′. Since A′ is a DAG, also A1 is a DAG.

For the converse assume that A1 is a directed graph with V (A1) = V (S)∪V (T ) and edge set
E(A1) as constructed in Def. 6 (A1), (A2) and (A5). Moreover, assume that A1 is a DAG. Hence,
there is is a topological order τ on A1 with τ(x)< τ(y) whenever (x,y) ∈ E(A1). In what follows
we construct the time-maps τT and τS such that they satisfy (C1) and (C2). Set τS(x) = τ(x) for
all x ∈V (S). Additionally, set for all u ∈V (T ):

τT (u) =

{
τ(µ(u)) if t(u) ∈ {�,•}
τ(u) otherwise.

By construction it follows that (C1) is satisfied. Due to (A2), τS is a valid time map for S. It
follows from the construction and (A1) that τT is a valid time map for T . Assume now that
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u ∈ V (T ), t(u) ∈ {�,4}, and µ(u) = (x,y) ∈ E(S). Since τ provides a topological order we
have:

τ(x)
(A5)
< τ(u)

(A5)
< τ(y).

By construction, it follows that τS(x)< τT (u)< τS(y) satisfying (C2).

Theorem 5. Assume there is a reconciliation map µ from (T ; t,σ) to S. There is a time-consistent
reconciliation map, possibly different from µ , from (T ; t,σ) to S if and only if the auxiliary graph
A2 (defined on µ) is a DAG.

Proof. Let µ be a reconciliation map for (T ; t,σ) and S and µ ′ be a time-consistent reconciliation
map for (T ; t,σ) and S. Let A2 and A′2 be the auxiliary graphs that satisfy Def. 6 (A1) – (A4) for
µ and µ ′, respectively. Since µ(u) = µ ′(u) for all u ∈ V (T ) with t(u) ∈ {�,•} and (A2) – (A4)
don’t rely on the explicit reconciliation map, it is easy to see that A2 = A′2.

Now we can re-use similar arguments as in the proof of Theorem 4. Assume there is a time-
consistent reconciliation map (T ; t,σ) to S. By Theorem 2, there are two time-maps τT and τS

satisfying (D1)-(D3). Let τ and A′ be defined as in the proof of Theorem 4.
Analogously to the proof of Theorem 4, we show that A′ contains all edges of A2. Application

of (D1) immediately implies that all edges satisfying (A1) and (A2) are contained in E(A′). By
condition (D2), it yields (u, lcaS(σTE(u))) ∈ E(A′) and (D3) implies (lcaS(σTE(u)∪σTE(v)),u) ∈
E(A′). We conclude by the same arguments as before that the graph A2 is a DAG.

For the converse, assume we are given the directed acyclic graph A2. As before, there is is a
topological order τ on A2 with τ(x) < τ(y) only if (x,y) ∈ E(A2). The time-maps τT and τS are
given as in the proof of Theorem 4.

By construction, it follows that (D1) is satisfied. Again, by construction and the Properties
(A1) and (A2), τS and τT are valid time-maps for S and T respectively.

Assume now that u ∈ V (T ), t(u) ∈ {�,4}, and x �S lcaS(σTE(u)) for some x ∈ V (S). Since
there is a topological order on V (A2), we have

τ(x)
(A2)
≥ τ(lcaS(σTE(u)))

(A3)
> τ(u).

By construction, it follows that τS(x)> τT (u). Thus, (D2) is satisfied.
Finally assume that (u,v)∈ E and lcaS(σTE(u)∪σTE(v))�S x for some x ∈V (S). Again, since

τ provides a topological order, we have:

τ(x)
(A2)
≤ τ(lcaS(σTE(u)∪σTE(v)))

(A4)
< τ(u).

By construction, it follows that τS(x)< τT (u), satisfying (D3).
Thus τT and τS are valid time maps satisfying (D1)-(D3).

Naturally, Theorems 4 or 5 can be used to devise algorithms for deciding time-consistency.
To this end, the efficient computation of lcaS(σTE(u)) for all u ∈ V (T ) is necessary. This can
be achieved with Algorithm 2 in O(|V (T )| log(|V (S)|)). More precisely, we have the following
statement:

Lemma 3. For a given gene tree (T = (V,E); t,σ) and a species tree S = (W,F), Algorithm 2
correctly computes `(u) = lcaS(σTE(u)) for all u ∈V (T ) in O(|V | log(|W |)) time.

Proof. Let u ∈ V (T ). In what follows, we show that `(u) = lcaS(σTE(u)). In fact, the algorithm
is (almost) a depth first search through T that assigns the (species tree) vertex `(u) to u if and
only if every child v of u has obtained an assignment `(v) (cf. Line (9) - (10)). That there are
children v with non-empty `(v) at some point is ensured by Line (7). That is, if t(u) = �, then
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Algorithm 1 Check existence and construct time-consistent reconciliation map.

Precondition: S = (W,F) is a species tree for T = (V,E).
1: `← ComputeLcaSigma((T ; t,σ),S)
2: µ(u)← /0 for all u ∈V . “ /0” means uninitialized
3: for all u ∈V do
4: if t(u) ∈ {•,�} then µ(u)← `(u)
5: else µ(u)← (p(`(u)), `(u)) . p(`(u)) denotes the parent of `(u)
6: Compute the auxiliary graph A2
7: if A2 contains a cycle then return “No time-consistent reconciliation map exists.”
8: Let τ : V (A2)→ R such that if (x,y) ∈ E(A2) then τ(x)< τ(y)
9: . W.l.o.g. we can assume that τ(x) 6= τ(y) for all x,y ∈V (A2)

10: τS ← A time map such that τS(x) = τ(x) for all x ∈W
11: τT ← A time map such that τT (u) = τ(µ(u)) if t(u) ∈ {•,�}, otherwise τT (u) = τ(u) for all

u ∈V .
12: for u ∈V where t(u) ∈ {�,4} do
13: while it does not hold that τS(x)< τT (u)< τS(y) for (x,y) = µ(u) do
14: µ(u)← (p(x),x)
15: return µ

Algorithm 2 Compute `(u) = lcaS(σTE(u)) for all u ∈V (T )

1: function COMPUTELCASIGMA((T ; t,σ),S)
2: `(u)← /0 for all u ∈V (T ) . “ /0” means uninitialized
3: A← empty stack
4: A.push(ρT )
5: while A is not empty do
6: u← A.pop()
7: if t(u) =� then `(u)← σ(u)
8: else if `(v) = /0 for some child v of u then A.push(u), A.push(v)
9: else

10: `(u)← lcaS({`(v)‖(u,v) ∈ E(T ) and t((u,v)) = 0})
11: return `

`(u) = lcaS(σTE(u)) = σ(u). Now, assume there is an interior vertex u ∈V (T ), where every child
v has been assigned a value `(v), then

lcaS(σTE(u))

= lcaS(σTE({σTE(v) | (u,v) ∈ E(T ) and t(u,v) = 0}))
= lcaS(σTE({lcaS(σTE(v)) | (u,v) ∈ E(T ) and t(u,v) = 0}))
= lcaS(σTE({`(v) | (u,v) ∈ E(T ) and t(u,v) = 0}))

The latter is achieved by Line (10).
Since T is a tree and the algorithm is in effect a depth first search through T , the while loop

runs at most O(V (T )+E(T )) times, and thus in O(V (T )) time.
The only non-constant operation within the while loop is the computation of lcaS in Line (10).

Clearly lcaS of a set of vertices C = {c1,c2 . . .ck}, where ci ∈V (S), for all ci ∈C can be computed
as sequence of lcaS operations taking two vertices: lcaS(c1, lcaS(c2, . . . lcaS(ck−1,ck))), each taking
O(lg(|V (S)|)) time. Note however, that since Line (10) is called exactly once for each vertex in
T , the number of lcaS operations taking two vertices is called at most |E(T )| times through the
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entire algorithm. Hence, the total time complexity is O(|V (T )| lg(|V (S)|)).

Let S be a species tree for (T ; t,σ), that is, there is a valid reconciliation between the two trees.
Algorithm 1 describes a method to construct a time-consistent reconciliation map for (T ; t,σ) and
S, if one exists, else “No time-consistent reconciliation map exists” is returned. First, an arbitrary
reconciliation map µ that satisfies the condition of Def. 2 is computed. Second, Theorem 5 is
utilized and it is checked whether the auxiliary graph A2 is not a DAG in which case no time-
consistent map µ exists for (T ; t,σ) and S. Finally, if A2 is a DAG, then we continue to adjust
µ to become time-consistent. The latter is based on Thm. 2, see the proof of Thm. 2 and 6 for
details.

Theorem 6. Let S = (W,F) be species tree for the gene tree (T = (V,E); t,σ). Algorithm 1
correctly determines whether there is a time-consistent reconciliation map µ and in the positive
case, returns such a µ in O(|V | log(|W |)) time.

Proof. In order to produce a time-consistent reconciliation map, we first construct some valid
reconciliation map µ from (T ; t,σ) to S. Using the lca-map ` from Algorithm 2, µ will be adjusted
to become time-consistent, if possible.

By assumption, there is a reconciliation map from (T ; t,σ) to S. The for-loop (Line (3)-(5))
ensures that each vertex u ∈ V obtained a value µ(u). We continue to show that µ is a valid
reconciliation map satisfying (M1)-(M3).

Assume that t(u) = �, in this case `(u) = σ(u), and thus (M1) is satisfied. If t(u) = •, it
holds that µ(u) = `(u) = lcaS(σTE(u)), thus satisfying (M2i). Note that ρS �S `(u), and hence,
µ(u) ∈ F by Line (5), implying that (M2ii) is satisfied. Now, assume t(u) =4 and (u,v) ∈ E. By
assumption, we know there exists a reconciliation map from T to S, thus by (ΣΣΣ1):

σTE(u)∩σTE(v) = /0

It follows that, `(u) is incomparable to `(v), satisfying (M2iii).
Now assume that u,v ∈ V and u ≺TE v. Note that σTE(u) ⊆ σTE(v). It follows that `(u) =

lcaS(σTE(u))�S lcaS(σTE(v)) = `(v). By construction, (M3) is satisfied. Thus, µ is a valid recon-
ciliation map.

By Theorem 5, two time maps τT and τS satisfying (D1)-(D3) only exists if the auxiliary graph
A build on Line (6) is a DAG. Thus if A := A2 contains a cycle, no such time-maps exists and the
statement “No time-consistent reconciliation map exists.” is returned (Line (7)). On the other
hand, if A is a DAG, the construction in Line (8)-(11) is identical to the construction used in the
proof of Theorem 5. Hence correctness of this part of the algorithm follows directly from the
proof of Theorem 5.

Finally, we adjust µ to become a time-consistent reconciliation map.. By the latter arguments,
τT and τS satisfy (D1)-(D3) w.r.t. to µ . Note, that µ is chosen to be the “lowest point” where
a vertex u ∈ V with t(u) ∈ {�,4} can be mapped, that is, µ(u) is set to (p(x),x) where x =
lcaS(σTE(u)). However, by the arguments in the proof of Theorem 2, there is a unique edge
(y,z) ∈W on the path from x to ρS such that τS(y) < τT (u) < τS(z). The latter is ensured by
choosing a different value for distinct vertices in V (A), see comment in Line (9). Hence, Line
(14) ensures, that µ(u) is mapped on the correct edge such that (C2) is satisfied. It follows that
adjusted µ is a valid time-consistent reconciliation map.

We are now concerned with the time-complexity. By Lemma 3, computation of ` in Line (1)
takes O(|V | log(|W |)) time and the for-loop (Line (3)-(5)) takes O(|V |) time. We continue to show
that the auxiliary graph A (Line (6)) can be constructed in O(|V | log(|W |)) time.

Since we know `(u) = lcaS(σTE(u)) for all u∈V and since T and S are trees, the subgraph with
edges satisfying (A1)-(A3) can be constructed in O(|V |+ |W |+ |E|+ |F)|) = O(|V |+ |W |) time.
To ensure (A4), we must compute for a possible transfer edges (u,v) ∈ E the vertex lcaS(σTE(u)∪
σTE(v)). which can be done in O(log(|W |)) time. Note, the number of transfer edges is bounded
by the number of possible transfer event O(|V |). Hence, generating all edges satisfying (A4) takes
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O(|V |(log(|W |)) time. In summary, computing A can done in O(|V |+ |W |+ |V |(log(|W |)) =
O(|V |(log(|W |)) time.

To detect whether A contains cycles one has to determine whether there is a topological order
τ on V (A) which can be done via depth first search in O(|V (A)|+ |E(A)|) time. Since |V (A)| =
|V |+ |W | and O(|E(A)|) = O(|F |+ |E|+ |W |+ |V |) and S,T are trees, the latter task can be done
in O(|V |+ |W |) time. Clearly, Line (10)-(11) can be performed on O(|V |+ |W |) time.

Finally, we have to adjust µ according to τT and τS. Note, that for each u ∈ V with t(u) ∈
{�,4} (Line (12)) we have possibly adjust µ to the next edge (p(x),x). However, the possibilities
for the choice of (p(x),x) is bounded by by the height of S, which is in the worst case log(|W |).
Hence, the for-loop in Line (12) has total-time complexity O(|V | log(|W |)).

In summary, the overall time complexity of Algorithm 1 is O(|V | log(|W |)).

So far, we have shown how to find a time consistent reconciliation map µ given a species tree
S and a single gene tree T . In practical applications, however, one often considers more than one
gene family, and thus, a set of gene trees F = {(T1; t1,σ1), . . . ,(Tn; tn,σn)} that has to be reconciled
with one and the same species tree S.

In this case it is possible to aggregate all gene trees (Ti; ti,σi)∈ F to a single gene tree (T ; t,σ)
that is constructed from F by introducing an artificial duplication as the new root of all Ti. More
precisely, T = (V,E) is constructed from F such that V = {ρT}∪

⋃n
i=1V (Ti) and E =

⋃n
i=1(E(Ti)∪

{(ρT ,ρTi)}). Moreover, the event-labeling map t is defined as

t(x) =


ti(x) if x ∈V (Ti)∪E(Ti)

� if x = t(ρT )

0 if x = (ρT ,ρTi)

Finally, σ(x) = σi(x) for all x ∈ LTi .
Finding a time consistent reconciliation for a species tree S and a set of gene trees F then

corresponds to finding a time map τS for S and a time map τT for the aggregated gene tree (T ; t,σ),
such that (D1)-(D3) are satisfied.

If there exists a time consistent reconciliation map µ from (T ; t,σ) to S then, by Theorem
2, there exists the two time maps τT and τS that satisfy (D1)-(D3). But then τT and τS also
satisfy (D1)-(D3) w.r.t. any (Ti; ti,σi) ∈ F and therefore, µ immediately gives a time-consistent
reconciliation map for each (Ti; ti,σi) ∈ F .

5 Outlook and Summary
We have characterized here whether a given event-labeled gene tree (T ; t,σ) and species tree S
can be reconciled in a time-consistent manner in terms of two auxiliary graphs A1 and A2 that
must be DAGs. These are defined in terms of given reconciliation maps. This condition yields an
O(|V | log(|W |))-time algorithm to check whether a given reconciliation map µ is time-consistent,
and an algorithm with the same time complexity for the construction of a time-consistent recon-
ciliation maps, provided one exists.

Our results depend on three conditions on the event-labeled gene trees that are motivated
by the fact that event-labels can be assigned to internal vertices of gene trees only if there is
observable information on the event. The question which event-labeled gene trees are actually
observable given an arbitrary, true evolutionary scenario deserves further investigation in future
work. Here we have used conditions that arguable are satisfied when gene trees are inferred using
sequence comparison and synteny information. A more formal theory of observability is still
missing, however.

Our results point to an efficient way of deciding whether a given pair of gene and species tree
can be time-consistently reconciled. Such gene and species trees can be obtained from genomic
sequence data using the following workflow: (i) Estimate putative orthologs and HGT events

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2017. ; https://doi.org/10.1101/201053doi: bioRxiv preprint 

https://doi.org/10.1101/201053
http://creativecommons.org/licenses/by-nc/4.0/


using e.g. one of the methods detailed in [3, 1, 4, 8, 31, 32, 34, 39, 41, 43] and [9, 10, 30, 36,
37], respectively. Importantly, this step uses only sequence data as input and does not require
the construction of either gene or species trees. (ii) Correct these estimates in order to derive
“biologically feasible” homology relations as described in [18, 25, 12, 28, 29, 11, 13, 27, 1]. The
result of this step are (not necessarily fully resolved) gene trees together with event-labels. (iii)
Extract “informative triples” from the event-labeled gene tree. These imply necessary conditions
for gene trees to be biologically feasible [18, 25].

In general, there will be exponentially many putative species trees. This begs the question
whether there is at least one species tree S for a gene tree and if so, how to construct S. In the
absence of HGT, the answer is known: time-consistent reconciliation maps are fully characterized
in terms of “informative triples” [25]. Hence, the central open problem that needs to be addressed
in further research are sufficient conditions for the existence of a time-consistent species tree given
an event-labeled gene tree with HGT.

6 Proof of Theorem 1
We show that Definition 2 is is equivalent to the traditional definition of a DTL-scenario [40, 5]
in the special case that both the gene tree and species trees are binary. To this end we establish a
series of lemmas detailing some useful properties of reconciliation maps.

Lemma 4. Let µ be a reconciliation map from (T ; t,σ) to S and assume that T is binary. Then
the following conditions are satisfied:

1. If v,w ∈V (T ) are in the same connected component of TE, then
µ(lcaTE(v,w))�S lcaS(µ(v),µ(w)).

Let u be an arbitrary interior vertex of T with children v,w, then:

2. µ(u) and µ(v) are incomparable in S if and only if (u,v) ∈ E.

3. If t(u) = •, then µ(v) and µ(w) are incomparable in S.

4. If µ(v),µ(w) are comparable or µ(u)�S lcaS(µ(v),µ(w)), then t(u) =�.

Proof. We prove the Items 1 - 4 separately. Recall, Lemma 1 implies that σ(LTE(x)) 6= /0 for all
x ∈V (T ).

Proof of Item 1: Let v and w be distinct vertices of T that are in the same connected component
of TE. Consider the unique path P connecting w with v in TE. This path P is uniquely subdivided
into a path P′ and a path P′′ from lcaTE(v,w) to v and w, respectively. Condition (M3) implies that
the images of the vertices of P′ and P′′ under µ , resp., are ordered in S with regards to �S and
hence, are contained in the intervals Q′ and Q′′ that connect µ(lcaTE(v,w)) with µ(v) and µ(w),
respectively. In particular, µ(lcaTE(v,w)) is the largest element (w.r.t. �S) in the union of Q′∪Q′′

which contains the unique path from µ(v) to µ(w) and hence also lcaS(µ(v),µ(w)).
Proof of Item 2: If (u,v) ∈ E then, t(u) = 4 and (M2iii) implies that µ(u) and µ(v) are

incomparable.
To see the converse, let µ(u) and µ(v) be incomparable in S. Item (M3) implies that for any

edge (x,y) ∈ E(TE) we have µ(y) �S µ(x). However, since µ(u) and µ(v) are incomparable it
must hold that (u,v) /∈ E(TE). Since (u,v) is an edge in the gene tree T , (u,v) ∈ E is a transfer
edge.

Proof of Item 3:
Let t(u) = •. Since none of (u,v) and (u,w) are transfer-edges, it follows that both edges are

contained in TE.
Then, since T is a binary tree, it follows that LTE(u) = LTE(v)∪LTE(w) and therefore, σTE(u) =

σTE(v)∪σTE(w).
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Therefore and by Item (M2i),

µ(u) = lcaS(σTE(u)) = lcaS(σTE(v)∪σTE(w))

= lcaS(lcaS(σTE(v)), lcaS(σTE(w))).

Assume for contradiction that µ(v) and µ(w) are comparable, say, µ(w)�S µ(v). By Lemma
2, µ(w)�S µ(v)�S lcaS(σTE(v)) and µ(w)�S lcaS(σTE(w)). Thus,

µ(w)�S lcaS(lcaS(σTE(v)), lcaS(σTE(w))).

Thus, µ(w)�S µ(u); a contradiction to (M3ii).
Proof of Item 4: Let µ(v),µ(w) be comparable in S. Item 3 implies that t(u) 6= •. Assume

for contradiction that t(u) =4. Since by (O2) only one of the edges (u,v) and (u,w) is a transfer
edge, we have either (u,v) ∈ E or (u,w) ∈ E. W.l.o.g. let (u,v) ∈ E and (u,w) ∈ E(TE). By
Condition (M3), µ(u) �S µ(w). However, since µ(v) and µ(w) are comparable in S, also µ(u)
and µ(v) are comparable in S; a contradiction to Item 2. Thus, t(u) 6= 4. Since each interior
vertex is labeled with one event, we have t(u) =�.

Assume now that µ(u) �S lcaS(µ(v),µ(w)). Hence, µ(u) is comparable to both µ(v) and
µ(w) and thus, (M2iii) implies that t(u) 6= 4. Lemma 2 implies µ(v) �S lcaS(σTE(v)) and
µ(w)�S lcaS(σTE(w)). Hence,

lcaS(µ(v),µ(w))�S lcaS(lcaS(σTE(v)), lcaS(σTE(w)))

= lcaS(σTE(v)∪σTE(w)).

Since T (u) 6=4 it follows that neither (u,v) ∈ E nor (u,w) ∈ E and hence, both edges are con-
tained in TE. By the same argumentation as in Item 3 it follows that σTE(u) = σTE(v)∪σTE(w)
and therefore, lcaS(σTE(v) ∪ σTE(w)) = lcaS(σTE(u)). Hence, µ(u) �S lcaS(µ(v),µ(w)) �S

lcaS(σTE(u)). Now, (M2i) implies t(u) 6= •. Since each interior vertex is labeled with one event,
we have t(u) =�.

Lemma 5. Let µ be a reconciliation map for the gene tree (T ; t,σ) and the species tree S as in
Definition 2. Moreover, assume that T and S are binary. Set for all u ∈V (T ):

γ(u) =

{
µ(u) ,if µ(u) ∈V (S)
y ,if µ(u) = (x,y) ∈ E(S)

Then γ : V (T )→V (S) is a map according to the DTL-scenario.

Proof. We first emphasize that, by construction, µ(u) �S γ(u) for all u ∈ V (T ). Moreover,
µ(u) = µ(v) implies that γ(u) = γ(v), and γ(u) = γ(v) implies that µ(u) and µ(v) are comparable.
Furthermore, µ(u)≺S µ(v) implies γ(u)�S γ(v), while γ(u)≺S γ(v) implies that µ(u)≺S µ(v).
Thus, µ(u) and µ(v) are comparable if and only if γ(u) and γ(v) are comparable.

Item (I) and (M1) are equivalent.
For Item (II) let u ∈ V (T ) \G be an interior vertex with children v,w. If (u,w) /∈ E, then

w≺TE u. Applying Condition (M3) yields µ(w)�S µ(u) and thus, by construction, γ(w)�S γ(u).
Therefore, γ(u) is not a proper descendant of γ(w) and γ(w) is a descendant of γ(u). If one of the
edges, say (u,v), is a transfer edge, then t(u) =4 and by Condition (M2iii) µ(u) and µ(v) are
incomparable. Hence, γ(u) and γ(v) are incomparable. Therefore, γ(u) is no proper descendant
of γ(v). Note that (O2) implies that for each vertex u∈V (T )\G at least one of its outgoing edges
must be a non-transfer edge, which implies that γ(w) �S γ(u) or γ(v) �S γ(u) as shown before.
Hence, Item (IIa) and (IIb) are satisfied.

For Item (III) assume first that (u,v) ∈ E and therefore t(u) =4. Then, (M2iii) implies that
µ(u) and µ(v) are incomparable and thus, γ(u) and γ(v) are incomparable. Now assume that
(u,v) is an edge in the gene tree T and γ(u) and γ(v) are incomparable. Therefore, µ(u) and µ(v)
are incomparable. Now, apply Lemma 4(2).
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Item (IVa) is clear by the event-labeling t of T and since (O2). Now assume for (IVb) that
t(u) = •. Lemma 4(3) implies that µ(v) and µ(w) are incomparable and thus, γ(v) and γ(w)
must be incomparable as well. Furthermore, Condition (M2i) implies that µ(u) = lcaS(σTE(u)).
Lemma 2 implies that µ(v)�S lcaS(σTE(v)) and µ(w)�S lcaS(σTE(w)). The latter together with
the incomparability of µ(v) and µ(u) implies that

lcaS(µ(v),µ(w)) = lcaS(lcaS(σTE(v)), lcaS(σTE(w)))

= lcaS(σTE(v)∪σTE(w))

= lcaS(σTE(u)) = µ(u).

If µ(v) is mapped on the edge (x,y) in T , then γ(v) = y. By definition of lca for edges,
lcaS(µ(v),γ(w)) = lcaS(y,γ(w)) = lcaS(γ(v),γ(w)). The same argument applies if µ(w) is
mapped on an edge. Since for all z ∈V (T ) either µ(z)�S γ(z) (if µ(z) is mapped on an edge) or
µ(z) = γ(z), we always have

lcaS(γ(v),γ(w)) = lcaS(µ(v),µ(w)) = µ(u).

Since t(u) = •, (M2i) implies that µ(u) ∈ V (S) and therefore, by construction of γ it holds that
µ(u) = γ(u). Thus, γ(u) = lcaS(γ(v),γ(w)). For (IVc) assume that t(u) = �. Condition (M3)
implies that µ(u)�S µ(v),µ(w) and therefore, γ(u)�S γ(v),γ(w). If γ(v) and γ(w) are incompa-
rable, then γ(u)�S γ(v),γ(w) implies that γ(u)�S lcaS(γ(v),γ(w)). If γ(v) and γ(w) are compa-
rable, say γ(v)�S γ(w), then γ(u)�S γ(v) = lcaS(γ(v),γ(w)). Hence, Statement (IVc) is satisfied.

Lemma 6. Let γ : V (T )→V (S) be a map according to the DTL-scenario for the binary the gene
tree (T ; t,σ) and the binary species tree S. For all u ∈V (T ) define:

µ(u) =

{
γ(u) ,if t(u) ∈ {•,�}
(x,γ(u)) ∈ E(S) ,if t(u) ∈ {4,�}

Then µ : V (T )→V (S)∪E(S) is a reconciliation map according to Definition 2.

Proof. Let γ : V (T )→ V (S) be a map a DTL-scenario for the binary the gene tree (T ; t,σ) and
the species tree S.

Condition (M1) is equivalent to (I).
For (M3) assume that v�TE w. The path P from v to w in TE does not contain transfer edges.

Thus, by (III) all vertices along P are comparable. Moreover, by (IIa) we have that γ(w) is not a
proper descendant of the image of its child in S, and therefore, by repeating these arguments along
the vertices x in Pwv, we obtain γ(v)�S γ(x)�S γ(w).

If γ(v) ≺S γ(w), then by construction of µ , it follows that µ(v) ≺S µ(w). Thus, (M3) is
satisfied, whenever γ(v) ≺S γ(w). Assume now that γ(v) = γ(w). If t(v), t(w) ∈ {�,4} then
µ(v) = (x,γ(v)) = (x,γ(w)) = µ(w) and thus (M3i) is satisfied. If t(v) = • and t(w) 6= • then
since µ(v) = γ(v) and µ(w) = (x,γ(w)). Thus µ(v)≺S µ(w).

Now assume that γ(v) = γ(w) and w is a speciation vertex. Since t(w) = •, for its two children
w′ and w′′ the images γ(w′) and γ(w′′) must be incomparable due to (IVb). W.l.o.g. assume that
w′ is a vertex of Pwv. Since γ(v)�S γ(x)�S γ(w) for any vertex x along Pwv and γ(v) = γ(w), we
obtain γ(w′) = γ(w). However, since γ(w′′)�S γ(w), the vertices γ(w′) and γ(w′′) are comparable
in S; contradicting (IVb). Thus, whenever w is a speciation vertex, γ(w′) = γ(w) is not possible.
Therefore, γ(v) �S γ(w′) ≺S γ(w) and, by construction of µ , µ(v) ≺S µ(w). Thus, (M3ii) is
satisfied.

Finally, we show that (M2) is satisfied. To this end, observe first that (M2ii) is fulfilled by
construction of µ and (M2iii) is an immediate consequence of (III). Thus, it remains to show that
(M2i) is satisfied. Thus, for a given speciation vertex u we need to show that µ(u) = lcaS(σTE(u)).
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By construction, µ(u) = γ(u). Note, TE does not contain transfer edges. Applying (III) im-
plies that for all edges (x,y) in TE the images γ(x) and γ(y) must be comparable. The lat-
ter and (IIa) implies that for all edges (x,y) in TE we have γ(y) �S γ(x). Take the latter to-
gether, σ(z) = γ(z) �S γ(u) for any leaf z ∈ LTE(u). Therefore lcaS(σTE(u)) �S γ(u) = µ(u).
Assume for contradiction that lcaS(σTE(u)) ≺S γ(u) = µ(u). Consider the two children u′ and
u′′ of u in TE. Since neither (u,u′) ∈ E nor (u,u′′) ∈ E and T is a binary tree, it follows that
LTE(u) = LTE(u

′)∪LTE(u
′′) and we obtain that σTE(u) = σTE(u

′)∪σTE(u
′′). Moreover, re-using

the arguments above, lcaS(σTE(u
′)) �S γ(u′) and lcaS(σTE(u

′′)) �S γ(u′′). By the arguments
we used in the proof for (M3), we have γ(u′) ≺S γ(u) and γ(u′′) ≺S γ(u). In particular, γ(u′)
and γ(u′′) must be contained in the subtree of S that is rooted in the child a of γ(u) in S with
lcaS(σTE(u)) �S a, as otherwise, lcaS(σTE(u

′)) 6�S γ(u′) or lcaS(σTE(u
′′)) 6�S γ(u′′). Moreover,

neither lcaS(σTE(u)) �S lcaS(σTE(u
′)) nor lcaS(σTE(u)) �S lcaS(σTE(u

′′)) is possible since then
lcaS(σTE(u

′)) �S γ(u′) and lcaS(σTE(u
′′)) �S γ(u′′) implies that γ(u′) and γ(u′′) would be com-

parable; contradicting (IVb). Hence, there remains only one way to locate γ(u′) and γ(u′′), that
is, they must be located in the subtree of S that is rooted in lcaS(σTE(u)). But then we have
lcaS(γ(u′),γ(u′′)) �S lcaS(σTE(u)) ≺S γ(u); a contradiction to (IVb) γ(u) = lcaS(γ(u′),γ(u′′)).
Therefore, lcaS(σTE(u)) = γ(u) = µ(u) and (M2i) is satisfied.

Finally, Lemma 5 and 6 imply Theorem 1.
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