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Abstract     23 

The brain generates cognition and behavior through firing changes of its neurons, 24 

yet, with enormous firing variability, the organizing principle underlying real-time neural 25 

code remains unclear.  Here, we test the Neural Self-Information Theory that neural code 26 

is constructed via the self-information principle under which each inter-spike-interval (ISI) 27 

is inherently self-tagged with discrete information based on its relation to ISI variability-28 

probability distribution - higher-probability ISIs, which reflect the balanced excitation-29 

inhibition ground state, convey minimal information, whereas lower-probability ISIs, which 30 

signify statistical surprisals, carry more information. Moreover, temporally coordinated ISI 31 

surprisals across neural cliques intrinsically give rise to real-time cell-assembly neural 32 

code.  As a result, this self-information-based neural coding is uniquely intrinsic to the 33 

neurons themselves, with no need for outside observers to set any reference point to 34 

manually mark external or internal inputs. Applying this neural self-information concept, 35 

we devised an unbiased general decoding strategy and successfully uncovered 15 distinct 36 

cell-assembly patterns from multiple cortical and hippocampal circuits associated with 37 

different sleep cycles, earthquake, elevator-drop, foot-shock experiences, navigation or 38 

various actions in five-choice visual-discrimination operant-conditioning tasks.  Detailed 39 

analyses of all 15 cell assemblies revealed that ~20% of the skewed ISI distribution tails 40 

were responsible for the emergence of robust cell-assembly codes, conforming to the 41 

Pareto Principle. These findings support the notion that neural coding is organized via the 42 

self-information principle to generate real-time information across brain regions, cognitive 43 

modalities, and behaviors.  44 
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Introduction 45 

A central theme in brain research is to understand how perception, memories, and 46 

actions are dynamically represented in real time by firing patterns of neurons.  Over the 47 

past several decades, substantial efforts have been directed at measuring how changes 48 

in firing rates encode stimulus identity (referred to as the rate code), and/or how the exact 49 

timing of spikes from a neuron or the relative timing of spikes across multiple neurons 50 

convey information about the stimuli (generally referred to as the temporal code).  51 

However, one of the major stumbling blocks to cracking the real-time neural code is the 52 

neuronal variability; neurons in the brain discharge their spikes with tremendous variability 53 

across trials in response to the identical stimuli (1-5).  From a signal-processing 54 

perspective, such a variability would represent noise, which has been shown to undermine 55 

reliable decoding of stimulus identities in real time (2, 3, 5-10).  On the other hand, neurons 56 

in slice preparations are known to be capable of generating precisely-timed spikes in 57 

response to fluctuating currents injected at the soma (11, 12).  Thus, firing variability is not 58 

due to imprecision in spike generation at the soma per se.  Moreover, studies in the 59 

primary visual cortex or motor cortex showed that noise variability exhibited a certain level 60 

of correlation, which has been postulated to reflect varying attentional states or other 61 

modulatory signals such as intent (13-22).  Despite the potential benefits or deeper 62 

implications that neuronal variability may bring, in practice, researchers typically treated 63 

firing variability as noise and dislodged it by applying over-trial data-averaging methods, 64 

e.g., peri-time stimulus histogram (PTSH) to better assess tuning properties of the 65 

recorded neurons.  Obviously, such averaging procedure inherently assumed that any 66 

information possibly encoded in the temporal structure of the spike train can be (largely) 67 

ignored.  Yet, it is widely acknowledged that this over-trial averaging approach is unlikely 68 
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the real-time coding strategy that the brain uses to signal perception, memories, and 69 

actions on a moment-to-moment basis.   70 

At a more fundamental level, firing variability - typically measured as variations in 71 

inter-spike-intervals (ISI) - is not just limited to trial-to-trial responses upon external 72 

stimulation, rather it represents a general property that is reflected continuously 73 

throughout all stages of mental processes and behaviors, including the “control” resting 74 

periods and sleep.  In fact, spontaneous firing changes during those natural states or 75 

periods can be as large, if not larger, as those upon experimental stimulation (4, 8, 23-25).  76 

Such an ongoing spontaneous fluctuation in firing would seem to be profoundly 77 

paradoxical for achieving the robustness of neural coding on the moment-to-moment time 78 

basis:  Why would the brain utilize this seemingly noisy and even counterproductive mode 79 

to convey information and generate cognitions in real time?  Is there a deeper meaning 80 

for what neuronal variability may really stand?  In other words, how is real-time neural 81 

code constructed in the face of such notorious firing variability?  Can such a neural code 82 

be intrinsic to neurons themselves rather than being decipherable merely to outside 83 

observers? 84 

In an attempt to explore these conceptual issues, we recently postulated the 85 

Neural Self-Information Theory that neural coding conforms to the self-information 86 

principle, which utilizes inter-spike-interval (ISI) variability and its variability history to 87 

generate the self-information code (26).  Specifically, neuronal variability operates as the 88 

self-information generator and messenger; higher-probability ISIs, which reflect the 89 

balanced excitation-inhibition ground-state, convey less information, whereas lower-90 

probability ISIs, which signify statistical surprisals, convey more information. At the 91 

physiological level, the rare-occurrence of ISI corresponds to unusually brief or prolonged 92 

neuronal silent periods, such as bursting patterns or strong inhibition, respectively. More 93 
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importantly, the Neural Self-Information Theory further posits that at the population level, 94 

temporally coordinated ISI surprisals across neural clique members can seamlessly give 95 

rise to robust real-time cell-assembly codes (25, 26). 96 

Guided by the Neural Self-Information Theory, we set out to test whether we can 97 

identify real-time cell assembly patterns from a variety of brain regions and across different 98 

mental states or tasks.  Cell assembly is a group of co-activated neurons that has long 99 

been hypothesized by Hebb (1949) (27) as the population-level computational motif to 100 

represent real-time perception and thoughts (11, 28-32).  We applied the Neural Self-101 

Information Theory to decode activity patterns in the prelimbic cortex, anterior cingulate 102 

cortex and hippocampal CA1 of freely-behaving mice.  At least fifteen different cortical and 103 

hippocampal cell assemblies were identified in an unbiased manner, spanning from those 104 

encoding categorical variables such as earthquake, foot-shock, elevator-drop, or various 105 

operant actions during a five-choice visual-discrimination task, as well as those cell 106 

assemblies encoding continuous variables, such as spatial navigation or different stages 107 

of sleep cycles.  Our analyses further revealed the conserved critical boundaries from 108 

which low-probability ISIs emerge as statistically significant self-information packets for 109 

the construction of robust cell-assembly neural code in real time.    110 
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Results 111 

Neuronal variability is large and remains similar across the different brain regions 112 

The Neural Self-Information Theory posits that neuronal variability acts as a self-113 

information generator which should remain robust across various brain regions (26).  On 114 

the other hand, if neuronal variability reflects system noise, one might expect that 115 

variability would grow larger as information is transmitted from low subcortical structures 116 

to high-cognition cortices.  To differentiate these two scenarios, we used 128-channel 117 

tetrode arrays to record large numbers of neurons from six cortical and sub-cortical 118 

regions - namely, the basolateral amygdala (BLA), hippocampal CA1, dorsal striatum 119 

(STR), retrosplenial Cortex (RSC), prelimbic cortex (PRL) and anterior cingulate cortex 120 

(ACC), respectively - in freely-behaving mice.  To facilitate direct comparison, we focused 121 

on putatively classified principal projection cells by excluding fast-spiking putative 122 

interneurons (Figure S1) and analyzed their variability distributions.  123 

Neuronal variability is typically measured from ISIs distribution (Figure 1A) from 124 

which three well-defined statistics can be used to describe quantitatively neuronal 125 

variability of a given neuron - namely, a coefficient of variation (CV), skewness, and 126 

kurtosis (see Materials and Methods).  In probability theory and statistics, CV is a 127 

standardized measure of dispersion of a probability distribution, and skewness is a 128 

measure of the asymmetry of a probability distribution, whereas kurtosis is a measure of 129 

the "tailedness" of a probability distribution.  For comparison purposes, normal distribution 130 

(indicating stochastic process) has CV=mean/std, Skewness=0 and Kurtosis=0, while 131 

exponential distribution (indicating Poisson process) has CV=1, Skewness=2 and 132 

Kurtosis=6.  The more skewed/long-tail a distribution exhibits, the larger CV, skewness 133 

and kurtosis it has.   134 
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Our analyses showed that principal projection cells in these six different mouse 135 

brain regions exhibited similar neuronal variability distributions (Figure 1B, see also Figure 136 

S2A-D).  Their CVs were all in a range of 0-4 (Figure S2B, BLA = 1.59 ± 0.02, CA1 = 1.64 137 

± 0.02, STR = 1.71 ± 0.03, RSC = 1.23 ± 0.01, PrL = 1.41 ± 0.04, and ACC = 1.54 ± 0.03).  138 

Skewness was in 0-10 range (Figure S2C, BLA = 3.27 ± 0.07, CA1 = 3.77 ± 0.07, STR = 139 

3.74 ± 0.10, RSC = 3.00 ± 0.04, PrL = 3.47 ± 0.14, and ACC = 3.78 ± 0.11), whereas 140 

Kurtosis had a range of 0-150 (Figure S2D, BLA = 20.77 ± 0.94, CA1 = 29.45 ± 1.09, STR 141 

= 27.36 ± 1.47, RSC = 19.28 ± 0.66, PRL = 24.78 ± 2.04, and ACC = 28.98 ± 1.74).  142 

Therefore, these results show that neuronal variability is large and remains at a similar 143 

level across multiple brain regions and principal cell types (i.e. excitatory pyramidal cells 144 

in the CA1 vs. putative medium spiny neurons in the striatum).  It did not grow larger from 145 

the amygdala and CA1 to the RSC and prefrontal cortices as the system-noise model 146 

would have predicted. 147 

Firing variability was reduced if cognitive coding was shut down by anesthesia 148 

To further test the idea that neuronal variability serves as the self-information 149 

generator and messenger, one would expect that variability will diminish under the 150 

condition when both external and internal cognitive computation is artificially shut down 151 

(i.e. upon anesthesia).  Ketamine/domitor administration is a widely used protocol to 152 

induced anesthesia.  Accordingly, we recorded activity patterns of large numbers of cells 153 

from the BLA and CA1, respectively, in the awake state as well as under ketamine/domitor-154 

induced anesthesia.  Using the same set of putative pyramidal neurons, we asked how 155 

the skewed distributions of ISI differ during anesthesia vs. those during awake period.  156 

Indeed, in both the BLA and CA1, putative pyramidal cells drastically decreased their 157 

neuronal variability upon anesthesia (Figure 1C; also see Figure S2E). The skewed/long-158 

tailed distributions of ISI in the CA1 was significantly reduced (CV: 1.71 ± 0.08 in awake 159 
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vs. 1.36 ± 0.21 under anesthesia, P=0.00024; skewness: 4.46 ± 0.25 in awake vs. 2.04 ± 160 

0.38 under anesthesia, P=4.1e-16; Kurtosis: 39.53 ± 4.17 in awake vs. 8.68 ± 2.85 under 161 

anesthesia, P=3.3e-11) (Figure S2E, top row).  Similarly, BLA pyramidal cells also greatly 162 

reduced their neuronal variability (CV: 1.83 ± 0.05 in awake vs 1.28 ± 0.20 under 163 

anesthesia, P =1.1e-16; skewness: 4.90 ± 0.19 in awake vs. 2.46 ± 0.50 under anesthesia, 164 

P=5.8e-24; kurtosis: 45.29 ± 3.54 in awake vs. 11.87 ± 3.92 under anesthesia, P=4.0e-17) 165 

(Figure S2E, bottom row). The reduction in firing variability was evident from ketamine-166 

induced rhythmic spike-discharge patterns (Figures S2F and S2G).  These 167 

pharmacological intervention experiments demonstrate that the shutting down of external 168 

and internal cognitive coding processes indeed diminished neuronal variability.   169 

Self-Information theory-based decoding strategy to uncover cell assemblies 170 

The key feature of the Neural Self-Information Theory is that any given ISI is 171 

inherently self-tagged with a discrete amount of information based on its ISI (the silence 172 

time duration) in a relationship with the ISI variability-probability distribution (variation 173 

history of silence time durations).  Specifically, the amount of self-information (“ SI ”)  174 

contained in each ISI can be quantitatively obtained based on the ISI variability-distribution 175 

probability [ = − log( )SI p , where p  is the probability] (26).  The smaller the probabilities in 176 

ISIs, the larger the variability surprisals, which convey more information (in statistical terms, 177 

those events with low-occurrence probability are called surprisals). At the physiological 178 

level, these self-information ISI surprisals can be either positive (when a neuron’s ISI 179 

becomes much shorter than is typical, reflecting strong excitation) or negative (when ISI 180 

becomes much longer than is typical, reflecting strong inhibition). Subsequently, these 181 

dynamic, transient surprisal silence-duration (ISI) patterns would act as the critical real-182 

time information packets at a single neuron level.  More importantly, when these surprisal 183 
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ISIs are generated across a cell population in a temporally coordinated manner, their 184 

collective patterns would intrinsically give rise to robust real-time cell-assembly code.   185 

To experimentally test the validity of this hypothesis, we set out to devise a general 186 

decoding strategy based on the neural self-information concept to uncover cell assemblies 187 

from spike-train datasets recorded from different brain regions, mental states, and 188 

behavioral tasks.  This Variability-based Cell-Assembly Decoding (VCAD) method 189 

consisted of the following three major steps (Figure 2):    190 

1) To convert ISI variations into real-time variability surprisals.  In practice, 191 

measurement of ISI probability distribution can be determined numerically. In contrast to 192 

the prevalent notion that spike variability is a Poisson distribution, emerging studies have 193 

suggested that ISI variability in many neural circuits conform to the gamma distribution 194 

(33).  Thus, we first fitted single neuron’s ISIs with a gamma distribution model which can 195 

assign each neuron’s ISI with a probability.  Subsequently, a spike train emitted by a 196 

neuron can be transformed into surprisal-based ternary code (positive surprisal as 1, 197 

ground state as 0, negative surprisal as -1) to describe the dynamic evolution in self-198 

information states (Figure 2A).   199 

2) To uncover joint ISI surprisal patterns in space and time.  This step 200 

searches for joint variability surprisals in both space (across simultaneously-recorded cells) 201 

and time (moment-to-moment dynamics).  Blind source separation (BSS) methods, such 202 

as independent component analysis (ICA), can be used to efficiently identify a set of 203 

independent information sources from simultaneously observed signals as structured 204 

patterns or relationships.  Although the nature of the demixing matrix’s dimension 𝑝𝑝 meant 205 

that 𝑝𝑝  information sources can be theoretically decoded from population activity, we 206 

reasoned that optimal neural coding should also be energy efficient via utilizing the least 207 
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amount of variability surprisals together with the minimal numbers of such information-208 

coding cells.  As such, we used the minimal CV values in each dataset to unbiasedly 209 

assess the optimal numbers of independent information sources (distinct cell assemblies) 210 

(Figure 2B; also see Figure S3A, Materials and Methods).   211 

3) To identify corresponding cell assemblies.  Each independent signal source 212 

decoded by BSS corresponds to a distinct real-time activation pattern given by a cell 213 

assembly.  To discover the functional meaning of each cell assembly pattern, one can 214 

compare the time points marked by each real-time activation with various other 215 

experimental parameters recorded during experiments, such as local field potential (LFP), 216 

the time points of stimulus presentations, or video tapes of an animal’s behavioral state, 217 

specific actions and performance, or spatial locations, etc. The top-ranking membership 218 

with the highest contribution weights in the cell assembly can be directly identified from 219 

demixing matrix W (Figure 2C; also see Figure S3B).  Moreover, their contributions to a 220 

given cell-assembly pattern can be quantitatively defined by shuffling techniques (i.e. by 221 

shuffling or artificially changing spike patterns to alter surprisal states).  This step allowed 222 

us to assess quantitative membership information that other dimensionality-reduction-223 

based pattern-classification methods (i.e. principal component analysis or multiple 224 

discriminant analysis) could not provide. 225 

In the study of neural coding, cognitive and physiological inputs associated with 226 

external and internal states typically fall into two major categories - namely, continuous 227 

variables (i.e. arm movement, navigation, sleep oscillations, etc.) and categorical variables 228 

(i.e. distinct events, stimuli, discrimination tasks, etc.).  If neuronal variability surprisals act 229 

as the universal coding vehicle to provide discrete quanta of information, one would predict 230 

that this VCAD method should be able to uncover various cell assemblies related to such 231 

a wide range of dynamic operations across different brain regions. 232 
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Identification of cortical cell assemblies encoding distinct emotional experiences 233 

We asked whether a variability-based self-information process underlies real-time 234 

coding of discrete categorical variables, namely, fearful experiences such as earthquake, 235 

foot-shock and a sudden elevator drop (as one experienced during the Tower-of-Terror 236 

ride in Disney theme park).  The anterior cingulate cortex (ACC) is part of the prefrontal 237 

cortex known to process emotions and fear memories (34-36).  To examine how the ACC 238 

discriminates and categorizes distinct fearful experiences at the population level, we 239 

employed 128-channel tetrodes to monitor spike activity of large numbers of ACC while 240 

the recording mice encountered earthquake, foot-shock and sudden elevator drop which 241 

are known to produce fear responses (37).  By scanning through the real-time spike 242 

dataset that contained 146 well-isolated, simultaneously-recorded ACC units, our VCAD 243 

method automatically uncovered three distinct ensemble patterns.  We found that these 244 

patterns corresponded to the occurrences of one of three fearful stimulations (Figure 3A). 245 

Specifically, ACC assembly-1 activations were time-locked to the occurrences of six 246 

earthquake events; ACC assembly-2 was temporally corresponding to six foot-shock 247 

events; and ACC assembly-3 was matched to free-fall events.  Their unique ensemble 248 

patterns were further verified by shuffling their top 20% large-weight neurons’ firing 249 

patterns with the Gaussian signal using the same mean firing rate and standard deviation 250 

(Figure S4A).  This shuffling procedure showed that the ensemble representation of a 251 

given event (e.g. free-fall) gradually became weaker as more top-contribution neurons 252 

were shuffled, while leaving the other two ensemble patterns (e.g. representing the 253 

earthquake or foot-shock) unchanged.  Peri-event spike raster and histogram plot 254 

analyses (Figure S4B) revealed that while the majority of member cells exhibited event-255 

specific responses (i.e., earthquake-specific, free-fall specific, or foot-shock specific ACC 256 
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cells), some of the top cell-assembly members participated in two cell assemblies or even 257 

all of the three assemblies (Figures 3B-D).   258 

Identification of cell assemblies related to sleep oscillations 259 

Next, we investigated whether the self-information coding concept can be used to 260 

identify cell-assembly patterns related to internally-driven, continuous variable processes.  261 

Sleep is associated with and defined by changes in EEG or local field potential oscillations 262 

(38).  It has important functions for memory consolidation and behaviors (38-41) or fear-263 

memory consolidation (42-44), relatively less is known about the functional classification 264 

and organization of CA1 cell assemblies during natural sleep oscillation cycles.   Thus, we 265 

asked whether the VCAD method can be used to identify cell assemblies in the CA1 266 

related to various cycles of sleep.  We scanned a 20-minute spike dataset collected from 267 

the mouse hippocampal CA1 region during a sleep session and analyzed the ISI variability 268 

of 266 units recorded simultaneously using 128-channel tetrode arrays.  Our VCAD 269 

analyses of spike dynamics unveiled a total of three major ensemble patterns over the 270 

time course of 20-minute sleep period (Figure 4A).  To search for the relationships of these 271 

three assembly patterns and sleep oscillations, we aligned these CA1 temporal patterns 272 

with the time-course plot of the simultaneously recorded LFP oscillations. Interestingly, we 273 

found that the temporal emergence of Cell Assembly-1 patterns was tightly matched to 274 

the occurrences of theta oscillation (Figure 4B), whereas Assembly-2 patterns were time-275 

locked to ripple oscillation (Figure 4C).  Furthermore, we found that the activation of 276 

Assembly-3 temporally corresponded to the DOWN-state of sleep cycles (Figure 4D) - that 277 

is, this ensemble pattern was consistently time-locked with the troughs of various LFP 278 

frequency bands.   279 
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By further taking advantage of the VCAD method in providing the ranking of cell-280 

assembly members, we found that the top 20% ranking units (with largest weights in 281 

demixing matrix W )  in CA1 Assembly-1 cells with consisted of mostly putative 282 

interneurons (Figure 4E, n=53 cells).  The shuffling technique (replacing their firing pattern 283 

with Gaussian signal with the same mean firing rate and standard deviation) revealed that 284 

the Assembly-1 pattern was abolished as these top 20% contribution-cells’ firing patterns 285 

were shuffled (Figure S5A).  Interestingly, only about 15% of these Assembly-1 cells (eight 286 

cells, identified as putative O-LM cells or basket cells/bistratified cells based on the 287 

multiple criteria for interneuron sub-classification, see Figure S5B and S5C) exhibited a 288 

robust phase-locking relationship with theta oscillations (termed as Theta-coupled 289 

Assembly-1 cells) (Figure S5B and S5C), which is consistent with evidence from literature 290 

that CA1 interneurons exhibited theta-coupling (39, 40, 45-47).  Surprisingly, many 291 

Assembly-1 cells (45 cells, ~85% in Assembly -1) were not phase-locked with theta phase, 292 

but rather exhibited a significant difference in averaged firing rates between theta epochs 293 

vs. non-theta epochs.  One major group of the rate-altering cells, classified as putative 294 

Bursty cells (17 cells) (Figure S5D), dramatically increased their firings during theta cycles 295 

in comparison to non-theta epoch, whereas two putative pyramidal cells significantly 296 

decreased their firings during theta sleep cycles (Figure S5E).  297 

Another surprizing finding was that many theta-coupled CA1 cells from the 298 

simultaneously recorded dataset did not belong to Assembly-1.  These non-member theta 299 

cells were intriguingly distinct from those Assembly-1 theta cells as confirmed by their 300 

significant differences in firing correlation (Figure S6A).  This suggests that theta-coupling 301 

does not necessarily indicate the common membership.  In fact, two distinct populations 302 

of theta interneurons exist in the CA1, with one subset uniquely engaged in sleep theta.  303 

Similarly, we noted that there were many rate-altering cells that did not belong to 304 
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Assembly-1. Their distinct memberships were further supported by a dramatic statistical 305 

difference in the correlation coefficient between rate-altering member cells and rate-306 

altering non-member cells (Figure S6B). 307 

We then analyzed the nature of CA1 Assembly-2 ensemble patterns which were 308 

tightly time-locked with ripple peaks (Figure 4C). In contrast to Assembly-1, the majority 309 

of the top Assembly-2 cells were mostly putative pyramidal cells (Figure 4F). It is 310 

worthwhile to note that many non-member cells also showed rate changes between ripple 311 

epochs vs. non-ripple periods. Yet, they were distinct from Assembly-2 cells as evidenced 312 

by the significant difference in their correlation (Figure S6C). 313 

As to Assembly-3 cells (Figure 4D), we found that they also consisted of mostly 314 

interneurons (Figure 4G). But many of them were different from those interneurons listed 315 

in the Assembly-1 (Figure S7).  It was repeatedly noticed that several cells (~15%) were 316 

cross-listed in multiple-sleep oscillatory patterns.  The best example is that the same 317 

putative O-LM cells were repeatedly identified in all three sleep assemblies.   Overall, 318 

these three distinct cell assemblies identified by the self-information coding scheme 319 

consistently showed significantly higher correlations among themselves, in comparison to 320 

across the populations (Figure S6D).  The above results demonstrated that the unbiased 321 

VCAD method has enabled us to identify distinct cell assemblies that were time-locked to 322 

distinct sleep LFP oscillations. 323 

Unbiased identification of CA1 cell assemblies underlying place navigation and 324 

start/finish experiences 325 

To further demonstrate the generality of the self-information coding concept, we 326 

asked whether the VCAD method can be used to identify and verify the most studied cell 327 

assembly patterns, namely, place cells in the hippocampus.  CA1 place cells exhibit 328 
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sequential firing patterns indicating positional information (23, 28, 30, 31, 48-54).   Similar 329 

to the huge variability of other neurons in the brain, place cells also exhibit trial-to-trial 330 

variability, which rendered real-time firing sequences unreliably (23, 24, 28, 30, 31).   331 

Traditionally, identification of place cells involved averaging spike counts over spatial tiles 332 

using x-y pixel coordinates.  Because motion can greatly change firing rates of CA1 cells, 333 

in literature spike rasters below a certain running speed were typically removed during this 334 

data analysis step (a process critical to dislodge variability noise).  We wondered whether 335 

the self-information concept could be used to identify hippocampal place cells without 336 

using such trial-averaging methods, but rather in an unbiased manner via simply scanning 337 

population spike rasters using the VCAD sliding-window method on a moment-to-moment 338 

fashion.   339 

Therefore, we applied the self-information decoding method to 20-minute spike 340 

trains of 266 simultaneously recorded CA1 units from a mouse which was well trained to 341 

run back and forth on a one-meter linear track (without using trial-averaging spike counts 342 

over spatial pixels).  Based on the minimum CV as the best relevant dimension, our VCAD 343 

method unbiasedly revealed two distinct CA1 cell ensemble patterns (Figure 5A).  As we 344 

aligned these two cell-assembly patterns with a videotape that recorded the animal’s 345 

navigational positions and behaviors on the linear track, we found that these two real-time 346 

ensemble patterns were matched nicely to the westbound and eastbound navigations, 347 

respectively (Figure 5B).  Then, we examined top-ranking members from each cell 348 

assembly based on their matrix weights, and performed position-firing analysis of these 349 

cells.  A closer examination of the top-weighted CA1 neurons listed in these two cell 350 

assemblies revealed that some of these cells exhibited classic single place field place 351 

(Figure 5C).  Many of other cells also showed multiple place fields (Figure 5D).  Among 352 

the list, we also noticed that some of the top-contributing CA1 cells did not exhibit discrete 353 
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place field(s), but rather had differential responses corresponding to directional routing as 354 

the mouse traveled westbound or eastbound (Figure 5E) - that is, some CA1 cells 355 

preferentially fired in one travel direction over the other.   356 

Unexpectedly, from the list of the VCAD-identified cell assemblies, we also found 357 

that both the eastbound and westbound cell assemblies contained cells signaling 358 

start/finish transitions, that is, these cells specifically decreased their firing at the start of 359 

running and remained low-firing until the end of the navigation (Figure 5F).  While we 360 

found two start/finish cells engaged in both the westbound and eastbound journals, most 361 

interestingly, several CA1 start/finish cells exhibited journal- or direction-specific firing 362 

decreases (Figure 5F Unit-101 in the left sub-plot vs. Unit-103 in the right sub-plot; also 363 

see Figure S8). Such route-specific start/finish responses strongly suggest that the 364 

information coded by these cells were not merely corresponding to changes in motion 365 

states such as speed acceleration/deceleration, but journey-specific episode(s). Therefore, 366 

the neural self-information coding concept has successfully allowed uncovering CA1 place 367 

cells and their other assembly members, such as start/finish cells, important to account 368 

for multiple aspects of navigation-related variables. 369 

Prefrontal cell assemblies encoding five-choice visual-discrimination operant-370 

conditioning tasks 371 

Finally, we applied the self-information decoding approach to uncover novel cell 372 

assemblies in the prefrontal cortex related to the five-choice visual discrimination operant 373 

conditioning task – one of the most classical behaviors requiring a set of visually- and 374 

spatially-guided procedural actions.  In this task, mice learned to nose-poke in one of the 375 

five temporarily lit apertures within a short time window in order to receive a food reward 376 

delivered from the food magazine located on the opposite side of the chamber. The mice 377 
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were trained to reach an 80% success rate (see Materials and Methods).  A successful 378 

trial typically included the 5-sec illumination of one of the five apertures (in a randomized 379 

fashion) to signal the beginning of the trial.  During this time, the mouse needs to run from 380 

the food magazine area to the response aperture area and then nose-poked in the 381 

transiently lit aperture (correct responses), which resulted in a single food pellet dropped 382 

onto the food dish from the magazine. The mouse then runs back to the food magazine 383 

area to eat the pellet, which triggers the next trial.  A single session typically consisted of 384 

50 trials or more during which mice performed this attentive choice-action task. 385 

We used 128-channel tetrode arrays and recorded from the prelimbic cortex (PRL) 386 

while well-trained mice performed this operant conditioning task.  A total of 100 PRL cells 387 

were identified as a well-isolated unit and used for present analysis (those units did not 388 

meet the criterion were excluded).  We then scanned the spike dataset consisting of these 389 

PRL units using the VCAD method, and a total of seven cell-assembly patterns were 390 

unbiasedly detected.  We then align the temporal occurrences of these seven distinct 391 

patterns with the recorded videotape, and found that all of them could be temporally 392 

matched to distinct stages of the operant procedural task (Figure 6A, the sequential 393 

ensemble patterns from three back-to-back trials were plotted).   394 

The PRL assembly-1 pattern was time-locked to the cue-onset when the stimulus 395 

aperture was transiently lit for 5-second, signaling the initiation of the five-choice visual 396 

discrimination task (Figures 6A and 6B).  The peri-event spike raster and histogram 397 

confirmed that Assembly-1 cells exhibited significant changes upon the aperture light on 398 

(Figure 6B, Stage-1).  For example, A top-ranking PRL unit increased its firing upon the 399 

light-on in the stimulus aperture (5-second duration).  The firing of this attentive cell was 400 

then tapered off gradually (Figure 6B, listed in 1) Start. Upper PTSH subplots). Another 401 
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PRL cell suppressed its firing upon the stimulus aperture light-on (Figure 6B, 1) Start. 402 

Bottom PTSH subplots).  403 

The PRL assembly-2 activation pattern was time-locked to the first cue-conditioned 404 

operant action, namely, running towards the light-lit stimulus aperture from the reward 405 

zone toward where the animal was originally located (Figure 6B, Stage-2; two PRL cells 406 

are shown).  The orientation-firing polar histograms of comparing these cells’ activity 407 

patterns during the five-choice visual discrimination operant task with those during home-408 

cage running behavior showed that these firings were specific to the operant-conditioning 409 

task (Figure S9A).   410 

The PRL assembly-3 pattern corresponded to the entering of the poke zone (the 411 

region near apertures) (Figure 6B, Stage-3).  The place-firing analysis method confirmed 412 

that these large-weight responsive PRL units exhibited poke zone-specific spatial firing 413 

patterns (two cells were listed in the upper and lower subpanels, respectively).   414 

Firing patterns of the PRL assembly-4 cells were time-centered around the 415 

preparation and the actions of nose-poking at the transiently lit apertures (Figure 6B, 416 

Stage-4).  Peri-event spike histogram analysis revealed that these units exhibited dynamic 417 

firing changes around the nose-poking action.  One representative PRL cell exhibited 418 

transient suppression during poking of the stimulus aperture (the upper PTSH subpanels), 419 

whereas another cell peaked its firing during the preparation phase of nose-poking (lower 420 

subpanels), consistent with the role of prefrontal cells in action planning of goal-execution. 421 

The PRL assembly-5 pattern corresponded to the 4th action phase, namely, 422 

running back from the poke zone toward the reward zone where the food magazine was 423 

located (Figure 6B, Stage-5). The orientation-firing polar histograms revealed elevated 424 

firing changes by this type of member cells.  Again, these PRL cells did not show any 425 
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significant firing changes when the mouse was running around in its home-cage 426 

environment (Figure S9B), suggesting that these cells were goal-oriented. 427 

Increased firings of the PRL Assembly-6 cells were time-matched to the animal’s 428 

arrival in the reward zone (Figure 6B, Stage-6, two example cells were listed). These cells’ 429 

location-specific firing changes were evident from the PTSH plots again their spatial 430 

positions at the reward zone.   431 

Finally, the Assembly-7 cells decoded by the VCAD method responded to 432 

consumption of food pellets.  These PRL cells either increased or decreased their firings 433 

(Figure 6B, Stage-7, two cells were shown).  While many of the above cells tended to be 434 

specific to a given phase of the five-choice operant-conditioning task, we noted that some 435 

of the cells participated in multiple cells assemblies.  For example, some PRL cells 436 

belonged to both the running action assembly and stimulus-aperture zone assembly 437 

(Figure S9C).  other PRL cells would exhibit bi-directional firing during navigation toward 438 

the aperture zone (Assembly #2) and reward zone (Assembly #5) (Figure S9D), or showed 439 

goal approaching-related firing increases in both the poke zone (Assembly #3) and the 440 

reward zone (Assembly #6) (Figure S9E).  The above results demonstrated that the self-441 

information coding concept was useful to discover a variety of prefrontal cell assemblies 442 

engaged in distinct stages of five-choice, attentive operant-conditioning task. 443 

Critical variability-distribution boundaries for constructing efficient assembly code 444 

The ability to uncover a variety of cell assemblies from the multiple brain regions 445 

and under multiple conditions and tasks suggest that neural self-information coding 446 

represents a general process.  The next critical question is whether there is a threshold or 447 

boundary in the IS variability distribution that can efficiently signal the shift from the high-448 

probability ground state into the low-probability surprisal states that would give rise to 449 
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robust assembly-level neural coding.  We approached this question by systematically 450 

shifting the positive- and negative-surprisal thresholds from 5% to 45% of the skewed ISI 451 

gamma distribution tails (Figure 7A).  We calculated the cell-assembly coherence index 452 

by systematically comparing each assembly’s temporal dynamics obtained from a given 453 

threshold with those obtained from all other thresholds.  We found that the sliding of the 454 

surprisal thresholds or boundaries between 5-15% (ISI variability falling into the low-455 

probability distribution tails) had little effect in terms of improving cell-assembly 456 

coherences, whereas assembly-pattern coherence fell apart as the surprisal thresholds 457 

shifted from 15% to 30% probability-distribution (Figure 7B).  This steep transition around 458 

20% distribution skewed tail was consistently observed all 15 cell assemblies obtained 459 

from different brain regions, mental states and behavioral tasks (Figure S10).  This 460 

strongly suggests that there is a conserved and critical boundary transition for constructing 461 

efficient self-information neural codes.  462 

Composition of self-information codes is region- and task-specific 463 

Finally, we explored how dynamic firing changes in putative principal excitatory 464 

cells and interneurons would contribute as positive or negative ISI surprisals to construct 465 

various cell assemblies (Figure 8A).  We first calculated the percentages of positive or 466 

negative surprisals out of the total surprisal occurrences in each of the 15 cell-assembly 467 

patterns (Figures 8B-E).  We then examined how many of these positive or negative 468 

surprisals were contributed by the putative excitatory neurons and interneurons. We noted 469 

that the majority of cell-assembly members identified in the present study were putative 470 

excitatory cells (70.73% in ACC cell assemblies, 78.8% of the total number of CA1 cell 471 

assemblies’ members, and 80% in PRL cell assemblies), while the rest were fast-spiking 472 

interneurons and unclassified neural types (e.g. units with low firing rates and narrow spike 473 

waveforms).  As expected, both excitatory neurons and fast-spiking interneurons can 474 
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contribute to positive and negative surprisals by increasing or decreasing their ISI time 475 

durations.  However, we found that the percentages of positive and negative surprisals 476 

varied dramatically from one assembly pattern to another depending on the type(s) of the 477 

nature of mental states or tasks.  For example, for coding sleep oscillation states such as 478 

theta cycles or ripples, spatial navigation, or processing distinct fearful experiences, these 479 

cortical and hippocampal assemblies consisted of overwhelmingly positive surprisals 480 

(70~96% of total surprisals) (Figure 8B-D). While excitatory cells contribute 481 

overwhelmingly to positive surprisals (due to their large proportion in terms of the total 482 

percentage of cell numbers), we noted that fast-spiking interneuron members can be 483 

dominant in producing both the positive and negative surprisals in some cases (e.g. CA1 484 

assemblies during sleep).  485 

Most interestingly, various neural coding constructed by PRL cell-assembly 486 

patterns (Figure 8E, Assembly-1, 2, 3, 4, 6, and 7) during a five-choice visual 487 

discrimination operant-conditioning task as well as the CA1 Assembly-3 pattern encoding 488 

the downstate of sleep cycle (Figure 8C) were constructed by a large proportion of 489 

negative surprisals (40~50% of total surprisals).  Therefore, the underlying compositions 490 

(i.e. positive and negative surprisals, as well as the percentages of excitatory neurons vs. 491 

interneurons) were specific to neural circuits, cognitive states, and behavioral tasks.  492 
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Discussion 493 

Here, we tested a novel hypothesis that neuronal variability operates as the self-494 

information generator and messenger to convey a variable amount of information in the 495 

form of ISI variability surprisal.  Coordination of these surprisal ISIs in space (across a 496 

population of neurons) and time can intrinsically give rise to robust real-time cell-assembly 497 

code (26).  This new concept can provide a new conceptual framework to explain how 498 

information is robustly signaled in real time by spike trains in the face of enormous 499 

neuronal variability.  This adds to emerging view in the literature that neuronal variability 500 

is not simply synaptic and systems noise (2-5, 8-18, 24, 55-57).   501 

We approached the question of whether firing variability reflects information coding 502 

or noise by systematically determining the difference or similarity in neuronal variability 503 

across the subcortical and cortical structures.  This included the basolateral amygdala, 504 

hippocampal CA1, striatum, and three cortical regions such as the RSC, PRL, and ACC. 505 

In all cases, we found that variability remained at the similar level, consistent with the 506 

prediction that neuronal variability does not reflect the system noise which is expected to 507 

become larger as noise would accumulate over each relay.  Our present work has also 508 

advanced the efforts in extracting the covert structure within the apparent noise in spike 509 

trains (9, 24, 55, 56). 510 

One interesting aspect of this self-information coding concept is that the neural 511 

code is intrinsic to the neurons themselves (26), with no need for outside observers to set 512 

any reference point as typically used in the rate-code, population-code and temporal-code 513 

models.  A variety of cell assemblies can indeed be identified in an unbiased manner - 514 

namely, without traditional reliance on averaging spike trains over external reference 515 

points, such as the stimulus delivery time, spatial location, local field potential or specific 516 
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actions of cognitive behaviors recorded during experiments.  Such information or steps 517 

were only used after cell-assembly patterns were identified by the VCAD method, as a 518 

way to interpret and/or define the potential functions or contribution of each assembly 519 

patterns.  For analyzing the datasets, we further enhanced the unbiased decoding method 520 

by developing a step by which independent-component signal sources was automatically 521 

determined using the minimal CV values in each dataset.   522 

To test whether the self-information coding represents a general principle, we 523 

applied the VCAD strategy to spike datasets obtained from different brain regions under 524 

a set of representative cognitions reflecting the external experiences (encountering 525 

earthquake, elevator-drop, foot-shock, navigation and various actions during five-choice 526 

visual discrimination tasks) and internal states (sleep oscillation cycles).  Selection of 527 

these mental states and cognitive tasks also allowed us to examine whether the self-528 

information concept can underlie the encoding of both categorical variables (i.e. distinct 529 

fearful stimuli, or nose-poking and obtaining food pellets during the operant-conditioning 530 

tasks) and continuous variables (i.e. spatial navigation or sleep).  Altogether, we have 531 

successfully uncovered 15 different cell assemblies covering a wide range of cognitive 532 

processing from the PRL, ACC, and hippocampal CA1.   533 

As the first test-case for the self-information coding concept, we examined whether 534 

the VCAD method can be used to uncover cell assembly patterns encoding categorical 535 

variables such as earthquake, elevator-drop or mild electric foot-shock experiences.  We 536 

selected the ACC due to its crucial role in processing emotions and fear behaviors (34, 537 

36, 58-60).  By extracting self-information coding patterns from firing variability, we 538 

identified three distinct cell assemblies that were time-locked to these three fearful events.  539 

The contribution of the top ranking members to each cell assembly was quantitatively 540 

determined by shuffling experiments (Figure S4A), a feat that was not achievable for 541 
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principal component analysis (PCA) and multiple-discriminant analysis (MDA) (25).  This 542 

quantitative assessment of membership information is highly valuable to better understand 543 

dynamics and contribution of individual neurons to the overall assembly pattern.  Overall, 544 

we found that many ACC cells exhibited specific responses to a specific fearful experience 545 

(i.e. earthquake vs. foot-shock), whereas some cells responded in a combinatorial manner, 546 

such as coding for both earthquake and foot-shock or earthquake and free-fall, etc. 547 

Moreover, some ACC cells participated in all cell assemblies, reflecting by their 548 

responsiveness to all three fearful events.  Such specific-to-general combinatorial cell 549 

assemblies in the ACC is highly consistent with the recent finding that the brain is 550 

organized by power-of-two permutation-based logic (61, 62).   551 

The inclusion of hippocampal place cells was designed as a gold-standard test-552 

case.  Indeed, we showed that by assessing self-information patterns based on spike 553 

variability and then simply scanning through the recorded sessions, we uncovered CA1 554 

assembly patterns that were time-locked to either the westbound or eastbound journeys.  555 

We showed that each assembly contained classic place cells with a single salient place 556 

field (23, 28, 30, 31, 40, 49, 51, 52), but also cells with multiple place fields (63, 64).  557 

Unexpectedly, we also found that each assembly consisted of non-place cells such as 558 

cells responding preferentially to the start and finish state.  Most interestingly, many of 559 

these start/finish cells were specific to either the westbound or eastbound journey, 560 

suggesting that their firing changes were not simply reflecting generic motion transition.  561 

Such properties are consistent with the reports that CA cells may also encode goal-related 562 

activity (65-67).  Although the current study did not manipulate rewards (no pellets was 563 

represented during recording sessions, but only during training trials), the future 564 

investigation can be performed to examine such properties.  Another unique aspect in 565 

uncovering of a variety of CA1 cells associated with spatial navigation behavior is that it 566 
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provides an unbiased means to potentially investigate a long-held, unresolved question 567 

as to how researchers should define place cell assembly and what size a cell assembly 568 

might be (28).  The top-ranking membership, based on the highest contribution weights 569 

derived from VCAD analysis, listed in demixing matrix W , can readily enable researchers 570 

to identify the ranking numbers as we have illustrated in each plot of Figure 5 and Figure 571 

S8.   572 

The third test-case for the validity of self-information coding concept is to uncover 573 

cell assemblies that encode internal continuous variables, namely, sleep.  We found the 574 

existence of three assembly patterns in the CA1 that were time-locked with three sleep 575 

oscillation cycles (theta, ripples, and downstate).  Traditional classification based spike-576 

phase coupling (theta coupled cells vs non-coupled cells), would predict that all theta-577 

coupled cells may belong to the same cell assembly.  Such a logic may also be extended 578 

to ripple-coupled cells vs. non-ripple coupled cells.  While many theta-coupled or ripple-579 

coupled cells were found in the CA1 datasets as nicely demonstrated in the literature (38-580 

41, 45-48, 50, 52, 68, 69), surprisingly, many of them did not belong to this sleep theta 581 

cell assembly or the ripple cell-assembly.  Their distinct memberships were further 582 

supported by their distinct correlations (Figure S6).   Given the reported complexity and 583 

diversity of interneurons (45-47) and even pyramidal cell subtypes (70, 71), a future 584 

investigation with Cre-lox-mediated neurogenetics (72) and optogenetics (73-75) will be 585 

necessary to clearly define the identity of these putative pyramidal and interneuron 586 

subtypes.   587 

To further illustrate the conceptual generality and practical value of self-information 588 

coding, we investigated neural coding underlying the five-choice visual discrimination 589 

operant-conditioning task as the final test-case.  This is one of the most classic operant 590 

behavioral tasks (76), but rarely studied at neural coding level.  This task requires a set of 591 
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complex cognitive functions, ranging from attentive and preparative behavior, cued-592 

induced precise actions at the right time and right location (76-79).  We discovered that 593 

the PrL cortex produced seven distinct cell assemblies during the performance of this task.  594 

These cell assembly patterns were time-locked to the onset of cues, and cue-induced 595 

behavioral actions, with sequential activation of each cell-assembly pattern according to 596 

each stage of five-choice visual discrimination operant-conditioning actions. Within the first 597 

cell assembly, there are multiple subtypes of cells that exhibited different time courses of 598 

responses.  One type reacted ramping activity prior to the onset of the cue (light on in the 599 

stimulus aperture) (Figure 6B, the bottom PTSH subpanel). This type of PRL cells is 600 

consistent with a previous study reporting that activity of some ACC cell corresponded to 601 

the level of preparatory (pre-cue) attention in three-choice serial reaction time task in rats 602 

(78).  Due to the space constraint and the focus of the current study, we limited our 603 

analysis to the general usefulness of self-information coding to uncover overall cell 604 

assemblies, the detailed analysis of various distinct subtypes of excitatory and 605 

interneurons will be highly interesting, especially in light of a recent finding that prefrontal 606 

parvalbumin (PV) neurons in control of attention (77). Moreover, also in the ACC using a 607 

simpler linear track food foraging task, Kvitsiani et al. demonstrated that the 608 

perisomatically targeting PV and the dendritically targeting somatostatin (SOM) neurons 609 

had dissociable inhibitory effects (79). A subtype of SOM neurons selectively responded 610 

at reward approach, whereas PV neurons responded at reward leaving and encoded 611 

preceding stay duration.  A more detailed data analysis and selective manipulations, 612 

dedicated to the five-choice attentive operant conditioning, will be necessary for future 613 

studies to address these important issues.  614 

In the present study, the self-information-based decoding approach revealed that 615 

PRL assemblies contained not only a variety of cells processing specific actions and/or 616 
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stages of the operant conditioning performances, but also recruited large proportions of 617 

negative surprisals to process various information including both categorical-variable 618 

patterns (“start,” “poking” and “reward”) and continuous-variable patterns (“running,” “poke 619 

zone,” “returning” and “reward zone”) (Figure 8E).  This may provide a new insight into a 620 

broader picture regarding the cell-assembly nature of the inhibitory control performed by 621 

the prefrontal cortex (80, 81).  Such a composition as seen in the PRL cortical assemblies 622 

in this attentional operant-conditioning tasks seemed to be different from the encoding of 623 

fearful experiences in the ACC (Figure 8D).  This is consistent with the studies showing 624 

that fearful stimuli often increased firing or bursting in the prefrontal neurons (58, 60, 82).  625 

Such a difference in compositions in surprisal types and cell types strongly suggest that 626 

construction of self-information code is dependent on the tasks and brain regions. The 627 

difference in the positive vs. negative surprisal make-up is further illustrated in the cell 628 

assemblies related to sleep oscillations, which engaged much more interneurons (Figure 629 

8C).  Taken together, these observations provide the first comparative pictures regarding 630 

the underlying compositions of cell assemblies, open the door to detailed and systematic 631 

investigations into the nature of cell-assembly coding specific to neural circuits, cognitive 632 

states, and behavioral tasks. 633 

Finally, as a critical step to further understand how self-information code rises 634 

dynamically from neuronal variability, we investigated whether there is a critical boundary 635 

in transitioning ISI variability from high probability, low information state to low probability, 636 

high information state.  Systematic analyses of all 15 cell assemblies using the sliding 637 

window technique revealed a steep transition in using ISI surprisals, around 20% of the 638 

skewed ISI gamma distribution tails, to generate efficient real-time cell-assembly codes.  639 

In another word, 20% of ISIs represented as low-probability surprisals for the construction 640 

of various population-level information patterns, whereas the majority (80%) of remaining 641 
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ISIs operate as the on-going low-information ground states. This 80/20 statistical rule is 642 

surprisingly conformed to the Pareto Principle (83), also known as the principle of factor 643 

sparsity, which states that, for many events, roughly 80% of the effects or consequences 644 

(i.e. information) stem from 20% of the causes (i.e. signs or entropy).  This principle has 645 

been widely executed in a variety of systems, ranging from economics to software 646 

engineering and communications in which optimal data streams are implemented by the 647 

minimization of the numbers of signs while maximizing the transmitted information (83-86).  648 

It is noteworthy that while the ground state corresponds to the most probable ISI which 649 

carry less self-information but may still consume a lot of energy, these ground-state ISIs 650 

can play an extremely important role in enabling both the rapid responses to changes and 651 

ternary coding structure once combined with positive and negative surprisals (26).  This 652 

ternary coding dynamics can lead to enormous information capacity and greater 653 

operational flexibility for neural clique assemblies which are reportedly organized by 654 

power-of-two-based permutation logic across various brain regions (61, 62). 655 

In summary, we show that neuronal variability operates as a self-information 656 

generator and messenger to produce real-time ISI variability surprisals that can be used 657 

unbiasedly to uncover various cell assemblies corresponding to both categorical and 658 

continuous variables.  These self-information-based neural codes are uniquely intrinsic to 659 

the neurons themselves, with no need for outside observers to set any reference point to 660 

manually mark external or internal inputs.  Analysis of 15 distinct cell assemblies suggests 661 

the existence of conserved critical boundaries, seemly conforming to the Pareto principle, 662 

in utilizing ~20% of ISIs as statistical variability surprisals from which robust real-time cell-663 

assembly patterns arise efficiently.  The unique ability to identify numerous cell assemblies 664 

based on the unified self-information principle provided us with a rare and unbiased 665 

assessment for the compositions of cell-assembly codes.  666 
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Materials and Methods 667 

Ethics Statement 668 

All animal work described in the study was carried out in accordance with the 669 

guidelines laid down by the National Institutes of Health in the United States, regarding 670 

the care and use of animals for experimental procedures, and was approved by the 671 

Institutional Animal Care and Use Committee of Augusta University (Approval AUP 672 

number: BR07-11-001). 673 

In vivo recording in mice and data processing  674 

Tetrodes and headstages were constructed using the procedures as we have 675 

previously described (62, 87).  The CA1 units were recorded male wild-type B6BCA/J 676 

mouse using the adjustable 96-channel recording array (with 48-channels bilaterally), as 677 

previously described (46), whereas 128-channel tetrode microdrives were used to record 678 

from the BLA, dorsal striatum, ACC, RSC, PrL bilaterally with 64 channels per hemisphere.  679 

For facilitating the identification of electrode array position, the electrode tips were dipped 680 

in fluorescent Neuro-Dil (Neuro-DiI, #60016, Red oily solid color, from Biotium, Inc.) which 681 

then can reveal the electrode track.  682 

Neuronal activities were recorded by MAP system (multi-channel acquisition 683 

processor system, Plexon Inc., Dallas, TX) in the manner as previously described (46).  684 

Extracellular action potentials and local field potentials data were recorded simultaneously 685 

and digitized at 40 kHz and 1 kHz respectively.  The artifact waveforms were removed 686 

and the spike waveform minima were aligned using the Offline Sorter 2.0 software (Plexon 687 

Inc., Dallas, TX), which resulted in more tightly clustered waveforms in principal 688 

component space.  Spike-sortings were done with the MClust 3.3 program with an auto-689 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/201301doi: bioRxiv preprint 

https://doi.org/10.1101/201301


clustering method (KlustaKwik 1.5).  Only units with clear boundaries and less than 0.5% 690 

of spike intervals within a 1 ms refractory period were selected.  The stability of the in vivo 691 

recordings was judged by waveforms at the beginning, during, and after the experiments.  692 

Well-separated neurons were assessed by “Isolation Distance” and “Lratio” (88).  Neurons 693 

whose “Isolation Distance” >15 and “L-ratio” <0.7 were selected for the present analyses. 694 

Variability-based cell assembly discovery (VCAD) method 695 

Three well-defined statistics were adopted to quantitatively describe the variability 696 

of the neuron’s ISI - namely, the coefficient of variation (CV ), skewness and kurtosis (see 697 

Supporting Information).  The VCAD involves three distinct steps (also see Supporting 698 

Information): The first step was to use gamma distribution model to describe the variability 699 

of the neuron’s ISI (33).  The second step was to use the independent-component analysis 700 

(ICA) method to decode the ensemble patterns from the population surprisal code by 701 

searching joint variability-surprisals.  The third step was to identify corresponding cell 702 

assemblies by examining top large-weight neurons, which can be directly identified by 703 

their weights in demixing matrix W  of ICA analysis.   704 

Fearful events and corresponding data analysis 705 

Mice were subjected to three fearful episodic events, earthquakes, foot-shocks, 706 

and free-fall drops (see Supporting Information for detailed description).  These episodic 707 

stimuli are fearful as evidenced from physiological indications including a rapid increase 708 

in heart rates as well as reduced heart rate variability (37, 89). To maintain the consistency 709 

of stimulation timing (minimizing the possible prediction of upcoming stimuli), the stimuli 710 

were triggered by a computer and delivered at randomized intervals within 1-3 minutes. 711 

After the completion of all fearful event sessions, the mouse was placed back into the 712 

home cages. 713 
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Sleep and corresponding data analysis 714 

Data was recorded when the mouse was sleeping in the home cage.  The recorded 715 

local field potentials (LFP) were first processed by the FPAlign (a utility program provided 716 

by Plexon Inc.) to correct the filter induced phase delays. LFP channels recorded in CA1 717 

pyramidal cell layer were selected by judging the maximum yield of ripple during animal 718 

slow-wave sleep (SWS), and comparing the coherence in the theta-frequency and 719 

gamma-frequency band (90). Further analyses were carried out with these LFP data off-720 

line by custom-written MATLAB (Mathworks) programs.  The local field potential was band 721 

passed at Delta (2-4 Hz), Theta (4-10 Hz), low Gamma (25-90 Hz), fast Gamma (90-130 722 

Hz) and hippocampal ripples (130-200 Hz) by hamming window based FIR filters with 723 

order of 30 (see Supporting Information for detailed description). 724 

Linear track and corresponding data analysis 725 

A linear track experiment used a 100cm×10cm closed runway.  The exploration 726 

duration was 20 minutes.  Real-time positions of the mouse were tracked by CinePlex 727 

Behavioral Research Systems (Plexon Inc., Dallas, TX) automatically.  Place fields were 728 

defined as a set of ≥5 contiguous pixels with a firing rate above two standard deviations 729 

of the mean firing rate.  All spatial firing plots were smoothed with 5×1 Gaussian 730 

smoothing filter using the Matlab software (see Supporting Information for detailed 731 

description). 732 

Five-choice visual discrimination operant-conditioning task and corresponding 733 
data analysis 734 

The animal was introduced to a custom-designed test chamber equipped with five 735 

response apertures that can illuminate, and a food magazine to deliver reward.  A trial was 736 

initiated by the mouse entering the food magazine. A brief light-stimulus was then 737 

presented in one of five possible apertures after a 5-s inter-trial interval (ITI) had elapsed. 738 
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The mouse was required to scan the five apertures for the appearance of the light-stimulus 739 

and to respond in the ”correct” aperture with a nose-poke response in order to earn a 740 

single food pellet delivered in the food magazine. If the mouse responded before the 741 

stimulus (”premature response”) or in an adjacent, incorrect aperture (”incorrect 742 

response”), a 5-s time-out (TO) period was introduced by extinguishing the house light 743 

and not providing a food reward. Failure to respond within the limited hold (LH) period 744 

resulted in an ”omission” and a subsequent 5-s TO period. After collecting the reward or - 745 

on punished trials - at the end of the TO period, a head entry in the food magazine would 746 

start a new trial.  The mouse was pre-trained to achieve ≥ 50 correct trials within 30 747 

minutes with >80% accuracy and <20% omissions before recording from prefrontal cortex 748 

began.  Animal’s movements were recorded by CinePlex Behavioral Research Systems 749 

(Plexon Inc., Dallas, TX), and the animal’s locations and head directions were tracked 750 

manually afterward.  Detailed protocol was described in Supporting Information. 751 
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Titles and legends to figures  975 

Figure 1.  Neuronal variability remained similar across 6 different brain regions and 976 

was dramatically diminished upon anesthesia.  977 

(A) Neuronal variability can be assessed by inter-spike intervals (ISIs) distribution which 978 

follows long-tailed, skewed Gamma distribution.  (B) The principle cells in six different 979 

brain regions show similar variability patterns.  The basolateral amygdala (BLA), CA1, 980 

striatum (STR), retrosplenial cortex (RSC), prelimbic cortex (PRL), and anterior cingulate 981 

cortex (ACC).  Numbers of principal cells from each brain region were indicated in the 982 

upper right box. Firing variability was assessed by Kurtosis, Skewness, and CV. (C) 983 

Neuronal variabilities were greatly reduced under anesthesia.  Variability in the CA1 (left 984 

subpanel) and BLA (Right subpanel) was compared in using the same set of neurons 985 

recorded before (red circles) and after ketamine/dormiter injection (blue circles).  Numbers 986 

of pyramidal cells used for analyses were listed on the upper left corner.  987 
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Figure 2.  The strategy to apply the Self-Information Coding concept to decode cell 988 

assembly patterns in an unbiased manner.   989 

(A) Step 1: Converting spike variability into real-time variability surprisal.  The spike 990 

activities of 10 simultaneously-recorded cells are illustrated in the left subpanel, the ISIs 991 

of each cell is fitted by the Gamma distribution model which assigns each ISI with a 992 

probability.  Based on the fitted Gamma distribution model, two boundaries are then 993 

assessed (as shown in the middle subplot) to generate three states; that is, positive-994 

surprisal state (short ISIs), negative-surprisal state (long ISIs), and low self-information 995 

ground state.  As such, neuron’s spike trains can be converted into ternary surprisal codes 996 

[excitation surprisal as 1 (red blocks), ground state as 0 (yellow blocks) and inhibition 997 

surprisal as -1 (blue blocks)].  (B) Step 2: Uncovering joint surprisal patterns.  Taking 998 

population ternary surprisal code as input, the ensemble patterns were unbiasedly 999 

discovered by the blind source separation (BSS) method which aims for searching joint 1000 

variability-surprisals in both space (across simultaneously-recorded cells) and time 1001 

(moment-to-moment dynamics).  (C) Step 3: Identifying corresponding cell assemblies.  1002 

For each decoded independent signal source, neurons’ information contributions are 1003 

scaled quantitatively by the absolute values in the weight matrix 𝑊𝑊  of BSS analysis 1004 

(shown in the left subpanel), thus, corresponding cell assemblies can be identified by 1005 

picking up top-weight cells (right subpanel).  1006 
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Figure 3.  Identification of three ACC cell assemblies corresponding to three distinct 1007 

fearful experiences.   1008 

(A) Three cell assemblies are decoded from ACC during fearful startle experiment. Each 1009 

cell assembly corresponds to the occurrences of one of three fearful startle events (Six 1010 

trials per event, as shown by six purple bars above each ensemble patterns).  (B) Left 1011 

panel: Cell membership analyses of Assembly-1 show that some neurons participate in 1012 

more than one cell assemblies, using a specific-to-general combinatorial coding manner.  1013 

Right panel: illustration of identified Assembly-1 member cells engaged in representing 1014 

Earthquake (in red color). Non-member cells are in gray.  The numerical number on the 1015 

top-right corner of each cell represents the unit simultaneously recorded, arranged from 1016 

the 128-channel array.  (C) Assembly-2 corresponding to Foot-shock.  (D) Assembly-3 1017 

corresponding to Free-fall.  1018 
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Figure 4. Three distinct CA1 cell assemblies identified from the different sleep 1019 

cycles.   1020 

(A) Three information sources (ISs)-based ensemble patterns are decoded by VCAD 1021 

method during animal’s sleep.  (B) Assembly-1 (Corresponding to theta oscillation stage).  1022 

The upper bar shows the activities of decoded theta ensemble pattern, the red blocks 1023 

denote the activations of Assembly-1, while the blue blocks represent its inactivity.  The 1024 

power spectrogram below shows the simultaneously-recorded local field potential activity 1025 

within 0-15 Hz frequency band, the theta band (6-10 Hz) is highlighted by white lines.  The 1026 

decoded ensemble pattern is in complete correspondence with the elevated theta band 1027 

activity (as shown by the red dashed lines).  (C) Assembly-2 (corresponding to ripples).  1028 

(D) Assembly-3 (corresponding to DOWN-state).  Z-scores of power for well-defined 1029 

frequency bands (Delta, Theta, Low Gamma, High Gamma, and Ripples), where the black 1030 

line (Z-score = 0) denotes the mean power in each band.  It can be observed that the 1031 

ensemble pattern of Assembly-3 is consistently time-locked with the troughs of these LFP 1032 

frequency bands.  (E) Analyses of different cell types consist in Assembly-1.  Most cell 1033 

members of Assembly-1 are putative interneurons.  The ripple-band (120-200 Hz) power 1034 

spectrogram is shown in lower subpanel for verifying the accuracy of cell assembly 1035 

decoding result.  Nine ripple waveforms are replotted below.  (F) Cell-type analyses show 1036 

that top Assembly-2 cells were mostly putative pyramidal cells.  (G) Cell-type analyses of 1037 

Assembly-3 also shows that its members were mostly interneurons.  1038 
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Figure 5.  Unbiased identification of two navigation-related CA1 cell assemblies 1039 

during linear track exploration.   1040 

(A) Two information sources (ISs)-based ensemble patterns were decoded by VCAD 1041 

method.  The blue/red blocks denote the activations of each corresponding ensemble 1042 

patterns.  (B) The animal’s trajectory within 80s during the linear track experiment (1-m 1043 

length).  Blue dots and arrows denote the decoded ensemble pattern corresponding to 1044 

“Westbound,” while red dots and arrows are for “Eastbound.”   (C-F) Firing patterns of top-1045 

weight member cells in two cell assemblies.  These top-weight cells fall into four categories: 1046 

place cells with single place field (C), place cells with two place fields (D), differential cells 1047 

(E) which exhibited significantly higher firing rates in one of the directions than the opposite 1048 

direction, P<0.001 through pairwise t-test).  (F), Start & finish cells that suppressed their 1049 

firings during the navigation. Two cells exhibiting westbound- or eastbound-specificity are 1050 

shown.  1051 
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Figure 6.  Seven PrL cell assemblies were identified during five-choice 1052 

discrimination operant-conditioning task.   1053 

(A) Activations of seven decoded ensemble patterns during three back-to-back trials of 1054 

five-choice discrimination operant-conditioning task, each ensemble pattern corresponds 1055 

to one of seven distinct stages of the operant-procedural task.  (B) Illustrations of seven 1056 

decoded ensemble patterns and examples of top large-weight cells in each cell assembly.  1057 

Stage-1 (Start) corresponds to the moment which visual stimulus (the illumination of the 1058 

aperture light on) was presented in one of five spatial locations to start a trial.  Peri-event 1059 

rasters/histograms of two example cells exhibited significant increased\decreased firing 1060 

activities upon the illumination of the aperture light (time = 0).  These two cells were anti-1061 

correlated, the correlation coefficient between these two cells was -0.337. Stage-2 1062 

(Running) corresponds to the route when the animal runs from food magazine region to 1063 

response aperture region.  Orientation-firing polar histograms of two large-weight cells 1064 

show obvious orientational preferences.  Stage-3 (Poke zone) activated when the animal 1065 

was near the response apertures.  Apparent spatial-specificity firing patterns of top-1066 

contributed cells were observed when the place-cell analysis was applied.  Stage-4 1067 

(Poking) corresponds to the poking of the response aperture.  Obvious firing pattern 1068 

changes were observed upon the poking (time =0) in the peri-event rasters/histograms of 1069 

top-contributed cells.  Stage-5 (Returning) activates when the animal was running back 1070 

from the response apertures to the food magazine.  Obvious orientational preferences of 1071 

cell-assembly members were observed in the orientation-firing-polar-histogram analyses.  1072 

Stage-6 (Reward zone) corresponds to the locations near food magazine.  Place cell 1073 

analyses verify that the cell-assembly members exhibited higher firing probabilities within 1074 

the location near the food magazine.  Stage-7 (Reward) corresponds to the actions of 1075 

collecting the reward pellet.  Increased/decreased firing activities of two cell-assembly 1076 

members are shown in the peri-eventrasters/histograms.  1077 
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Figure 7.  Surprisal boundaries for giving rise to robust real-time cell-assembly 1078 

codes.   1079 

(A) Illustration of applying the sliding-window technique to shift the positive- and negative-1080 

surprisal thresholds from 5% (low occurrence probability) to 45% (high occurrence 1081 

probability) of the skewed ISI gamma distribution tails.  (B) Shown is the averaged cell-1082 

assembly coherence matrix of all 15 cell assemblies.  Colors in the matrixes denote 1083 

corresponding cell-assembly coherence indexes.  Robust cell-assembly patterns were 1084 

observed with an occurrence probability of less than 20% (as denoted by white square 1085 

frames in cell-assembly coherence matrixes).   1086 

 1087 

Figure 8. Cell-assembly codes were made of different compositions of positive- and 1088 

negative-surprisals generated by excitatory cells and fast-spiking interneurons.   1089 

(A) Based on the variability-surprisal distribution, spike activities of cell-assembly can lead 1090 

to positive-surprisals or negative-surprisals. (B-E) Percentages of positive- (red bars) or 1091 

negative-surprisals (blue bars) used to generate distinct cell-assembly codes.  The pie 1092 

charters showed the percentages of positive surprisals (in red bars) were generated from 1093 

excitatory neurons (yellow) or interneurons (purple). Similarly, the percentages of 1094 

negative-surprisals (in blue bars) were generated from excitatory neurons (yellow) or 1095 

interneurons (purple).  1096 
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SI Materials and Methods 

Ethics Statement 

All animal work described in the study was carried out in accordance with the guidelines laid down 

by the National Institutes of Health in the United States, regarding the care and use of animals for 

experimental procedures, and was approved by the Institutional Animal Care and Use Committee of 

Augusta University (Approval AUP number: BR07-11-001).  

In vivo recording in mice and data processing  

Tetrodes and headstages were constructed using the procedures as we have previously described 

(1, 2). To construct tetrodes, a folded piece consisting of four wires (90% platinum, 10% iridium, 13 μm, 

California Fine Wire Company, Grover Beach, CA, USA) was twisted together using a manual turning 

device and soldered with a low-intensity heat source (variable temperature heat gun 8977020, Milwaukee, 

Brookfield, WI, USA) for 6 s. The impedances of the tetrodes were measured with an electrode impedance 

tester (Model IMP-1, Bak Electronics, Umatilla, FL, USA) to detect any faulty connections, and our tetrodes 

were typically between 0.7 MΩ and 1 MΩ. The insulation was removed by moving the tips of the free ends 

of the tetrodes over an open flame for approximately 3 s. The tetrodes were then placed into appropriate 

polyimide tubes. The recording ends of the tetrodes were cut differentially (Vannas spring scissors −3 mm 

cutting edge, Fine Science Tools, Foster City, CA, USA) according to the different depths of the recording 

sites. This ensures that only tetrodes, but not the surrounding polyimide tubes, were inserted into the brain 

tissue, thereby minimizing the tissue damage. 

We employed adjustable 128-channel tetrode microdrives to target the basolateral amygdala (BLA; 

n = 8 WT mice), anterior cingulate cortex (ACC; n = 7 WT mice), the retrosplenial cortex (RSC; n = 20 WT 

mice), dorsal striatum (STR; n = 7 WT mice), and prelimbic region (PrL; n = 4 WT mice) bilaterally with 64 
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channels per hemisphere.  Whereas the CA1 units were recorded from nine WT mice using the adjustable 

96-channel recording array (with 48-channels bilaterally).  Stereotaxic coordinates were as follows: for 

BLA, 1.7 mm posterior to bregma, 3.5 mm lateral, −4.0 mm ventral to the brain surface; for ACC, +0.5 mm 

AP, 0.5 mm ML, −1.75 mm DV; for CA1, 2.0 mm lateral to the bregma and 2.3 posteriors to the bregma; 

for RSC, −2.5 mm AP, 0.5 mm ML, −0.8 mm DV; for STR, +0.62 mm AP, 1.35 mm ML, −2.0 mm DV; and 

for PrL, +1.70 mm AP, ± 0.5 mm ML (3). 

Male wild-type mice (6–8 months old) were moved from home cages housed in the LAS facility to 

the holding area next to the chronic recording rooms in the laboratory and stayed in a large plastic bucket 

(20 inches in diameter and 16 inches in height – per mouse, Walmart) with access to water and food for a 

week prior to surgery. During this period, the animals were also handled daily to minimize the potential 

stress from human interaction. The animal was given an intraperitoneal injection of 60 mg/kg ketamine 

(Bedford Laboratories, Bedford, OH, USA) and 4 mg/kg Domitor (Pfizer, New York, NY, USA) prior to the 

surgery. Animal’s head was secured in a stereotaxic apparatus, and an ocular lubricant was used to cover 

the eyes. The hair above the surgery sites was removed, and Betadine solution was applied to the surface 

of the scalp. An incision was then made along the midline of the skull. Hydrogen peroxide (3% solution, 

Fisher Scientific) was placed onto the surface of the skull so that bregma could be visualized. The correct 

positions for implantation were then measured and marked. For fixing the microdrive headstage, four holes 

for screws (B002SG89S4, Amazon, Seattle, WA, USA) were drilled on the opposing side of the skull and, 

subsequently, the screws were placed in these holes with reference wires being secured to two of the head 

screws. Craniotomies for the tetrode arrays were then drilled, and the dura mater was carefully removed. 

After the electrodes were inserted and tetrodes were secured to the fiberglass base, the reference wires 

from the connector-pin arrays were soldered such that there would be a continuous circuit between the 
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ground wires from the head screws and those from the connector-pin arrays. Finally, the connector-pin 

arrays were coated with epoxy. Aluminum foil was used to surround the entire headstage to aid in 

protection and to reduce noise during recordings. The animals were then awoken with an injection of 2.5 

mg/kg Antisedan. The animals were allowed to recover post-surgery for at least 3–5 days before recording. 

Then, the electrode bundles targeting the BLA, STR and hippocampal CA1 region were slowly advanced 

over several days in small daily increments. For the cortical sites, tetrodes were advanced usually only 

once or twice in a small increment.  At the end of the experiments, the mice were anesthetized and a 

small amount of current was applied to the recording electrodes in order to mark the positions of the 

stereotrode bundles. The actual electrode positions were confirmed by histological Nissl staining using 1% 

cresyl echt violet. For facilitating the identification of electrode array position, the electrode tips were dipped 

in fluorescent Neuro-Dil (Neuro-DiI, #60016, Red oily solid color, from Biotium, Inc.) which then can reveal 

the electrode track. 

Neuronal activities were recorded by MAP system (multi-channel acquisition processor system, 

Plexon Inc., Dallas, TX) in the manner as previously described (4).  Extracellular action potentials and 

local field potentials data were recorded simultaneously and digitized at 40 kHz and 1 kHz respectively.  

The artifact waveforms were removed and the spike waveform minima were aligned using the Offline 

Sorter 2.0 software (Plexon Inc., Dallas, TX), which resulted in more tightly clustered waveforms in principal 

component space.  Spike-sortings were done with the MClust 3.3 program with an auto-clustering method 

(KlustaKwik 1.5).  Only units with clear boundaries and less than 0.5% of spike intervals within a 1 ms 

refractory period were selected.  The stability of the in vivo recordings was judged by waveforms at the 

beginning, during, and after the experiments.  Well-separated neurons were assessed by “Isolation 

Distance” and “Lratio” (5).  Neurons whose “Isolation Distance” <15 and “L-ratio” >0.7 were excluded in 
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the present analyses. 

Analysis of ISI’s variability 

Three well-defined statistics were adopted to quantitatively describe the variability of the neuron’s 

ISI - namely, the coefficient of variation (CV ), skewness and kurtosis.  The definitions of these three 

variability measurements were as follow: 

      CV σ
µ

=                                         (1) 
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where 1 2( , , , )nI i i i=   denotes ISI of a neuron, σ  is the standard deviation of I ,and µ  is the mean of 

I .  As shown in Figure 1B, BLA dataset has 496 putative principal cells from 8 mice, CA1: 495 putative 

principal cells from 9 mice, STR: 295 putative principal cells from 7 mice, RSC: 504 putative principal cells 

from 5 mice, PrL: 85 putative principal cells from 4 mice, ACC: 195 putative principal cells from 6 mice. 

We also conducted the same analysis to two datasets recorded from BLA and hippocampal CA1 

under two distinct states - namely awake state and anesthesia.  Recordings were first carried out when 

animals were awake and immobile in their home cages. Minimum 40-minute neural activities were 

recorded for awake state analysis.  To produce ketamine-induced anesthesia, the animals were injected 

with a 60 mg/kg ketamine and 0.5 mg/kg Domitor cocktail mixture via i.p., the animals lost the righting 

reflex in a few minutes. Neural spike activities were recorded for 50 minutes under anesthetized state.  

40-minute neural spike data recorded from the fully anesthetized state starting from 10 minutes after the 

Ketamine/Domitor injections were selected for the present analysis.  For neuronal variability analyses of 

awake state vs. anesthesia (Figure 1C), the CA1 dataset contains 59 putative principal cells from 3 mice, 
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and the BLA dataset has 92 putative principal cells from 2 mice. 

Variability-surprisal based cell assembly discovery (VCAD) framework 

1) Assessing ISI’s variability.  In this step, a gamma distribution model was applied to describe 

the variability of the neuron’s ISI (6).  A gamma distribution model is defined by a shape parameter 0k >  

and a scale parameter 0θ > , and the gamma probability density function for spike trains is defined by 

{ } 11 spikes during 
( )

t
k

kP n t t e
k

θ

θ

∆
−− 

∆ = ∆ Γ 
                           (4) 

where ( )kΓ  stands for the gamma function. 

We fitted the gamma distribution model for the ISIs of each neuron. Shape parameter 𝑘𝑘 and scale 

parameter 𝜃𝜃 were estimated by the maximum likelihood estimates (MLE) method, which selected values 

of these two parameters that produced a gamma distribution for the ISIs with minimal errors. To avoid an 

under-sampled error due to too few data points, units with <250 ISIs were excluded in the present analysis. 

For each cell, two boundaries of the ground state were assigned base on the fitted gamma 

distribution.  Using these two thresholds, the neural spike trains were converted to variability surprisals - 

that is, positive surprisals, negative surprisals and ground state.  Specifically, we first binned the neural 

spike trains (bin size = 200ms for all analyses), and the ISI of the bin binISI  was set as follows: 

1

n
ii

bin

ISI
ISI

n
== ∑                                     (5) 

where n  is the total number of ISIs which occurred in the bin (including partly-occurred ISIs), iISI  is the 

time duration of the i th ISI in the bin.  The bins whose ISIs are less than the lower boundary of ground 

state were assigned as positive surprisals (red region in the middle subpanel of step 1 in Figure 2A, which 

means shorter ISIs and higher instant firing rates), bins whose ISIs are larger than the higher boundary of 

ground state were assigned as negative surprisals (blue region in the middle subpanel of step 1 in Figure 
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2A, corresponding to longer ISIs and lower instant firing rate), and all other bins were assigned as ground 

state.  In this way, the neuron’s spike train was converted into a surprisal code.  In the present analysis, 

the boundaries of ground state were set as 10% and 90% based on the fitted gamma CDF curves - that 

is, the ISIs whose gamma CDF is less than 10% or higher than 90% were assigned as positive or negative 

surprisals, respectively.   

2) Uncovering joint surprisal patterns.  In this step, the blind source separation (BSS) method 

was applied to decode the ensemble patterns from the population surprisal code by searching joint 

variability-surprisals.  Independent Component Analysis (ICA, a BSS technique) was adopted to 

unbiasedly uncover distinct ensemble patterns; that is, reducing high-dimensional data (population 

surprisal code) to a set of independent information sources corresponding to different brain states.   

ICA is a statistical technique that aims at finding a separating or demixing matrix W  for generating 

linear projections of the input data that maximize their mutual independence.    The ICA model assumes 

that the recorded neuronal population spike activities (represented by [ ]1 2( ) ( ), ( ), , ( )nt sa t sa t sa t=SA  ) 

contain mixtures of the n  underlying information sources (represented by [ ]1 2( ) ( ), ( ), , ( )nt is t is t is t=IS  ), 

i.e., 

  ( ) ( )t t= ×SA A IS                                    (6) 

where the square matrix A  contains the mixture coefficients ija .  The aim of ICA is to find a demixing 

matrix W  that is an approximation of the inverse of the original mixing matrix A  whose output 

( ) ( )t t
∧

= ×IS W SA                                    (7) 

is an estimate of ( )tIS   containing the underlying information sources (ensemble patterns of 

corresponding cell assemblies).  To uncover the independent information sources, W  must maximize 

the non-Gaussianity of each source.  In practice, iterative methods are used to maximize or minimize a 
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given cost function that measures non-Gaussianity.  ICA analyses were performed by FastICA Matlab 

package that implemented the fast fixed-point algorithm (7). 

The major challenge of BSS analysis of neural population activities is how to select the optimum 

number of information sources that provide the best representation of distinct brain states.  The nature of 

the reduced dimension p   means that p   information sources are extracted from neural population 

activities.  Many subjective methods can be derived but ultimately the relevance of each ensemble pattern 

depends on the nature of data being analyzed.   

Here we introduced a criterion for selecting the best relevant ensemble patterns.    This criterion 

was based on the hypothesis that cell-assembly coding under a given cognitive state should be most 

efficiently achieved by using a minimal amount of energy consumption while producing a sufficient 

robustness in the population-encoding of information.  That is to say, the assembly code should use the 

least amount of variability changes of individual cells together with the minimal numbers of such 

information-coding cells. Thus, for all possible p , we calculated the number of the coefficient of variation 

( CV  ) of the numbers of large-contributed neurons (neurons whose weights in demixing matrix W  

exceeded three times the standard deviation (S.D.) of all weights) over all channels.  For example, 

supposing 6p =  which meant there were six ICs, and the numbers of large-contributed neurons in six 

ICs were{ }6,8,11,7,7,5 , the mean and S.D. of these numbers were 7.33 and 2.07, therefore the CV  for 

6p =  was 0.28 (2.07/7.33).  In this way, a vector { }iCV  was produced, where i  covered all possible 

values of p . The dimension with { }( )min iCV  was unbiasedly selected as the best relevant dimension.   

An example is shown in Figure S3A, { }iCV  were calculated for a set of neural population activity with p  

from 2 to 20, and dimension 3 with { }( )min iCV  was chosen (highlighted by the red circle). 

3) Identifying corresponding cell assemblies.  For each decoded information source 
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(ensemble pattern), the members of the corresponding cell assembly were selected as top large-weight 

neurons, which can be directly identified by their weights in demixing matrix W   of ICA analysis.  It 

should be noted that cells’ weights in W   could be either positive or negative values; here, we used 

absolute values of cells’ weights for the identification of corresponding cell assemblies.  

Fearful events and corresponding data analysis 

Mice were subjected to three fearful episodic events, earthquakes, foot-shocks, and free-fall drops.  

For the earthquake-like shake, the mouse was placed in a small chamber (4" x 4" x 6"H circular chamber) 

fixed on top of a vortex mixer and shaken at 300 rpm for 400ms for six times with 1~3-minute time interval 

between each shake.  For fearful foot-shock, the foot-shock chamber was a square chamber (10" × 10" 

× 15"H) with a 24-bar shock grid floor. The mouse was placed into the shock chamber for three minutes 

and received the foot-shock stimulus (a continuous 300-ms foot-shock at 0.75 mA) for a total of six times 

with inter-trial time interval between 1~3 minutes.  For free-fall in the elevator, the animal was placed 

inside a small box (3" x 3" x 5"H) and dropped from a 13-cm height (a cushion which made from a crumbled 

table cloth was used to dampen the fall and to stop the bouncing effect).  After 1~2 minutes, the elevator 

was raised gently back to the 13-cm height and dropped again after 1~2 minutes (this process was also 

repeated six times). These episodic stimuli are fearful as evidenced from physiological indications including 

a rapid increase in heart rates as well as reduced heart rate variability (8, 9). To maintain the consistency 

of stimulation timing (minimizing the possible prediction of upcoming stimuli), the stimuli were triggered by 

a computer and delivered at randomized intervals within 1-3 minutes. After the completion of all fearful 

event sessions, the mouse was placed back into the home cages. 

Sleep and corresponding data analysis 

Data was recorded when the mouse was sleeping in the home cage.  The recorded local field 
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potentials (LFP) were first processed by the FPAlign (a utility program provided by Plexon Inc.) to correct 

the filter induced phase delays. LFP channels recorded in pyramidal cell layer were selected by judging 

the maximum yield of ripple during animal slow-wave sleep (SWS), and comparing the coherence in the 

theta-frequency and gamma-frequency band (10). Further analyses were carried out with these LFP data 

off-line by custom-written MATLAB (Mathworks) programs.  The local field potential was band passed at 

Delta (2-4 Hz), Theta (4-10 Hz), low Gamma (25-90 Hz), fast Gamma (90-130 Hz) and hippocampal ripples 

(130-200 Hz) by hamming window based FIR filters with order of 30. 

For extraction of ripple events, the root mean square power of the 130-200 Hz filtered LFP was 

calculated by sliding 10-ms window every one millisecond and averaged across electrodes. A threshold 

was set to five standard deviations above the mean power to detect ripples. The beginning and the end of 

oscillatory epochs were marked at points with the power reduced to two standard deviations above 

background mean. Periods of 20-ms or more were designated ripple episodes. The minimum point during 

each episode was regarded as the reference to calculate the peri-event histogram for each individual unit.  

If there are at least 3 bins during −30ms to 30ms (bin size: 10ms) greater than two standard deviations 

above the mean (the −500ms to −100ms and 100ms to 500ms epochs were used as a baseline), then this 

unit was considered having significantly elevated firing rate during ripple episodes. 

For detection of theta epochs, the theta/delta power ratio was calculated in a 2s window. More than 

consecutive 15s periods in which the ratio was greater than 4 were identified, then the beginnings and 

ends of epochs were judged manually. To calculate the phase relationship between unit activity and theta 

oscillation, the LFP data was first digitally band-bass filtered (4-12 Hz). The troughs for each cycle were 

identified and were assigned instantaneous phase of 0 radians. The phase value of each spike was 

obtained by linear interpolation. Then the histogram was calculated with 20-degree bin size, and a 
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Rayleigh's circular statistics was performed to determine the significance of phase modulation of theta 

oscillations. 

Linear track and corresponding data analysis 

A linear track experiment used a 100cm×10cm closed runway.  The exploration duration was 20 

minutes.  Real-time positions of the mouse were tracked by CinePlex Behavioral Research Systems 

(Plexon Inc., Dallas, TX) automatically.   

For each recorded unit, a corresponding 100×1 array of time-averaged firing rates was generated 

by dividing, on a pixel-by-pixel basis (1cm×10cm), the number of spikes by the time in each location.  For 

place cell (including place cells with single or multiple fields) and differential cell analysis, a motion speed 

threshold was applied to generate the time-averaged firing rates arrays (i.e., the spikes were excluded if 

collected from an animal moving at speeds of less than 2.5 cm/s).   Place fields were defined as a set of 

≥5 contiguous pixels with a firing rate above two standard deviations of the mean firing rate.  For 

start/finish cell analysis, no speed limit applied, and significant firings at two ends of the line track were 

defined as a set of ≥5 contiguous pixels with a firing rate above two standard deviations of the mean firing 

rate. All spatial firing plots shown in Figure 3 were smoothed with 5×1 Gaussian smoothing filter using the 

Matlab software. 

Five-choice visual discrimination operant-conditioning task and corresponding data analysis 

The animal was introduced to a custom-designed test chamber equipped with five response 

apertures that can illuminate, and a food magazine to deliver reward (Med Associates, Inc., VT. Product 

numbers: DIG-703B-USB, ENV-203-20, ENV-115C, ENV-312, SG-716B, ENV-307W, and ENV-312-2W).  

On the front wall of the chamber were five holes equipped with infrared (IR) detectors. IR photo beams 

were also presented inside the food magazine fitted on the opposite wall, where the house light was located. 
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The floor of the chamber consisted of stainless steel rods, and there was a removable tray at the bottom.  

The pellet dispenser was located outside of the box and automatically delivered food pellet to the magazine 

through a plastic tube.  Nose-poking responses were detected by a sensitive infrared detector placed 1/4” 

in from the front edge of each unit.  The reward pellets were delivered automatically when the correct 

nose-poking responses were detected.  All experimental procedures were controlled by Five Choice 

Serial Reaction Time Task Utility (Med Associates, Inc., VT). 

A trial was initiated by the mouse entering the food magazine. A brief light-stimulus was then 

presented in one of five possible apertures after a 5-s inter-trial interval (ITI) had elapsed. The mouse was 

required to scan the five apertures for the appearance of the light-stimulus and to respond in the ”correct” 

aperture with a nose-poke response in order to earn a single food pellet delivered in the food magazine. If 

the mouse responded before the stimulus (”premature response”) or in an adjacent, incorrect aperture 

(”incorrect response”), a 5-s time-out (TO) period was introduced by extinguishing the house light and not 

providing a food reward. Failure to respond within the limited hold (LH) period resulted in an ”omission” 

and a subsequent 5-s TO period. After collecting the reward or - on punished trials - at the end of the TO 

period, a head entry in the food magazine would start a new trial. 

The mouse was pre-trained to achieve ≥ 50 correct trials within 30 minutes with >80% accuracy 

and <20% omissions.  After pre-training, 20-minute neural activity was recorded from prefrontal cortex 

(specifically, prelimbic cortex) during 5CSRTT.  During recording, the correct responses were made within 

5.81±0.71s and reward food pellets were collected within 4.54±0.29s after correct nose-pokings.  

Animal’s movements were recorded by CinePlex Behavioral Research Systems (Plexon Inc., Dallas, TX), 

and the animal’s locations and head directions were tracked manually afterward.   

For each neuron, a corresponding 40×25 array of time-averaged firing rates was generated by 
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dividing, on a pixel-by-pixel basis (1cm×1cm), the number of spikes by the time in each location (the spikes 

were excluded if collected from animal moving at speeds less than 2.5 cm/s).  Spatial-specificity firing 

patterns were defined as a set of ≥9 contiguous pixels with a firing rate above two standard deviations of 

the mean firing rate.  The Spatial-specificity firing maps shown in Figure 6 were smoothed with 6× 6 

Gaussian smoothing filter using the Matlab software. 

We also calculated an orientation-firing polar histogram for each unit. The orientation-firing polar 

histograms were generated by dividing the number of spikes fired when the mouse faced a particular 

direction (in bins of 10°) by the total amount of time the mouse spent facing that direction in the task 

chamber.  No smoothing was applied to the resulting circular distribution.  Rayleigh's circular statistics 

was applied to determine the significance of directional tuning of units.  

Cell-assembly coherence index 

In the present analyses, we set the boundaries of ground state as 10% and 90% of the CDF of the 

skewed distribution model to uncover cell assemblies, and the decoded cell assemblies verified the 

effectiveness of these two boundaries.  However, can robust cell-assembly decoding results be achieved 

with other settings of boundaries?  To explore these questions, we examined the cell-assembly 

coherence index between decoded ensemble patterns under different boundaries of the ground state. 

Specifically, we systemically varied lower boundaries from 5% to 45% with step by 1%, the 

corresponding higher boundaries were set as one minus the value of lower boundaries accordingly (from 

95% to 55%, as shown in Figure 7A).  Taking demixing matrix 𝐖𝐖 generated by boundaries of 10% and 

90% as a standard decoder, a set of ensemble patterns was then generated with different boundaries for 

each cell assembly.  We then calculated the Pearson correlation coefficients between these ensemble 

patterns corresponding to same state/stimuli.  The Pearson correlation coefficient ( ),A BEP EPρ  
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between ensemble pattern AEP  and ensemble pattern BEP  is defined as: 

( ) ( )cov ,
, A B

A B
A B

EP EP
EP EPρ

σ σ
=                                   (6) 

where ( )cov ,A BEP EP   is the covariance of AEP   and BEP  , Aσ   and Bσ   are the standard 

deviation of AEP   and BEP  , respectively.  The cell-assembly coherence matrix of each cell 

assembly is generated by normalizing all corresponding correlation coefficients into range of 0 to 1. 

Test of statistical significance 

In the present study, one-way ANOVA analysis and Tukey post hoc tests were conducted for the 

comparisons of multiple means. Student’s t-test was used to assess whether two sets of data were 

significantly different from each other. In all figures that contained statistical significant test results, one 

asterisk denoted that the P value is in the range of 0.05-0.01, two asterisks denoted that the P value is in 

the range of 0.01-0.001, three asterisks denoted the P value is less than 0.001. Data were represented as 

mean ± S.E.M. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/201301doi: bioRxiv preprint 

https://doi.org/10.1101/201301


Figure S1 
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Figure S1.  Classification of putative principal cells and interneurons in 6 different 
brain regions.   
 
Isolated units are classified as putative excitatory principal cells or interneurons based on their 
characteristic firing activity including spike waveforms and firing rates. In general, putative principal 
cells fire at lower rates and have broader waveforms, whereas, interneurons have higher rates and 
relatively narrower waveforms.  Numbers of putative principal cells: for BLA, 496 principal cells out 
of 601 recorded units; for CA1, 495 principal cells out of 713 recorded units; for STR, 295 principal 
cells out of 359 recorded units; for RSC, 504 principal cells out of 651 recorded units; for PrL, 85 
principal cells out of 119 recorded units; and for ACC, 195 principal cells out of 397 recorded units.  
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Figure S2 
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Figure S2.  Neural variability analysis across different regions.   
 

(A) Distributions of firing rates of principal neurons in six brain regions.   

(B) Distributions of CV of principal neurons in six brain regions.   

(C) Distributions of Skewness of principal neurons in six brain regions.   

(D) Distributions of Kurtosis of principal neurons in six brain regions.  All data shown in A-D is in 
logarithmic coordinates.  It should be noted that the CV, Skewness, and Kurtosis in all these six 
brain regions show Gaussian-like distributions under logarithmic coordinates, indicating that the 
“long-tailedness” of the ISI distributions also follow skewed statistics.   

(E) Shown are the histograms of CV, Skewness, and Kurtosis of ISI of putative principal cells in BLA 
and CA1 under two states - namely, awake state and ketamine-induced anesthesia.  Compared 
with awake state, all these three statistics decrease significantly under anesthesia in both brain 
regions.   

(F) Spike activities of 15 CA1 cells during awake state and anesthesia.   

(G) Spike activities of 15 BLA cells during awake state and anesthesia.  
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Figure S3 

 

 
Figure S3.  Selecting the best dimension and discovering cell assemblies.   
 

(A) Shown is an example of selecting the optimum dimension of ensemble patterns (sleep dataset).  
{𝐶𝐶𝐶𝐶𝑖𝑖} of the number of large-contributed neurons are calculated for dimensions from 2 to 20, 
dimension 3 (highlighted by the red circle) with a minimum 𝐶𝐶𝐶𝐶 is selected as the best relevant 
dimension.    

(B) The blue curve shows the relationship between the number of neurons (x-axis) and their 
percentage of summing weights in the whole neural circuit (y-axis).  37 neurons (13.9% of total 266 
neurons) contribute 50% information of corresponding ensemble pattern, 64 neurons (24.1%) 
contain 70% information contribution, while 90% of the information is contributed by 117 neurons 
(44.0%).   
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Figure S4 
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Figure S4.  Verification of decoded cell assemblies by shuffling top-weight neurons 
and responsiveness of cell assemblies encoding three fearful experiences.   
 

(A) We shuffled top large-weight neurons by replacing their firing pattern with Gaussian noise with 
the same mean firing rate and standard deviation. We observed that the ensemble pattern of 
Assembly-2 (corresponding to Footshock) gradually becomes weaker as more top contributed 
neurons are shuffled, while leaving other two ensemble patterns representing the Earthquake or 
Free-fall unchanged (Six trials per event, as shown by six purple bars above each ensemble 
pattern).  Ensemble pattern of Assembly-2 finally disappears when top 20% contributed cells are 
shuffled.  

(B) From left to right, each column shows peri-event rasters/histograms of five cell members of each 
cell assembly in response to the corresponding fearful episodic stimulus.   
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Figure S5 
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Figure S5.  Verification of decoded cell assemblies by shuffling top-weight neurons 
and cell-type analysis.  
 

(A) Top-weight neurons were shuffled by replacing their firing pattern with Gaussian noise with the 
same mean firing rate and standard deviation.  The ensemble pattern of Assembly-1 
(corresponding to Theta oscillation) abate gradually when top contributed cells are shuffled.  
Furthermore, the ensemble pattern of Assembly-1 disappears when top 20% contributed cells are 
shuffled.   

(B-E) Firing properties of different cell types in cell assemblies related to sleep oscillations.  Shown 
are examples of four putative cell types [O-LM cell (B), Basket/Bistratified cell (C), Bursty cell (D) 
and pyramidal cell (E)] identified based on their distinct firing properties.  The 1st left subpanels of 
B-E show the average waveforms of representative units of four cell types. The 2nd left subpanels 
of B-E are the firing rate differences between Theta and non-Theta epoch. The 3rd left subpanels of 
B-E show their theta phase-coupling properties, and 4th and 5th subpanels of B-E are the firing 
properties and phase-coupling properties at ripple occurrences. The right two subpanels of B-E are 
auto-correlograms of spike activities during sleep and exploring states. Note the peaks within 10 ms 
in the auto-correlogram plots indicate burst firing. These four cell types show distinct firing 
properties.  Specifically, O-LM cells (B) exhibit inhibited firing upon ripple occurrences, which is a 
peculiar feature among all these cell types.  Basket/Bistratified cells (C) exhibit high firing rates 
upon ripples, these cells show strongly coupled spike timing of with Theta oscillations and ripples 
(P<0.001, Rayleigh's test), and these cells fire at the troughs of Theta oscillations and ripples.  The 
distinguishing features of Bursty cells (D) are twofold: significant higher firing rates within Theta 
epochs and bursty firing during sleep.  Pyramidal cells (E) have wider spike waveforms and high 
probabilities of burst firing.  Here, the firing rate differences are examined by t-test, and Rayleigh's 
test is applied to phase-coupling properties of Theta oscillation and ripples.  Two asterisks denote 
that P-value is in the range of 0.01-0.001, three asterisks denote P<0.001.   
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Figure S6 
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Figure S6.  Correlation analysis further verified the cell assemblies related to sleep 
oscillations. 
 

We carry out correlation analysis on three cell assemblies corresponding to different sleep 
oscillations as well as other units. The neural data from the individual unit is first converted into a 
spike occurrence vector with a 200-ms bin size. We calculate Pearson’s correlation coefficients 
between the occurrence vectors of all simultaneously recorded neurons during animal sleeping.  

 

Correlation analysis is performed using the following formula: 

𝐶𝐶𝑖𝑖𝑖𝑖 =
𝐸𝐸�(𝑓𝑓𝑖𝑖(𝑡𝑡) − 𝜇𝜇𝑖𝑖)�𝑓𝑓𝑗𝑗(𝑡𝑡) − 𝜇𝜇𝑗𝑗��

𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
 

Where 𝑓𝑓𝑖𝑖(𝑡𝑡) and 𝑓𝑓𝑗𝑗(𝑡𝑡) are the two spike occurrence vectors converted from neural data of unit 𝑖𝑖 
and unit 𝑗𝑗 simultaneously recorded from the same animal; and 𝜇𝜇𝑖𝑖 and 𝜇𝜇𝑗𝑗 are the mean values of 
these two vectors respectively, 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑗𝑗 are standard deviations. 

 

(A) There are 52 neurons show significant phase-coupling to Theta oscillation (Rayleigh's circular 
statistics, p<0.001).  Among these 52 neurons, 9 neurons are cell members of Assembly-1 (Theta), 
other 43 neurons aren’t.  We calculate the correlations within these member and non-member 
theta phase-coupling cells, and observe that the correlations within Assembly-1 theta phase-
coupling cells are significantly higher than the correlations within non-member theta phase-coupling 
cells (t-test: p<0.001. 0.0942±0.0062 vs. 0.0221±0.0006, data shown as mean±SE).   

(B) There are 150 cells exhibit a significant difference in averaged firing rates between theta epochs 
vs. non-theta epochs (t-test: p<0.001).  48 of these Theta rate-altering cells are cell members of 
Assembly-1 (Theta), and 102 cells aren’t.  We observe that the correlations within Assembly-1 
theta rate-altering cells are significantly higher than the correlations within non-member theta rate-
altering cells (t-test: p<0.001. 0.0913±0.0014 vs. 0.0344±0.0004).   

(C) There are 239 cells exhibit significant firing rate changes during ripples (t-test: p<0.001). 53 of 
these ripple cells are the members of Assembly-2 (Ripples).  The correlations within Assembly-2 
cells are significantly higher than the correlations within non-member ripple cells (t-test: p<0.001. 
0.0854±0.0015 vs. 0.0292±0.0002).   

(D) Correlations within three cell assemblies (53 neurons in each cell assembly (top 20% of 266 
neurons)) are significantly higher than correlations within the neural population (all 266 neurons) 
(one-way ANOVA with post-hoc test. Assembly-1: 0.0863±0.0014, Assembly-2: 0.0854±0.0015, 
Assembly-3: 0.0936±0.0018, All: 0.0329±0.0002).    
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Figure S7 
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Figure S7.  Combinatorial activation patterns among three distinct cell assemblies 
during animal’s sleep. 
 

(A) Illustration of identified Assembly-1 member cells engaged in sleep theta (in color: yellow for 
putative O-LM cells; blue for putative basket/bistratified interneurons; green for putative bursty 
interneurons; and red for putative pyramidal cells).  Non-member cells are in gray.  Numerical 
numbers inside each cell represent the unit simultaneously recorded.   

(B) Assembly-2 corresponding to ripples.   

(C) Assembly-3 corresponding to DOWN-state.  

 

Overall, these CA1 cell assemblies employed specific-to-general combinatorial coding strategy to 
represent each sleep oscillation.  For example, two O-LM cells (unit-1 and unit-251) were identified 
in all three assemblies, so were some of the pyramidal cells (unit-53 and unit-72). Some of the 
pyramidal cells (unit-110 and unit-201) and basket/bistratified cells (i.e. unit-60, unit-80, etc.) 
participated in both Assembly-2 (ripples) and Assembly-3 (DOWN-state), whereas some of the 
bursty cells (i.e. unit-32, unit-38, unit-39, etc.) participated in Assembly-1 and Assembly-3.  Many 
cells exhibited assembly-specific memberships.  For instance, pyramidal cells unit-101, unit-102, 
and unit-200 were Assembly-2 specific; bursty cells unit-173 and unit-228 were specific members of 
Assembly-1.   
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Figure S8 

 

 
 

Figure S8.  Start & finish cells in navigational experiences.   
 

Shown are the firing-location plots of four start & finish cells decoded from linear track experiment.  
All these cells exhibit higher firing rate at two ends of the linear track and decreased firing when 
animal running in the linear track.   

(A) shown are two start & finish cells participated in both cell assemblies.   

(B) Firing-location plot of a start & finish cell in Assembly-1 (Westbound), this cell is not an 
Assembly-2 (Eastbound) member.   

(C) An Assembly-2 (Eastbound) start & finish cell. Numbers above plots are their rankings among 
corresponding cell assemblies. 
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Figure S9 
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Figure S9.     
 

“Running” and “Returning” cells were task-specific as they showed no directional 

preferences in the home-cage.   

(A) Two representative units of “Running” cell assembly.  Red curves are orientation-firing polar 
histograms during five-choice discrimination operant conditioning task, blue curves are orientation-
firing polar histograms when animal running (speed ≥2.5cm/s) in its home-cage.   

(B) Two representative units of “Returning” cell assembly.  It can be observed that units in a and b 
have no direction-specific firing when the animal in its home-cage environment.   

Cells participated in multiple cell assemblies.   

(C) Orientation-firing polar histogram and location-firing map of a neuron participated in Assembly-2 
(Running) and Assembly-3 (Poke zone).  This neuron shows both orientation- and location- firing 
properties which is consistent with the definitions of ensemble patterns of “Running” and “Poke 
zone”.   

(D) Orientation-firing polar histograms of two cells participated in Assembly-2 (Running) and 
Assembly-5 (Returning).  These two cells show orientation-firing on both directions.   

(E) Location-firing maps of two cells participated in Assembly-3 (Poke zone) and Assembly-6 
(Reward zone).  Location-firings of these two cells are significantly higher on both sides. 

The dotted cycles and the numbers in the orientation-firing polar histograms of the cells in (A-D) 
denote the probabilities of neuronal spike firing in the corresponding orientation.  
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Figure S10 
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Figure S10.   Cell assembly decoding robustness 
 

We systemically vary lower thresholds from 5% to 45% with step by 1% (the corresponding upper 
thresholds are set as one minus the value of lower point accordingly) and calculate the cell-
assembly coherence indexes between the ensemble patterns corresponding to same state/stimuli.  
Shown are cell-assembly coherence matrixes of all 15 cell assemblies in four different experiments 
(A-D), it is thus evident that robust ensemble patterns can be obtained using 5%-20% ranges.   
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