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Horizontal gene transfer and species coexistence are two focal points in the study of

microbial communities. The evolutionary advantage of horizontal gene transfer has not

been well-understood and is constantly being debated. Here we propose a simple population

dynamics model based on the frequency-dependent interactions between different genotypes

to evaluate the influence of horizontal gene transfer on microbial communities. We find that

both structural stability and robustness of the microbial community are strongly affected

by the gene transfer rate and direction. An optimal gene flux can stablize the ecosystem,

helping it recover from disturbance and maintain the species coexistence.
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I . INTRODUCTION

Diverse microbial communities, consisting of interacting microorganisms, are essential for their

hosts [1–4] or environment [5, 6]. The mechanisms that govern the coexistence of many species

in such complex ecosystems are intriguing [7–10]. Another intriguing fact is the presence of hori-

zontal gene transfer (HGT), i.e., the movement of genetic material between microorganisms other

than by the transmission of DNA from parent to offspring [11]. Conferring greatly different phe-

notypes on different strains or species, HGT is central to microbial evolution [12–15]. However,

with asexual reproduction being a faster process with lower cost, competition between strains or

species can make a beneficial allele spread more efficiently via vertical transfer, rendering a barrier

to HGT and contradicting to experimental observations [16]. How HGT can so strongly influence

microbial communities still remains an open question [17, 18]. Recently, HGT was observed to

play an important role in biofilm formation and public good interactions [19–21], suggesting a

possible link between HGT and the stable equilibrium within microbial communities. Further-

more, the boosted HGT was found upon inflammation in the mouse gut microbiota, which can

be associated with the dysbiosis of gut microbial community [22], suggesting that HGT could be

related to the microbiota dysbiosis. To date, the impact of HGT on the coexistence of different

strains within microbial communities has not been fully understood.

Here we propose a simple model to evaluate the impact of HGT on microbial population dy-

namics. This model can help us understand the evolutionary force that drives HGT and explain

how different genotypes can coexist stably in microbial communities. Our results can naturally

explain the existence of stable gene flux and reveal how gene transfer rate and direction can affect

the microbial system’s structural stability and robustness.

II. MODEL

Consider a community composed of two genotypes, one containing a cooperative allele and the

other containing a cheating allele. The microbes with cooperative alleles will behave cooperatively

to benefit both themselves and the whole community, while microbes with the cheating allele will

only benefit themselves. We assume that these two alleles can transfer horizontally within the

microbial community, making microbes alter their behavior accordingly [23–25]. Without loss of

generality, we letC be the fraction of cooperators and(1−C) be the fraction of cheaters. The
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population dynamics of the microbial community can be described by an ordinary differential

equation (ODE) [18, 26]:

dC
dt

=−µC(1−C)+
δ

1+δC
C(1−C). (1)

The first term−µC(1−C) represents the effect of HGT and the second termC(1−C)δ/(1+δC)

represents natural selection. Hereµ is the rate of horizontal gene transfer with positive sign

representing a strong cheating allele transfer effect.δ is the selective coefficient of the cooperators.

In conventional population genetic studies, gene alleles are simply classified as beneficial or

harmful without considering the concrete population structures [27]. Therefore a genotype’s fit-

ness is typically constant. However, it has been revealed that the fitness brought by a gene allele

can highly depend on the population structure of microbial communities [28, 29]. As a result

of complex and nonlinear interactions among different genotypes within the microbial community

[30], an initially beneficial gene allele could become harmful for microorganisms carrying it under

some specific population structure and vice versa. In other words, we can not simply regard HGT

as another way to disperse beneficial allele in evolution. Instead, in our model, we assume that

the selective coefficientδ is not a constant but a function of the cooperator fractionC (Fig.1). The

exact functional form ofδ (C) depends on the properties of the microbial community (see Method-

s). It turns out that many fundamental properties of the dynamical system (1) can be analytically

derived, even without knowing the detailed functional form ofδ (C).

III. RESULTS

A. Stability Criteria for Steady States

The population dynamics (1) has two trivial steady states:

C∗ = 0, C∗ = 1, (2)

and non-trivial ones (0<C∗ < 1) corresponding to the coexistence of cooperators and cheaters,

r(C∗) =−µ +
δ (C∗)

1+δ (C∗)C∗
= 0, (3)

that is, the effects of gene transfer and natural selection balance out. For a steady stateC∗, the

necessary and sufficient condition of its Lyapunov stability isdC/dt = r(C)C(1−C) < 0 in the
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right neighborhood ofC∗ and dC/dt = r(C)C(1−C) > 0 in the left neighborhood ofC∗. To

prevent our microbial system from evolving to non-coexistent states, we just need to ensure that

the two trivial steady statesC∗ = 0 andC∗ = 1 are unstable. Mathematically, sinceC(1−C)> 0

always holds on interval(0,1), we have the following stability criteria for the two trivial steady

states:

if lim
C→0+

r(C)< 0(or> 0),steady stateC∗ = 0 is stable (or unstable),

if lim
C→1−

r(C)> 0(or< 0),steady stateC∗ = 1 is stable (or unstable).

In fact, we can assert from the stability criteria that if neitherC∗ = 0 norC∗ = 1 is stable, as a

result of the intermediate value theorem, system (1) has at least one non-trivial stable steady state,

corresponding to the coexistence of cooperators and cheaters.

B. Stable gene flux

The presence of stable and long-term gene flux has not been fully understood. Previous studies

suggest that only very little gene transfer should occur because the carriers of beneficial allele can

rapidly outcompete the other microbes before the beneficial allele has chance to transfer [17, 31].

However, in our model the fitness of a genotype is a function ofC, which can naturally lead to

the stable gene transfer. Indeed, if Eq. (3) has a non-trivial solutionC∗ corresponding to a stable

steady state on interval(0,1), then a stable positive gene flux ratel = |µC∗(1−C∗)| exists around

the neighborhood ofC∗ (Fig.2b-c). Stable gene flux generally exists in those cases where both

natural selection and gene transfer shape population dynamics at equilibrium.

By contrast, in conventional theories the gene transfer direction is always from the genotype

that has higher fitness to that with lower fitness (see SI Sec. I). Bothµ andδ are constants and

have opposite signs [18]. Moreover, since very large fitness difference is really rare in practice,

one can assume thatδ >−1 and 1+δC > 0, rendering−µ +δ/(1+δC) 6= 0. Consequently, the

dynamic system (1) has only two trivial steady states:C∗= 0 andC∗= 1, rendering no coexistence

and zero gene flux rate (Fig.2a).
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C. Structural Stability

If starting from any initial state the system can reach a stable steady state with two genotypes

coexisting, then we call these two genotypes "globally" coexist. As we discussed above, this

occurs if and only if bothC∗ = 0 andC∗ = 1 are unstable. We call the region of the model

parameter space that can guarantee the global coexistence of all genotypes as "flexible coexistent

region". The volume and shape of this region can be used to quantify thestructural stability of the

dynamic system (1).

Structural stability is a classical notion in dynamic systems theory [32]. A system is considered

to be structural stable if smooth change in its model parameters will not change its dynamical

behavior. Structural stability plays a key role in maintaining ecosystem equilibrium [33–35]. In

this work we use the volume and shape of the flexible coexistent region to quantify a microbial

system’s structural stability. A larger or more suitable flexible coexistent region will make the

microbial system more robust to the environmental disturbance, leading to higher structural sta-

bility. We find that HGT can be explained as an efficient way for microbial systems to adjust

or even expand their flexible coexistent region to maximize their structural stability in complex

environment.

We assume that all the model parameters can affect the selective coefficient of our model,

i.e., δ = δ (C,γ1, . . . ,γn), where(γ1, . . . ,γn) are model parameters. Whether a smooth change of

γi will change the microbial community’s dynamical behavior determines its structural stability.

Based on the stability criteria we derived above, to insure global coexistence, we just need to

keep limC→0+ r(C) > 0 and limC→1− r(C) < 0. Defineϕ1(γ1, . . . ,γn) = limC→0+
δ (C,γ1,...,γn)

1+δ (C,γ1,...,γn)C

and ϕ2(γ1, . . . ,γn) = limC→1−
δ (C,γ1,...,γn)

1+δ (C,γ1,...,γn)C
. We derive that the flexible coexistent region can

be expressed byϕ1(γ1, . . . ,γn) > µ andϕ2(γ1, . . . ,γn) < µ. This implies that HGT can naturally

shape the flexible coexistent region (Fig.3) and hence impact the system’s structural stability for

arbitrary frequency-dependent fitness formδ (C,γ1, . . . ,γn). Furthermore, we can show that the

above analysis can be extended to the case of arbitrary number of genotypes (see Methods).

DefineA to be the volume of flexible coexistent region determined above. The derivation ofA

about HGT rateµ can be calculated by the following multiple integral of the first kind:

dA
dµ

=−

∫

ω1

1
|∇ϕ1|

dS+
∫

ω2

1
|∇ϕ2|

dS, (4)

where integral regionsω1 andω2 are boundaries of flexible coexistent region shaped byϕ1(γ1, . . . ,γn)>

µ andϕ2(γ1, . . . ,γn)< µ, respectively. Intuitively, a higher (lower) HGT rate can reduce (expand)
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the parameter region where cooperators dominate and expand (reduce) the parameter region where

cheaters dominate. Therefore the composite effect of the change of HGT rate is the difference of

above two effects of cooperators and cheaters (corresponding to the two multiple integral terms

in Eq. (4)). As an extended flexible coexistent region corresponds to higher structural stability,

we can evaluate the impact of HGT on a microbial community by considering the sign of dA/dµ:

a positive (or negative) dA/dµ suggests a positive (or negative) effect of higher HGT rate on the

microbial community’s structural stability, respectively.

We validate Eq. (4) for two concrete models: a game theoretical one and an empirical one (see

Methods). Interestingly, we find that for the game theoretical fitness model, the volume of the

flexible coexistent region spanned by the system parametersa11, a12, a21 anda22 is invariant with

respect to the gene transfer rateµ, though its shape does vary over system parameters (Fig.3a-d).

For the empirical fitness model (see Methods), increasingµ leads to a largerA and hence stronger

structural stability (Fig.3e-g).

D. Robustness

In the above analysis of structural stability, we focus on the case of global coexistence, in which

microbial system will converge to coexistence of multiple genotypes from any initial state. If Eq.

(3) has only one solution in(0,1), then the system will reach a steady state that is independen-

t of the initial condition [36] (Fig.4b-e). However, in practice, ecosystems may have multiple

non-trivial steady states. Whether an ecosystem will converge to a particular stable coexistence

equilibrium may highly depend on the initial state and the level of environmental disturbances.

Indeed, it has been observed that the dynamics of microbial systems often subjects to bifurca-

tion [37–39], that is, if the population of one genotype drops below or over some threshold then

the system of coexisting multiple genotypes will collapse and only one genotype will dominate

(Fig.4a).

For those systems, we can define robustness as the maximal degree of perturbation such sys-

tems can sustain around a stable coexistent equilibrium. A wider range of initial states from which

microbial system can evolve to this coexistent equilibrium means a more robust microbial sys-

tem. Mathematically, if Eq. (3) has multiple solutions on interval(0,1), then we can evaluate the

robustness of a stable equilibrium by its minimum distance to its neighbouring unstable equilib-

rium. From Eq. (3) we know that change of gene transfer rateµ can adjust the distance between

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 11, 2017. ; https://doi.org/10.1101/201426doi: bioRxiv preprint 

https://doi.org/10.1101/201426


7

solutions ofr(C) = 0 (Fig.4f, Fig.S1). Hence HGT is naturally linked to the robustness of such

microbial systems. For different dynamic systems and system parameters, the optimal direction

and rate of gene transfer that maximize the ecosystem utility could be system-dependent.

IV. DISCUSSION

Our analysis reveals the key role of HGT in maintaining a microbial system’s equilibrium.

By introducing the frequency-dependent fitness and discussing the mutation-selection balance, we

offer a simple explanation for the presence of stable gene flux. We quantify the impact of HGT on

shaping the flexible coexistence region, and reveal how HGT can influence the structural stability

and robustness of microbial communities. Moreover, we validate our scheme for two concrete

fitness models where global coexistence can exist. Our analysis can be easily extended to the case

of multiple genotypes, suggesting that HGT is an indispensable factor when analyzing microbial

population dynamics.

Recently, a theoretical model is proposed to explain the horizontal sweeps via migration among

microbial communities [18]. We show that our conclusion still holds under the effect of migration

(see SI Sec. III). Note that in our model, for the sake of simplicity, we neglect the cost caused

by gene transfer, and the gene transfer rate has no direct impact on organisms’ fitness. However,

since it requires cells to produce gene carriers such as plasmid to make HGT happen in practice

[40, 41], a higher gene transfer rate can lead to higher cost for microbes which transfer their genes

to others. Therefore their fitness could be associated with the gene transfer rateµ. We develop

an extended model to evaluate this case (see SI Sec. IV). In this extended model, the impact of

HGT on microbial system still exists, and adjustingµ can potentially lead to an improvement of

microbial system’s structural stability and robustness to environmental perturbation. Furthermore,

we also develop an individual-based model to confirm our prediction of the impact of horizontal

gene transfer on structural stability (see SI Sec. V).

In this work we demonstrate the key link between structural stability, robustness and HGT for a

well-mixed and simplified microbial system. The systematic effect of HGT on more complicated

and real microbial systems with spatial pattern and various species remains to be studied. We

anticipate that introducing the effect of HGT to various processes of microbial systems, especially

those associated with coexistence could help us better understand many intriguing phenomena

observed in microbial systems.
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V. METHODS

A. General structural stability model for muti-genotypes microbial system

For a general microbial system withm genotypes, we can denote their fitness as a function of

population fractionCi (1≤ i ≤ m,∑m
i=1Ci = 1), model parametersγ j (1≤ j ≤ n) and gene transfer

rate matrixµ, i.e, fi(C1, . . . ,Cm,γ1, . . . ,γn,µ), 1 ≤ i ≤ m. Therefore we have that the selective

coefficient of genotypei

δi =
fi

1
1−Ci

∑ j 6=iC j f j
−1= δi(C1, . . . ,Cm,γ1, . . . ,γn,µ) (5)

as a function of population fraction and model parameters (see SI Sec. II). Denote the rate of HGT

from genotypei to genotypej is µi j. Then we have the following dynamic system

dCi

dt
=−

m

∑
j=1

(µi j −µ ji)CiC j +
δi

1+δiCi
Ci(1−Ci), 1≤ i ≤ m. (6)

Conditions
d2Ci

dt2 > 0 for Ci = 0, 1≤ i ≤ m (7)

and
d2Ci

dt2 < 0 for Ci = 1, 1≤ i ≤ m (8)

determine the coexistent region of parameter space, which can be expressed as

ϕk(γ1, . . . ,γn,µ)> 0 for 1≤ k ≤ l. (9)

Therefore the flexible coexistent region, i.e., the structural stability of a microbial system is asso-

ciated with HGT rateµ.

B. Game theoretical fitness model

The concrete functional forms of the selective coefficient,δ (C), are various for different mi-

crobial communities. We first consider a classic game theoretical fitness model with two strategies

cooperating and cheating in a microbial community [42, 43]. The payoff matrix(ai j) for this game

(whereai j represents the payoff of the microbes with strategyi when encountering microbes with

strategyj) is given by
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CooperatorCheater

Cooperator a11 a12

Cheater a21 a22

For the sake of normalization, we assume that 0< ai j < 1 for i, j = 1,2. The fitness of cooperators

( fC) and cheaters( fN) are given by

fC = a11C+a12(1−C) (10)

fN = a21C+a22(1−C). (11)

Then the selective coefficientδ can be calculated as follows [27]

δ (C) =
fC
fN

−1=
a11C+a12(1−C)

a21C+a22(1−C)
−1. (12)

For the case of evolutionary matrix game, we regard elementsai j in payoff matrix as model

parameters. Since

lim
C→0

r(C) =−µ +
a12−a22

a22
(13)

lim
C→1

r(C) =−µ +
a11−a21

a11
, (14)

according to our inference mentioned above, we have the flexible coexistent region as

a12> (1+µ)a22, 1< a12,a22 < 0, (15)

a21> (1−µ)a11, 1< a11,a21 < 0. (16)

It can be seen thatµ has a clear impact on the flexible coexistent region where the two genotypes

can stably coexist. A positiveµ will expand the flexible region corresponding to Eq. (16) but

reduce the flexible region corresponding Eq. (15) (Fig.3).

Interestingly, we find that HGT does not change the total volume of the flexible coexistent

region for game theoretical fitness model. From Eq. (15) and (16) we can calculate the volume

of the flexible coexistent region’s projection on the subspace spanned bya11, a21 anda12, a22,

respectively:

Aa11a21 = 1−
∫ 1

0
(1−µ)xdx =

1+µ
2

, (17)

Aa12a22 =
∫ 1

1+µ

0
(1+µ)xdx =

1
2(1+µ)

. (18)
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Without loss of generality, here we suppose thatµ > 0. For µ ≤ 0, a similar derivation can be

done. Since two conditions shaping the flexible coexistent region are independent, we can get that

the volume of flexible coexistent region in the parameter space as

A = Aa11a21Aa12a22 =
1
4
, (19)

which is independent ofµ.

We can also calculate dA/dµ for µ > 0 according to Eq. (4):

dA
dµ

=−
∫

ω1

1
|∇ϕ1|

dS+
∫

ω2

1
|∇ϕ2|

dS

=−

∫ 1

0

∫ 1

(1−µ)a11

∫ 1
1+µ

0

a22
√

1+(1+µ)2

√

1+(1+µ)2da22da21da11

+
∫ 1

1+µ

0

∫ 1

(1+µ)a22

∫ 1

0

a11
√

1+(1−µ)2

√

1+(1−µ)2da11da12da22

=−
1

4(1+µ)
+

1
4(1+µ)

= 0.

That is, the positive effect and negative effect of HGT cancel out (and the same result also holds

for µ < 0).

C. Empirical fitness model

Recently, a snowdrift game dynamics was proposed to explain experimental observation in

yeast microbial community [28]. The following functional forms of fitnessfC and fN were used

to fit the experimental observation [28]:

fC = [λ +C(1−λ )]α − γ, (20)

fN = [C(1−λ )]α. (21)

Hereγ is the cost of cooperation andλ is the efficiency of generating total benefits,α is a model

parameter. With suitable parameter choice, this is a snowdrift game (SG) dynamics. Note that the

SG game can result into the coexistence of cooperators and cheaters, which is impossible for the

prisoner’s dilemma (PD) or the mutually beneficial (MB) game, where one strategy (genotype)

dominates. Selective coefficientδ can be then calculated as follows:

δ (C) =
fC
fN

−1=
[λ +C(1−λ )]α − γ

[C(1−λ )]α
−1. (22)
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To guarantee the global coexistence of two genotypes, we just need to guarantee thatC∗ = 0

andC∗ = 1 are unstable steady states. For this empirical fitness model (22) we have

lim
C→0+

r(C)

= lim
C→0+

−µ +
δ (C)

1+δ (C)C

= lim
C→0+

−µ +
[λ +C(1−λ )]α − γ −Cα(1−λ )α

Cα(1−λ )α +C{[λ +C(1−λ )]α − γ −Cα(1−λ )α}
.

The limitation tends to infinity, which has the same sign asλ α − γ. λ α − γ = 0 is a zero measure

on the plane so that we can neglect this case. Moreover, we have

lim
C→1−

r(C)

= lim
C→0+

−µ +
δ (C)

1+δ (C)C

= lim
C→1−

−µ +
[λ +C(1−λ )]α − γ −Cα(1−λ )α

Cα(1−λ )α +C{[λ +C(1−λ )]α − γ −Cα(1−λ )α}

=−µ +1−
(1−λ )α

1− γ
.

Therefore for this empirical fitness model, with a givenα, there is a flexible region in the

parameter space spanned byλ and γ where two genotypes can coexist stably with any initial

condition. The coexistent region is described as below:

λ α − γ > 0, (23)

−µ +1−
(1−λ )α

1− γ
< 0. (24)

Due to the singularity of functionr(C) near zero, the gene transfer rateµ has no impact on the

first condition. But clearlyµ appears in the second condition and a higher positive HGT rateµ

can lead to a larger flexible parameter region of coexistence, corresponding a higher structural

stability. For this case, we have
dA
dµ

=
∫

ω2

1
|∇ϕ2|

dS ≥ 0. (25)

As what we describe above, for comparatively simple case when Eq. (3) only has at most

one solution on(0,1), we understand the corresponding ecosystem dynamics very well (Fig.4).

However, if Eq. (3) has more than one solution on the interval(0,1), then the robustness of

microbial system may be limited.
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FIG. 1. Both natural selection and horizontal gene transfer shape microbial population dynamics.Sub-

communitiesC (blue) and 1−C (yellow) represent the fractions of cooperators and cheaters in the microbial com-

munity, respectively. Their fitness typically changes according to the interaction among them, rendering a frequency

dependent selective coefficientδ (C). Green and red arrows represent the effect of natural selection and horizontal

gene transfer, respectively.
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FIG. 2. Alterable selective coefficient leads to a stable gene flux.The fraction of cooperatorsC (top) and the gene

flux ratel = |µC(1−C)| (bottom) are represented as a function of time.(a) Fixed selective coefficient (δ =constant).

Genotype carrying beneficial allele quickly dominates the whole population, leading to zero gene flux. Here we take

µ = 0.1 in the simulations.(b) Game theoretical fitness model. Stable gene flux exists with frequency dependent

selective coefficient (δ (C) = a11C+a12(1−C)
a21C+a22(1−C) −1, see Methods). Here we takeµ = 0.1 in the simulations.(c) Empirical

fitness model. Stable gene flux also exists withδ (C) = [λ+C(1−λ )]α−γ
[C(1−λ )]α −1 (see Methods). Here we takeλ = γ = 0.5

andµ = 0.1 in the simulations.
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FIG.3: Horizontal gene transfer can adjust the flexible coexistent region of microbial systems. (a-d)Game

theoretical fitness model. The flexible coexistent regions correspond to the blue areas when the gene transfer rateµ =

−0.20 (a), 0 (b) and 0.2 (c). It can be seen that a positive gene transfer rate expands the flexible region spanned by

a11 anda21 but reduces the flexible region spanned bya22 anda12. The volume of the flexible coexistent region (A,

see Methods) spanned by model parameters(a11,a21,a21,a22) is plotted as a function of the gene transfer rateµ in

(d). (e-h) Empirical fitness model. The flexible coexistent region for the case ofα = 0.1 (e), 0.3 (f) and 1 (g) with

µ = −0.1, µ = 0 andµ = 0.1, respectively. Note that low efficiency (λ ) and high cost (γ) lead to the prisoner’s

dilemma (PD) regime, while high efficiency and low cost lead to the mutually beneficial (MB) regime. Both regimes

have no coexistence. Only in the snowdrift game (SG) regime can the two genotypes coexist. The volume of the

flexible coexistent region is plotted as a function of the gene transfer rateµ for differentα in (h). It can be seen that

a higher positive gene transfer rate leads to larger flexible coexistent region, thus enhancing the system’s structural

ability.
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FIG. 4. The impact of horizontal gene transfer on the robustness of microbial systems with an empirical

fitness model. (a-e)The solutions of Eq. (3) correspond to the intersection points with x-axis. The solid circles

represent the stable equilibria while the hollow circles mean the unstable steady states, i.e., threshold of according

dynamic system.(f-j) With the different model parameters(α,γ,λ ), the selection coefficientδ (C) (see Eq. (22) in

Methods) can lead to various scenarios on the non-trivial equilibria. (a, f) Partial Coexistence. Eq. (3) has two non-

trivial solutions corresponding to one stable and one unstable equilibrium, respectively. Whether the microbial system

will coverage to a stable coexistent equilibrium highly depends on the initial condition. (b, g) Bi-stable. Only one

nontrivial equilibrium exists, but it is unstable. The system will converge to a trivial equilibrium. WhetherC∗ = 0 or 1

depends on the initial condition. (c, d, h, i) One species dominates. No coexistent equilibrium exists. The system will

converge to a trivial equilibrium, regardless of the initial condition. (e, j) Global coexistence. Any initial condition

will lead to the only non-trivial equilibrium. Hence the two genotypes always coexist. Parameters used for different

cases are : (α, γ, λ )=(0.765,0.799,0.744) (a, f); (0.69,0.46,0.32) (b, g); (0.55,0.1,0.8) (c, h); (0.3,0.5,0.1) (d, i);

(0.5,0.5,0.55) (e, j).
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