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Abstract—Biological DNA reads are often trimmed before
mapping, genome assembly, and other tasks to improve the
quality of the results. Biological sequence complexity relates
to alignment quality as low complexity regions can align poorly.
There are many read trimmers, but many do not use sequence
complexity for trimming. Alignment of reads generated from
whole genome bisulfite sequencing is especially challenging
since bisulfite treated reads tend to reduce sequence complexity.
InfoTrim, a new read trimmer, was created to explore these
issues. It is evaluated against five other trimmers using four
read mappers on real and simulated bisulfite treated DNA data.
InfoTrim produces reasonable results consistent with other
trimmers.

1. Introduction

Raw DNA reads generated by next generation sequenc-
ing machines can have diminishing quality on the 5’ ends
[1], [2] and be contaminated by adapters [3]. These errors
can affect the quality of alignment and downstream SNP,
indel, and mehtylation calling [3]. Read trimming is a
process where the raw DNA reads are cut to address issues
of low quality or adapter contamination.

This study introduces a new read quality trimmer called
InfoTrim derived from the maximum information approach
of the popular trimmer Trimmomatic [4]. InfoTrim intro-
duces an entropy term, a measure of sequence complexity,
to the maximum information model of Trimmomatic. This
term was added since sequence complexity can correlate
with alignment quality as low complexity reads are more
frequently unmapped or mapped to multiple locations while
high complexity reads are more frequently uniquely mapped
[5]. InfoTrim uses Shannon entropy, which measures se-
quence complexity by counting the frequency of bases in a
read. Shannon entropy plays a fundamental role in informa-
tion theory [6].

Some other read processing tools incorporate sequence
complexity, but they don’t use Shannon entropy in the same
way as InfoTrim does. The trimmer Reaper uses a measure
of tri-nucleotide complexity that is the same as is used in
the base masking program DUST [7], [8]. The read mapper
Novoalign trims low complexity 5’ tails up to 5-9 bp [9].
The bisulfite DNA read mapper BatMeth filters out reads
with low Shannon entropy [10]. The UEA Toolkit has a

low sequence complexity filter that eliminates reads with at
most two bases, but it is for RNA reads [11].

The other terms in the InfoTrim model include the
sequence length and the phred score. There is a term for
sequence length threshold and for the total sequence length.
Everything else being equal, preserving the length of a read
is generally preferred as this uses more of the raw DNA
read data. Sequence length can affect indel calling [12]. The
phred score of a DNA read gives a per-base measure of
the probability that the base was called correctly [13]; thus,
bases near the 5’ end of the read with low phred score can
be trimmed. These terms are the same as the Trimmomatic
model, but InfoTrim applies the geometric mean to the
terms so that the input parameters can be interpreted more
intuitively. The geometric mean is a balanced mean that
does not depend on the scale of the terms. InfoTrim does
not support adapter trimming at this time, but there are many
trimmers for this including Trimmomatic.

To compare the performance of InfoTrim, data involv-
ing bisulfite treated DNA reads (BS-Seq) was used. Bisul-
fite treatment of DNA converts unmethylated cytosine to
thymine upon PCR amplification while leaving methylated
cytosine unchanged. It is a way to study epigenetic methy-
lation, which relates to disease and development [14]. BS-
Seq data was used since aligning bisulfite-treated DNA is a
challenging task since bisulfite treatment tends to reduce
sequence complexity [5] and can introduce major biases
[15].

This study compares InfoTrim with five other trimmers
involving four read mappers. The read trimmers were Cu-
tadapt [16], Erne-filter [3], Reaper [7], Sickle [17], and
Trimmomatic [4]. The read mappers were BisPin [18],
Bismark [19], BWAmeth [20], and Walt [21]. Table 1 gives
information on the read trimmers used in this study.

2. Implementation

InfoTrim is a multiprocess Python 2.7 program featuring
a maximum information score used to cut DNA reads at the
5’ end. For a read d, the substring dl is the read starting
at base position 0 and ending at base position l. Starting
at the first base, the score Stotal(dl) is computed for all l
starting at 0 and ending at the total length of the read d. The
position l that maximizes the score is chosen and every base
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Trimmer Version Website Algorithm Type Language Features Settings
InfoTrim 0.1.0 github.com/

JacobPorter/InfoTrim
Running Score Python 2.7 has an entropy term,

multiprocessing
s:0.1, r:0.4, m:25, t:0

Trimmomatic 0.36.0 www.usadellab.org/
cms/?page=trimmomatic

Running Score,
Windowed

Java Adapter stripping,
multithreaded

MAXINFO: 25: 0.5

Cutadapt 1.14 cutadapt.
readthedocs.io/
en/stable/guide.html

Running Score C and Python Adapter stripping -q 10

Erne-filter 2.1.1 erne.sourceforge.net/ Running Score C++ contaminant removal,
multithreaded

Default

Reaper 13.100 www.ebi.ac.uk/
stijn/reaper/reaper.html

Quality Score C demultiplexes
barcoded sequences,
adapter stripping,
tri-nucleotide
complexity score

-geom no-bc -3pa ””
-tabu ”” -dust-suffix
90 -qqq-check 50/15
–nozip

Sickle 1.33 github.com/
najoshi/sickle

Windowed C Supports gzip files -t sanger

TABLE 1: Trimmer features, information, and settings used in this study

after l is discarded from the read. The InfoTrim maximum
information model involves four terms.

The first term, Slen(dl), is a logistic function that pro-
vides a length threshold m. This causes the trimmer to
strongly prefer reads larger than m. The reason for this is
that reads that are too small will have too little information
to be useful. The default is m = 25, and the equation is the
following.

Slen(dl) =
1

1 + em−l

The second term, Scov(dl), causes the trimmer to prefer
longer reads to shorter reads in order to increase the cover-
age that the read represents. It is simply the length of the
read, giving a linear relationship between the length and the
score. It is described in the following.

Scov(dl) = l

The phred score, Sphred(dl), is the third term, and it
measures base calling correctness. The phred score at base
position i in read d is the probability that the base was
called correctly as determined by the sequencing platform.
The phred number, a positive integer, at base position i
is given by Qi. The probability derived from Qi is given
by Pcorrect(i) = 10

−Qi
10 . The phred term is given by the

following formula. The rationale for using the product is
given in the Trimmomatic paper [4].

Sphred(dl) =
l∏

i=1

Pcorrect(i)

InfoTrim adds a fourth term for entropy. The probability
Pl(b) is the frequency that base b is found in read dl. The
Shannon entropy is multiplied by one half to give it a scaling
between 0 and 1. The formula that InfoTrim uses is given
as the following.

Sent(dl) = −1

2

∑
b∈{A,C,T,G,N}

Pl(b) log(Pl(b))

The last three terms are combined using the geomet-
ric mean so that proportional changes in each term will

contribute equally to the final score. Parameters r (for
entropy) and s (for phred) are used to weight the relative
contributions of the last three terms. The values r, s, and
1 − r − s must all add up to one. For example, if r = 1,
then only the entropy term will be used while the coverage
and phred scores will not be used. Thus, the final score is
the following.

Stotal(dl) = Slen(dl)·Scov(dl)
1−r−s

3 ·Sphred(dl)
s
3 ·Sent(dl)

r
3

3. Data Analysis Methods

Real and simulated data was used to assess the accu-
racy of InfoTrim. The arguments used for each trimmer
are given in Table 1. Default settings were used when
available. Otherwise, reasonable settings were used. The
DUST score was used with Reaper to compare its sequence
complexity term with InfoTrim. For the read mappers,
BisPin 0.1.1, Walt 1.0, Bismark 0.16.3, and BWAmeth
0.2.0, default settings were used. A single BisPin index
with mask “11111111100111111111” was generated. The
FASTQ reads files were first trimmed with the read trimmers
and then mapped with the read mappers.

3.1. Simulated Data

Five hundred thousand simulated 150bp Illumina bisul-
fite reads were generated with Sherman using the mouse
reference genome (GRCm38.p5) [22] and a two percent
error rate, a twenty percent CG context conversion rate,
and a two percent CH conversion rate. These settings were
chosen since they are realistic. The error rate simulates both
sequencing error and natural SNP variation. Sherman does
not simulate indels and has a flat phred score. Five hundred
thousand simulated Ion Torrent 200bp reads were gener-
ated with DWGSIM using the human reference genome
(GRCh38.p9) [23]. For DWGSIM, the bisulfite treatment
was simulated on the reference genome with the CpG rate as
0.215, the CH rate 0.995, and the over conversion and under
conversion rates of 0.0025. This was done with custom
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Python scripts provided by another lab member. DWGSIM
generates paired end data, but single end data was desired, so
appropriate ends were chosen to simulate single end data.
DWGSIM was used with the following realistic settings:
“dwgsim -e 0.012 -E 0.012 -d 250 -s 30 -S 0 -N 1000000
-c 2 -1 200 -2 200 -f TACGTACGTCTGAGCATCGATC-
GATGTACAGC.” This data was used to compare InfoTrim
with other trimmers. DWGSIM simulates the overcalling
and undercalling of homopolymer runs that are characteristic
of Ion Torrent reads [2]. This higher error rate makes Ion
Torrent reads more challenging to align.

Another data set of 500k 100bp simulated Illumina
human DWGSIM reads were used to explore the effect of
varying the r and s parameters for InfoTrim. Data was gen-
erated with settings that were the same as for the Ion Torrent
reads except that the “-f” parameter was not used, and 100bp
reads were generated. Varying the r and s parameters was
done with a step size of 0.1. All the read mappers were used
to align and map the data.

Recall, the percentage of the total reads aligned cor-
rectly, and precision, the percentage of uniquely mapped
reads aligned correctly, was calculated for each alignment
SAM file generated by the read mappers. These statistics
control for false positives and false negatives. A read was
correctly aligned if it was mapped to within 3bp of the
true location’s starting position. The F1-score, the harmonic
mean of precision and recall, was calculated to give a single
numeric score for each trimmer and mapper pipeline. A
higher F1-score indicates better accuracy performance.

The mapper Walt couldn’t always map the output from
Reaper, and some pipelines and data had zero for Reaper
results. For this reason, Walt or Reaper were sometimes
excluded from the results.

3.2. Real Data

Five hundred thousand real whole mouse genome
bisulfite 101 bp Illumina HiSeq 2000 reads were down-
loaded from the SRA trace archive with accession number
SRR921759. The data was trimmed with the read quality
trimmers and then mapped with BisPin. A strict alignment
quality filter of 85 was used since reads passing this filter
should have a precision approaching one hundred percent,
so the unique alignments are presumptively correct. A filter
value of 96 indicates that the read perfectly matches the
genome, so a filter value of 85 indicates very high quality
alignments.

A second real data set consisting of one million hairpin
bisulfite-treated Illumina mouse reads was taken from the
data described in [14], and this hairpin data was used to
compare pipelines using presumptively correct alignments
in the following manner. Hairpin bisulfite data uses paired-
end sequencing such that the original DNA strand, untreated
by bisulfite, can be recovered [18]. The original strand gen-
erally has more entropy, and can align better than bisulfite
treated strands [5]. This recovery procedure was performed
using BisPin, which recovered approximately 600k reads,
and the resulting original reads were aligned with BFAST

[24], Bowtie2 [25], and BWA [26] to create three files of
presumptively correct unique alignments. The corresponding
one million C-to-T converted bisulfite forward direction
reads were then trimmed and aligned with all of the tools
used in this study. The uniquely mapped reads from each
trimmer and bisulfite mapper pipeline were then compared
to the presumptively correct reads of each regular read
mapper and averaged.

4. Results and Discussion

4.1. Simulated Data

Figure 1 shows the results of varying the r and s
parameters on F1-score for each read mapper. The left-most
pane of Figure 1 shows the F1-score when no trimming was
performed. The highest F1-score and (r, s) arguments for
each mapper are the following: Bismark 0.910 (0.3, 0.1),
BisPin 0.881 (0.4, 0.1), BWAmeth 0.880 (0.1, 0.0), and
Walt 0.914 (0.1, 0.2). This setting allowed BWAmeth to
beat the untrimmed F1-score by 7.40E-5, a small amount.
The other mappers had similar performance. According to
Figure 1, low to moderate settings for r and low settings for
s substantially outperformed other settings. This suggests
that the coverage term, Scov(dl), should have a high weight
and is more important than entropy and the phred score;
however, trimming with entropy can still usefully improve
the accuracy. For this reason, r = 0.4 and s = 0.1 were
chosen as the default settings for InfoTrim. Bismark and
BisPin were generally the most consistent with the F1-score
falling the least in the right-most panes. The quality of Walt
and BWAmeth fell off more quickly.

On the Sherman simulated Illumina mouse reads, In-
foTrim improves the F1-score better than all the other trim-
mers except for pipelines involving BWAmeth as shown in
Figure 2. With the BWAmeth pipeline, InfoTrim was second
best beating Reaper, the other trimmer that uses sequence
complexity, and it beat Trimmomatic, the trimmer that In-
foTrim derives from. Pipelines involving InfoTrim don’t
always have the highest percentage of uniquely mapped
reads, but more uniquely mapped reads don’t always equate
to a higher accuracy as the F1-score shows.

Figure 3 shows a plot of precision versus recall while the
numeric label is the F1-score on the DWGSIM simulated hu-
man Ion Torrent bisulfite treated reads. InfoTrim, Cutadapt,
and Reaper performed similarily while Trimmomatic was
the next best. Erne-filter and Sickle were the worst per-
forming. The read mapper BisPin generally had the highest
F1-score for all pipelines with the exception of Erne-filter
and Sickle. However, trimming did little to improve the F1-
score compared to no trimming.

4.2. Real Data

On the strict filter test of real mouse reads, all trimmers
improved the alignment score as indicated in Figure 4. In-
foTrim performed the best on the real data and aligned 1300
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Figure 1: InfoTrim simulation results vis-a-vis systematically varying the r and s parameters.

more reads than Cutadapt, the closest competitor. InfoTrim
aligned 15,025 more reads than without trimming.

The proportion of presumptively correct alignments for
the hairpin data by trimmer and mapper is shown in Figure
5. According to the average proportion of reads aligned
correctly across all mappers, InfoTrim was third best overall,
behind Cutadapt and Erne-filter; however, there is very
little difference in this score except for Reaper, which did
poorly since BWAmeth and Walt did not map this data
well. Pipelines invovling BisPin were generally good, but
BWAmeth often did better except for the pipeline with the
trimmer Reaper. Pipelines with Bismark were the worst.
This shows that the results for InfoTrim are reasonable and
consistent with other trimmers.

4.3. Timing

A run time analysis was performed by trimming 5 mil-
lion real human bisulfite reads consisting of 2 million reads
from SRR1104850, 2 million reads from SRR1799718, and
one million reads from SRR3106764. All the read trimmers
except for InfoTrim took approximately one minute to com-
plete using a single thread. Trimmomatic was the fastest
with 30s and Reaper was the slowest with 1m21s. InfoTrim
was considerably slower and took 72m49s with a single
process and 15m26s with six processes, an improvement of
4.7 times. InfoTrim is probably slow since it is implemented
in Python. Timing was calculated with the linux time
command, and the read trimmers were run on the Virginia
Tech CS Department’s bioinformatics machine mnemosyne2
consisting of 16 processing cores of Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz with 132 GB of memory.
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Figure 2: Sherman mouse Illumina simulation on 500k reads with F1-score and uniquely mapped percentage

Figure 3: Precision versus recall and numeric F1-score on DWGSIM human Ion Torrent simulated bisulfite reads
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Figure 4: Percentage of 500k mouse real reads aligned
presumptively correctly with a strict BisPin filter of 85.

Figure 5: Hairpin data accuracy analysis. The cell for a
trimmer and mapper represent an average of proportions of
correct alignments using presumptively correct alignments
from BFAST, BWA, and Bowtie2 on recovered reads. The
average performance across all bisulfite mappers for a given
trimmer is shown in the row “Average.”

5. Conclusion

Using sequence complexity to improve read trimming is
a promising strategy as sequence complexity can relate to
alignment accuracy performance. InfoTrim is a new Python
read trimmer that performs better than five other trimmers
on simulated Sherman bisulfite data and real mouse data in-
volving alignment pipelines of four read mappers. InfoTrim
did not substantially reduce accuracy on simulated human
Ion Torrent bisulfite reads unlike some read trimmers. Un-
fortunately, InfoTrim is slow, but the techniques could be
incorporated into the Java based Trimmomatic, the fastest
read trimmer. The only other read trimmer studied that
used sequence complexity was Reaper, and InfoTrim out-
performed this trimmer. Given the presented results, perhaps
sequence complexity should be incorporated into more read
trimmers.
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