
Figure 8: M1 response to S2 and M2 inputs as a function of order and interval of inputs and PT
Ihlevel. A) Raster plot of M1 in response to increased S2 and M2 activity (15 Hz for 100 ms) with S2 starting
at 400 ms and M2 100 ms (interval) later; PT5B was low. B) Average (left) and peak (right) post-stimulus
IT5A (top) and PT5B (bottom) firing rate for different intervals (x-axis), order of presentation (blue: M2-S2;
red: S2-M2), and high (dotted) vs low (solid) Ihlevels. C) Schematic of main pathways activated due to S2
and M2 increased activity. Varying interval between presentation of inputs illustrated with δt symbol.

suggesting S2 dictated its peak rate – but presented a strong peak at 60 ms interval when M2 arrived first.
This might indicate resonance at the beta frequency range, consistent with our previous observation
(Fig. 4).

3.6 Information flow in response to recorded time-varying spiking activity

Time-varying spiking activity recorded from mouse somatosensory cortex – 4 second duration, average rate
of 2.77 Hz – was used as S2 input (Fig. 9A). With high Ih, information flow, quantified using Spectral
Granger causality, was strongest from S2 to IT5A and was concentrated in the beta frequency range. With
low Ih, information flow shifted to the gamma frequency range and was strongest from S2 to PT5B
(Fig. 9B). This provides further support for the role of Ihin modulating the flow of information to
corticospinal output and switching between the IT-predominant mode and a mixed mode with both IT and
PT activity.

A different set of recordings – also 4 second duration, average rate of 3.84 Hz – was simultaneously
used as input to M2, to evaluate the interactions between S2 and M2 inputs. With high Ih, information
flow was strongest among upper layers (IT2 to IT5A), but was very low from S2 and M2 to any of the local
populations. This suggests simultaneous activation resulted in destructive interference of the signal.
Lowering Ihresulted in increased information flow peaks at beta frequency from IT2, S2 and M2 to PT5B,
again suggesting Ihas a potential mechanism to enable information to reach corticospinal neurons (Fig. 9C).

Recordings of neuron spiking activity in mouse somatosensory cortex were downloaded from
CRCNS.org [24]. The recordings were performed in vitro with a large and dense multielectrode array. The
data represents spontaneous activity given that the culture was not stimulated. Spike trains were filtered
to include only those with an average firing rate between 0.1 and 50 Hz.
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Figure 9: Information flow in M1 in response to time-varying spiking activity recorded from
mouse somatosensory cortex. A) Raster plot of time-varying spiking activity recorded from mouse
somatosensory cortex. B) Spectral Granger causality when using the recorded spiking data (A) as input to
S2; shows increase of information flow from S2 to PT5B in the gamma frequency range for low vs. high Ih.
C) Spectral Granger causality between populations when using the recorded spiking data (A) as input to
M2 and a different recorded pattern as input to S2; shows increase in information flow from upper layer ITs
(IT2 and IT5A) to PT5B and from long-range inputs (S2 and M2) to PT5B in the beta frequency range for
low vs. high Ih.

4 Discussion

In this study we developed the most detailed computational model of mouse M1 microcircuits and
corticospinal neurons up to date, based on an accumulated set of experimental studies. Overall, the model
incorporates quantitative experimental data from 15 publications, thus integrating previously isolated
knowledge into a unified framework. Unlike the real brain, this in silico system serves as a testbed that can
be probed extensively and precisely, and can provide accurate measurements of neural dynamics at
multiple scales. We employed the model to evaluate how long-range inputs from surrounding regions and
molecular/pharmacological-level effects (e.g. regulation of HCN channel) modulate M1 dynamics.

The M1 simulation reproduced several experimental observations. The reported lognormal distribution
of firing rates in our model has been found extensively in cortical networks [53, 31]. The simulation tied a
key structural property – different upper vs lower layer 5B wiring – to differentiated circuit-level neural
dynamics and function – higher activity in upper layer 5B. The LFP beta and gamma oscillations have
been measured in rodent and primate motor cortices and may be fundamental to the relation of brain
structure and function [7].

We simulated the inputs from the main cortical and thalamic regions that project to M1, based on
recent experimental data from optogenetic mapping studies. Consistent with experimental data [21, 63],
this study evidenced two different pathways that can generate corticospinal output: motor-related inputs
from VL, cM1 or M2 regions bypassing upper M1 layers and directly projecting to corticospinal cells, and
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sensory-related inputs from PO, S1 and S2 regions projecting to superficial IT neurons in turn exciting
layer 5B corticospinal cells. Activation of OC region lead to increased layer 6 IT and CT activity and
physiological oscillations in the beta and gamma range. Downregulation of corticospinal H-current lead to
increased firing rate and information flow, as observed experimentally. This has been hypothesized as a
potential mechanism to translate action planning into action execution [57]. Our model also provides
insights into the interaction between sensory- and motor-related inputs, suggesting that the order and
interval between inputs determines its effect on corticostriatal and corticospinal responses.

Our study provides insights to help decipher the neural code underlying the brain circuits responsible
for producing movement, and help understand motor disorders, including spinal cord injury. The
computational model provides a framework to integrate experimental data and can be progressively
extended as new data becomes available. This provides a useful tool for researchers in the field, who can
use the framework to evaluate hypothesis and guide the design of new experiments. A recent study on
closed-loop optogenetics suggests employing models of cortical microcircuits to guide patterned stimulation
that restores healthy neural activity [17].
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