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Abstract 

A normal human somatic cell inherits two haploid genomes. Individual chromosomes of each pair have 

distinct parental origins and parental alleles are known to unequally contribute to cellular function. We 

integrated chromosome conformation (form) and gene transcription (function) analyses to dissect the 

dynamics of the maternal and paternal genomes in lymphoblastoid cells during the cell cycle. We found 

a distinct set of homologous alleles with very different activity often located close to boundaries of 

euchromatin and heterochromatin domains. We also identified a set of allele-biased topologically 

associating domains (TADs) that were small sized and had higher gene density. Thousands of 

genes show allelically biased expression (ABE) with false discovery rate < 0.05, and 98% of them have no 

allelic switching during G1, S, and G2/M phases. A subset of ABE genes are preferentially localized near 

TAD boundaries, enriched with chromatin organization transcription factor binding sites, and contained 

higher number of sequence variants in CCCTC-binding factor sites. Our results extend previous findings 

of sequence variation as a basis for unequal functional parental genomes. Investigation of haplotype-

resolved form-function dynamics may further our understanding of phenotypic traits, genetic diseases, 

vulnerability to complex disorders, and the development of cancers.  
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Introduction 

A somatic cell contains two haploid genomes, one with paternal origin (Pat), and the other with 

maternal origin (Mat). The two genomes are unequal in DNA sequence 1,2, gene expression3,4, chromatin 

state5-7, and architecture8 9. In linear DNA, millions of variants exist between the Pat and Mat genomes, 

including single nucleotide variants (SNVs) and short sequence inversions/deletions (indels) that make 

up 99.9% all types of variants 1,10. In terms of gene expression, the selection of an allele to be expressed 

leads to mono-allelic expression (MAE) or allelically biased expression (ABE). Known cases of MAE 

include X-linked genes due to X chromosome inactivation in females 11, and imprinted genes inherited 

from genomic imprinting 12-15. Recent genome wide transcriptomics analyses reveal that approximately 

20% of human genes show ABE 16-18.  The selection of an allele to be expressed appears to be stochastic 

and independent of parental origin 4,19, and monoallelic transcripts could occupy as much as 74% of the 

total transcripts in a cell 19.  

With regard to chromatin states, the two genomes are unequally modified by cytosine 

methylation at the canonical CpG or non-CpG sites and core histone remodeling (e.g., acetylation, 

methylation, or ubiquitination) 5-7,20. In addition, homologous chromosomes are differentially organized 

in three dimensional (3D) structures 8,9. For examples, the inactive X chromosome in females is 

partitioned into two “super-domains” 8; loop structure differences are also present at imprinted loci 8; 

and during stem cell differentiation, a small number of alleles switched between euchromatin and 

heterochromatin states (without enrichment of ABE or known imprinted genes)91.  

The captured variations in sequence, allele selection for expression, chromatin state and 

organization provide different points of view of the Pat and Mat genomes within diploid cells. However, 

it remains a challenge to integrate such “independent” information into a systematic view of the 

dynamics of individual genomes, including both chromatin organization (form) and gene transcription 

(function). In addition, it is unclear how ABE is maintained during the cell cycle in proliferating cells. In 
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this study, we take advantage of a haplotype-resolved diploid genome of the cell line NA12878 10 to 

address these issues. We capture nascent gene transcripts with bromo-uridine labeling and sequencing 

(Bru-seq) 21, cytoplasmic mRNA species with RNA sequencing (RNA-seq)22, and chromatin interactions 

with Hi-C23 from cell populations at the cell cycle phases G1, S, and G2/M. We specifically included Bru-

seq to capture nascent RNA transcripts for measuring functional output. We reason that instantaneous 

chromatin interactions between cis-regulatory elements (such as enhancers and promoters) determine 

gene transcription activities, therefore differential allelic expression could be best captured “live” by 

Bru-seq.  

We developed an analytical framework that integrated haplotype-resolved Hi-C, RNA-seq, and 

Bru-seq data for fine dissection of the difference between the Pat and Mat genomes during the cell cycle. 

We studied the genome from a network point of view, where nodes of the network correspond to 

genomic loci partitioned at gene, topologically associating domains (TADs) defined by Dixon et al 24, and 

chromosome scales, and edge weights of the network correspond to contact numbers between two loci 

determined by Hi-C. This allowed us to extract multiple topological properties from the Hi-C data by 

using the concept of network centrality 25, which facilitate quantitative integration with RNA-seq and 

Bru-seq. The study of centrality, i.e., evaluating the degree of nodal importance to the network structure, 

can be used to identify and rank essential nodes (such as TADs and genes) in biological networks. A 

number of centrality measures exist. For example, degree centrality measures the total number of 

connections a node has, while closeness centrality measures the average distance of a given node to all 

other nodes. Eigenvector centrality assigns importance to a node based on the sum total of its neighbors’ 

importance, . These centrality measures extract important Hi-C features largely overlooked in previous 

studies, and provide an important way to understand the genome architecture and its dynamic process 

across cell cycle phases.   
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In this report, we discriminated the Pat and Mat genomes at the scales of whole chromosomes, 

TADs, inter-gene interactions, and intra-gene sequence variations in cis-regulatory elements. Using Bru-

seq and RNA-seq, we found thousands of genes showing ABE with 98% of the dominant alleles 

expressed from one or the other parental origin throughout the cell cycle. We found homologous alleles 

switched between active and inactive chromatin compartment states, and the switched alleles often 

located close to compartment domain boundaries. We distinguish parental chromosomes with phase 

portraits 26 that provide a useful quantitative assessment of form-function dynamical relationships at the 

chromosome level. We also show that the TADs with the largest allelic differences are smaller in size and 

contain higher gene density compared to randomly selected TADs. Furthermore, we show a subset of 

ABE genes preferentially localized near TAD boundaries compared to random sampling of gene sets of 

the same size. We observed that ABE genes were enriched with SNVs/indels at CTCF binding sites. These 

results provide a comprehensive view of how the two haploid genomes differ in form and function, 

which may impact our understanding of human phenotypic traits and their penetrance, genetic diseases, 

vulnerability to complex disorders, and the development of cancers.  

 

 

Results 

Cell cycle-regulated gene expression 

We analyzed bulk gene expression data from cell populations at G1, S, and G2/M sampled by 

Fluorescence-activated cell sorting (FACS) (Online Methods). From RNA-seq data sequenced on average 

33 million reads per replicate, we identified 1451, 1388, and 1416 differentially expressed genes in G1 vs 

S, G2/M vs G1, and G2/M vs S pair-wise comparisons (false discovery rate, FDR < 0.05), respectively 

(Extended Data Figure 1A, Extended Data Table 1). When analyzing three replicas of Bru-seq data 

sequenced at a depth of ~40 million reads, we identified 568, 417, and 34 genes that were differentially 
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transcribed in G1 vs S, G2/M vs G1, and G2/M vs S pair-wise comparisons FDR < 0.05) (Extended Data 

Table 2). As expected, Bru-seq showed for example that the G2 to M transition specific gene CCNB1 was 

transcribed at a higher level in the G2/M population compared to that of G1 and S (Extended Data 

Figure 1B). We found 277, 235, and 21 differentially expressed genes common to both the RNA-seq and 

Bru-seq data sets in G1 vs S, G2/M vs G1, and G2/M vs S pare-wise comparisons (r= 0.92, 0.90, and 0.60), 

respectively (Extended Data Table 3), showing as expected a concordance between the rate of 

transcription and the steady-state levels of cytoplasmic mRNA during the cell cycle. Functional 

annotation showed that sets of genes identified from both Bru-seq and RNA-seq were significantly 

enriched under Gene Ontology (GO) terms related to the cell cycle (Extended Data Table 4).  

 

Allelically biased expression (ABE) during the cell cycle  

We aimed to discriminate between the contribution of the Pat and Mat genomes to the dynamical 

functional human genome during the cell cycle. We first identified ABE genes from RNA-seq analysis. 

Specifically, from the 23277 genes interrogated, we identified 6795 transcripts containing informative 

heterozygous SNVs or indels. There were 5058 informative genes with allele read counts ≥5, which is the 

minimum number of counts that we used to reliably estimate ABE. Since the variables consisted of three 

cell cycle phases and two parental origins, we performed a two-way ANOVA analysis on the log2 

transformed reads per kilobase per million reads (RPKM) values for the 5058 genes to identify ABE 

genes. This model identified 1762 (34.8%) genes (FDR < 0.05) that showed significant ABE (932 paternal 

allele high and 830 maternal allele high) (Extended Data Table 5). Of the 1762 genes, 713 were also 

differentially expressed when comparing between cell cycle phases G1, S, and G2/M (cell cycle-

regulated). The set of ABE genes consists of 7.4% of the total 23277 genes interrogated, which is 

consistent with the fractions of ABE genes among human tissues studied 18. In terms of genome 
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distribution, chr8 has the lowest number of ABE genes (5.45%), and chr22 has the highest percentage 

(11.17%)  

For Bru-seq both exons and introns containing informative SNVs/indels were used to evaluate 

ABE. We identified 266,899 informative SNVs/indels from the Bru-seq data, while only 65,676 such SNVs 

/indels from RNA-seq data. However, in the Bru-seq data, many SNVs/indels had too low read depths 

(<5) to be included in the analysis. Using a read depth criterion ≥ 5, similar numbers of informative SNVs 

were found in the RNA-seq and Bru-seq data (19,394 and 19,998 respectively). Inclusion of the intronic 

SNVs increased the number of informative genes to 6,168. We observed relative larger variances 

between the three Bru-seq replicates compared to that of the RNA-seq replicates prompting us to apply 

the Tukey criteria 27 to select the top 5% genes with the largest allelic bias (Extended Data Table 6).  

Among the ABE genes from RNA-seq or Bru-seq analysis, we found 103 common mono-allele 

expressed (MAE) genes (Extended Data Table 7). These include six known imprinted genes, four 

expressed from the Pat allele (KCNQ1OT1, SNRPN, SNURF, and PEG10) and one (NLRP2) from the Mat 

allele. 

 

Allele chromatin compartment switching between the Pat and Mat genomes  

Cells were FACS-sorted into G1, S and G2-phases of the cell cycle and were then cross-linked with 

formaldehyde and subjected to Hi-C analysis (Online Methods). It is well known that interphase 

chromatin is partitioned into active euchromatin (A) and inactive heterochromatin (B) compartments 23. 

We constructed Hi-C maps at 100kb resolution for the Pat and Mat genomes. We also binned the RNA-

seq and Bru-seq data into the same resolution of Hi-C binning. We observed that approximately 0.6% of 

100kb bins switched compartment between the Pat and Mat alleles at each of the cell cycle phase G1, S, 

and G2/M (Extended Data Table 8), and the switched alleles were not the same in different cell cycle 
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phase and had no concordance with ABE. These results were consistent with previous observations 9. 

Interestingly, we found that A/B compartment switching highly likely mapped to alleles adjacent to 

compartment boundaries where transition of active and inactive domains occurred 23 (Figure 1A, 

Extended Data Figure 2, Extended Data Table 8). We also discriminated the two genomes by allelic 

difference in gene expression (Bru-seq and RNA-seq) and in degree of Hi-C interactions (all expressed as 

log2 ratios between Pat and Mat) (Figure 1B).  We noticed that A/B switching did not fully characterize 

Hi-C allelic difference, e.g., Hi-C degree difference (Figure 1C). When focused on the top 10% of bins 

with the largest Hi-C degree change, we observed that bins with significant Hi-C degree difference are 

associated with the significant differential allelic expression from Bru-seq analysis (P < 0.01), but not 

correlated with allelic difference from RNA-seq analysis (P = 0.2652). These results imply that the allelic 

difference of genome structure correlated well with ABE on nascent transcription as determined by Bru-

seq analysis. Therefore, a form-function relationship is more accurately captured when comparing Hi-C 

data with nascent RNA Bru-seq data rather than with steady-state RNA-seq data.  

 

Chromosome phase portrait  

To explore genome-wide differences between the Pat and Mat genomes, we introduce the concept 

chromosome phase portrait that provides a quantitative assessment of form-function dynamics at the 

chromosome level. This concept is in the same spirit of portrait of 4D Nucleome (4DN) introduced by Liu 

et al. 28. Specifically, we introduce a 3D space, where X and Y axes represent the genomic function in 

terms of RNA-seq and Bru-seq, and Z axis characterizes the genome structural property given by the 

network connectivity (also known as Fiedler number, FN) of the chromatin contact map 26.  In general, 

the larger the value of FN is, the more well-organized a chromosome is (Online Methods). The proposed 

chromosome portrait allows us to describe each chromosome in a form-function domain, made up of 
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two groups (Pat and Mat) at three cell cycle phases (G1, S, G2/M) (Figure 2A). As can be seen, 

chromosomes occupy distinct regions in the 3D space, and their paternal and maternal counterparts 

exhibit different form-function dynamics. Such an allelic difference becomes clearer when the 

chromosome portrait is projected to the RNA-seq – Bru-seq (X-Y) plane and the Bru-seq – FN (Y-Z) plane 

(Figure 2B). Note that the horizontal and vertical position shift in the X-Y plane reflects the change of 

allelically biased transcription in terms of RNA-seq and Bru-seq, respectively, while the vertical position 

shift in the Y-Z plane gives the structure change of two homologous chromosomes. In particular, we 

observed that the portrait of Pat chr9 consisting of G1, S, and G2/M is separated from that of the Mat 

counterpart, and the underlying dominant factor contributed to the allelic difference is gene expression 

in terms of RNA-seq. By contrast, the separation of Pat and Mat at chrX is largely contributed by Bru-seq. 

The form-function difference between every two homologous chromosomes is then summarized at each 

cell cycle phase (Figure 2C). Such a difference is characterized by the 2D distance of two allele-specific 

chromatin states in the proposed chromosome portrait.  We found that chr9, 22 and X show larger 

differences than the other chromosomes. In addition to the allelic difference, the temporal form-

function change along with the cell cycle can also be exhibited by measuring the difference between two 

consecutive time points (averaged over Pat and Mat homologs) (Figure 2C). We observed that evolution 

from G1 to S yields a larger form-function difference than that from S to G2/M. Taken together, using 

form and function information simultaneously improves discriminative power for a better understanding 

of allelic biases along with the cell cycle’s evolvement. 

 

Domain organization differences between the Pat and Mat genomes 

In addition to A/B compartment partitioning, interphase chromatin is further organized into TADs that 

are conserved in vertebrates and are relatively cell-type invariant 24. We next explore allelic TADs 
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difference between the Pat and Mat genomes. Previous work showed that the boundaries of TADs 

remained stable between cell types 24, and TADs domain organizations were relatively consistent 

between the Pat and Mat genomes 9. However, allelic biases at TAD-level interactions and functional 

changes at each cell cycle phase are not well understood. Our key idea is to interpret the genome as a 

network of TADs, where network vertices correspond to TADs whose loci are presented by Dixon et al.24, 

and edge weights are given by the contact frequency between two TADs from Hi-C. The function 

associated with a TAD is characterized by transcript abundance (in RNA-seq and Bru-seq RPKM values) of 

genes contained in it. Note that the perspective from network of TADs facilitates us to extract structural 

features of genome architecture, and the centrality analysis 25 (Online Methods) helps to identify TADs 

that play key topological roles in the allelically biased genome.  

 We applied the network centrality approach (Online Methods) and principal component analysis 

(PCA) to extract 2D representation of the allelically biased form-function features from our TAD-scale 

dataset (Figure 3A), in which each of the Pat and Mat genomes are mapped to a 2D point configuration 

at each cell cycle stage. We found that eigenvector centrality, betweenness centrality, degree centrality, 

and local Fiedler vector centrality (LFVC) are the top network centrality features (see details on 

centrality measures in Online Methods) to discriminate the Pat and Mat genomes at TAD scale. We also 

noted that although the pattern of the genome in terms of TAD loci plotted in the 2D space is similar 

between the Pat and Mat genome in general (Figure 3A), positions of allele-biased TADs apparently 

shifted, e.g., TAD at Chr22 from bin 392 to bin 408 at 100Kb unit (Figure 3A). This implies that there exist 

some TADs that delineate allelic chromatin modifications and transcription. Spurred by that, we 

measured the distances between the Pat TAD and the Mat TAD (Figure 3B). Focusing on the top 10% 

TADs whose allele-specific positions change the most (Extended Data Table 9), we found that chr9, 22 

and X contain TADs with extremely large Pat-Mat difference. This result is consistent with the allelic bias 

identified by chromosome portrait shown in Figure 2C. We further investigated the structure and 
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transcription properties of the selected TADs. As can be see, these TADs were significantly different in 

allelic expression and degree centrality of Hi-C, and interestingly, they had higher gene density and were 

smaller in size than randomly selected TADs (Figure 3B right); statistical significance is found by using a 

randomization test (Online Methods). The above results indicate that our identified allelically biased 

TADs may represent form-function deviations between the Pat and Mat genomes. 

 

Seeing allelic biases from multilayer inter-gene contact networks 

Besides the TAD-scale analysis, one may ask the questions whether there exist inter-gene (namely, gene-

to-gene) contact differences between the Pat and Mat alleles, and how such differences if any evolve 

through the cell cycle phases. To incorporate the impact of cell cycle phases, we interpret the allele-

specific inter-gene contact maps as a multilayer network 29, in which each layer corresponds to a cell 

cycle phase that associates with an inter-gene contact network that is generated from Hi-C data. In our 

multilayer network analysis, we focused on the set of 564 genes that showed ABE from Bru-seq analysis, 

and were also assessed for ABE in RNA-seq analysis (Extended Data Table 5). We determined the 

Pat/Mat inter-gene network based on raw Hi-C contacts, where there existed an edge between two 

genes if the corresponding contact number is nonzero (Figure 4A). As can be seen, the number of inter-

gene contacts varied between the Pat and Mat alleles, leading to different network topologies that show 

dynamical changes during the cell cycle (Extended Data Figure 5). To distinguish the Pat allele from the 

Mat allele, we adopted the overlapping degree centrality and the multiplex participation coefficient to 

quantify the distribution of the node degree across cell cycle phases (Figure 4B and Online Methods). 

Here the former metric identifies hubs from networks, and the latter quantifies the participation of a 

gene to the different network layers, namely, cell cycle phases. With respect to the Z-score of genes’ 

overlapping degree 𝑂, we distinguished hubs (involving a large number of interactions), for which 𝑂 ≥ 2, 
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from regular nodes (non-hubs), for which 𝑂 < 2. With respect to the multiplex participation coefficient 

𝑀, we called focused genes if their degrees were concentrated at a single layer, corresponding to 𝑀 <
1

3
, 

and multiplex genes if their connected edges were homogeneously distributed across the three layers, 

corresponding to 𝑀 >
1

3
. We found that there exist genes having largely varied topological roles on Pat 

and Mat alleles. Spurred by that, we extracted the top 10% genes whose positions change the most due 

to allelic biases in the 2D plane formed by overlapping degree and multiplex participation coefficient 

(Figure 4C and Extended Data Table 10). Our analysis revealed two classes of inter-gene contacts: intra-

chromosome contact (the interacted genes belong to the same chromosome), and inter-chromosome 

contact (the interacted genes fall into different chromosomes). As we can see, four possible scenarios 

existed: a) genes with more intra-chromosome contacts on the Mat homolog (e.g., SPTBN1), b) genes 

with more inter-chromosome contacts at the Mat homolog (e.g., NCALD), c) genes with more intra-

chromosome contacts at the Pat homolog (e.g., STK17B), and d) genes with more inter-chromosome 

contacts at the Pat homolog (e.g., LEPREL1). The above results imply that the inter-gene contact 

differences reflect allelic chromatin modifications that evolve through cell cycle phases, and further 

suggest that the networked ABE genes may be transcriptionally co-regulated or co-transcribed in 

transcription factories. 

 

Cis-regulatory elements (cis-REs) variations in ABE genes 

We also evaluated a set of 216 significant ABE genes common to Bru-seq and RNA-seq for their allelic 

intra-gene form-function relationship.  We found that 72 of these ABE genes were localized in TAD 

boundary regions, which include TAD boundaries at 100Kb bin unit and their adjacent bins at both sides. 

This result is statistically significant when compared to a random sampling of the same number of non-

ABE genes (Figure 5A, Extended Data Table 11). To gain insights into the underlying mechanism for the 

biological meaning of our observed results and understand why many ABE genes are localized on TAD 
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boundary regions, we focus on analyzing cis-regulatory elements (cis-REs), including known enhancers, 

promoters, the CCCTC transcription factor (CTCF) binding sites, RAD21 (one of the subunit of cohesin) 

binding sites and SNV/indels around and within the genes. We observed that there were no significant 

differences in the densities of promoters, CTCF sites, RAD21 sites, and SNVs/indels in the genomic 

regions of the gene analyzed compared to randomly sampled genes of the same size. The one variance, 

the number of SNVs/indels in CTCF binding regions, is statistically different compared to random sets of 

genes size matched (Figure 5B left), which provide further evidence to support that CTCF is the key 

organizer for chromatin architecture 30,31. Furthermore, we derived the first two principal components of 

genes’ cis-regulatory elements, and identified a subset of genes with largely distinct cis-regulatory 

element features (Figure 5B right). We then generated intra-gene Hi-C maps (at 5kb resolution) given 

the genomic coordinates to include the gene body plus 25 kb and 5 kb sequences to the 5’ and 3’ end of 

each gene. We found that a significant portion of ABE genes showed both form-function differences 

between the Pat and Mat alleles. It is clear from the identified gene BAGALT3 (Figure 5C) that the local 

(intra-gene) allelic organization contributes to allelically biased expression. This reveals the unique roles 

of gene organization and allele preference for expression. 

 We also searched for enrichment of other transcription factor binding sites in ABE genes 

mapped to TAD boundaries. We identified 36 transcription factors (Extended Data Table 12) from a 

union of public databases that were shared among these genes. Extended data Figure 6 shows that 

pathway analysis and network-based gene set enrichment analysis generated using Ingenuity Pathway 

Analysis (IPA) 32. The consensus set of transcription factors bound to these ABE boundary genes were a 

subset of larger network that was significantly associated with “chromatin organization during cell 

development” at 1.29E-58 and “hormone regulation of the cell cycle” at 2.45E-23. Other members of 

the network include XIST (X Inactive Specific Transcript, ESR1 (estrogen receptor), AR (androgen 

receptor) and core histone complexes H3 and H4.  These results confirmed that these transcription 
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factors were involved not only in the regulation of gene transcription, but also in hormone-mediated 

chromatin re-organization during the cell cycle.  This suggests that the sequence variations might explain 

a mechanism for ABE. 

 

Discussions 

We report here on an integrated approach for the analysis of Hi-C, Bru-seq, and RNA-seq data 

for a human lymphoblastoid cell line, NA12878, whose diploid genome has been determined 33,34. We 

segregated its nucleome into the Pat and the Mat components distinguished by chromosome 

conformation and ABE at the cell phases G1, S, and G2/M determined by Hi-C, nascent RNA Bru-seq and 

steady-state RNA-seq. We showed that the difference between each parental homolog could be 

identified at the chromosome level. We found that at each cell cycle phase examined with Hi-C, switches 

between the euchromatin and heterochromatin compartment between the two genomes tended to 

occur at domain boundaries; ABE genes preferentially localized at TAD boundaries; allelic differences 

occurred in smaller sized TADs and there was a higher gene density in these TADs. We also identified 

differential inter-gene networks between the Pat and Mat loci from the analysis of form-function 

relationship between ABE genes, which might suggest that networked genes expressed from the same 

parental alleles transcriptionally co-regulated. Furthermore, we observed that the number of CTCF sites 

in ABE genes contained a higher number of sequence variations (e.g., SNVs and indels). Our results 

extend previous findings that sequence variations form the basis for allelically biased transcription factor 

binding, which in turn governs chromatin architecture and expression with allelic preference 9.  

It is known that chromatin compartmentalization into euchromatin (A) and heterochromatin (B) 

domains correlates to transcriptional active and inactive regions 23, respectively. Here we discovered 

that A/B compartment switching occurs at each cell cycle phase, and the switched alleles were not the 

same from phase to phase during the cell cycle (Extended Data Table 8). This might be an expected 
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phenomenon since the organization of the genome is dynamical during the cell cycle in proliferating 

cells. On the other hand, it is possible that the cells might be a collection from a wide range of 

unsynchronized cells sorted into corresponding cell cycle phases, especially in S phase the cells were a 

mixture from early stage to completed replication, and also in the long G1 phase. To exclude this 

possibility, it may require further analysis on similar data obtained from cells synchronized at specific 

time points during the cell cycle. One feature of our findings is that there is concordance between the 

difference of Hi-C interaction degree and ABE measured by Bru-seq (but RNA-seq). This observation 

suggests that interactions between cis-regulatory elements that drive gene expression 35 are 

instantaneous events, and such form-function relationship can be better captured by measuring nascent 

RNA rather than steady-state RNA. We also introduced a chromosome characterization method called 

phase portrait. This procedure takes form and function of each chromosome as a whole into account, so 

that the dominant component(s) from Bru-seq, RNA-seq, and Hi-C are easily identified and segregates 

the parental homologues in a 3D portrait space 28. This provides a useful tool for identifying 

chromosomes with distinct phase portrait space distribution related to form-function changes, either 

physiologically or pathologically. 

As demonstrated by our bin-level, TAD-level, and gene-level analyses, network science has 

emerged as a powerful conceptual paradigm in biological science. However, little effort has been 

involved in nucleome dynamics under an integration of form and function.  With the aid of network-

based approaches such as graph theory, network centrality, and multilayer network theory, we are able 

to study genome structure from multiple views, and facilitate quantitative integration with functional 

information. The detailed connections between network structure and function in the context of the 

nucleome can be further studied in conjunction with novel experimental approaches, and can shed light 

on the importance of considering genetic variants in understanding haplotype-resolved genomics. A 
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deeper understanding of nucleome form-function relationship will may have broad translational impact 

spanning cancer cell biology, complex disorder development, and precision medicine. 
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Online Methods 

We grew the NA12878 cells in RPMI1640 medium supplemented with 10% fetal bovine serum 

(FBS). Live cells were stained with Hoechst 33342 (Cat # B2261, Sigma-Aldrich), and then subjected to 

Fluorescence-activated cell sorting (FACS) to obtain cell fractions at the corresponding cell cycle phases 

G1, S, and G2/M. Cells used for Hi-C libraries construction, we cross-linked the cells with 1% 

formaldehyde after staining with Hoechst, neutralized the cross-linking reaction with 0.125M of glycine, 

and the cell were then subjected to FACS. Cells used for Hi-C, RNA-seq, and Bru-seq analyses were 

sorted live just after Hoechst staining. 

 

Hi-C library construction 

Hi-C library construction and Illumina sequencing using established methods 8. Briefly, Cross-linked 

chromatin was digested with the restriction enzyme MboI for 12 hours. The restriction enzyme fragment 

ends were tagged with biotin-dATP and ligated in situ. After ligation, the chromatins were de-cross-

linked, and DNA was isolated for fragmentation. DNA fragments tagged by biotin-dATP in the size range 

of 300-500 bp were pulled down for sequencing adaptor ligation and polymerase chain reaction (PCR). 

The PCR products were then sequenced on the Illumina HiSeq2500 platform in the University of 

Michigan DNA Sequencing Core facilities (Seq-Core).   

 

Alignment to NA12878 diploid genome 

NA12878 diploid genome reference data was downloaded from AlleleSeq (Rozowsky, Abyzov et al. 2011) 

server. Trimmomatic (Bolger, Lohse et al. 2014) was used to trim Illumina adapter sequences and low 

quality ends from raw reads. Trimmed reads were then aligned using Bowtie2 (Langmead and Salzberg 

2012) against paternal and maternal genomes separately, with R1 reads and R2 reads aligned separately. 

The paternal and maternal alignments were processed using the program “mergeBowtie.py” from 
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AlleleSeq package. This program filters the alignments according to these criteria: (1) if a read aligns to 

one parental genome with fewer mismatches than the other, it is assigned to this parental genome only; 

(2) if a read aligns to both genomes at the same position with the same number of mismatches, it is kept 

for both; and (3) if a read aligns to both genomes with the same number of mismatches, but at different 

positions, it is discarded. The filtered paternal and maternal alignments were converted to BED format 

and then converted to hg19 coordinates using CrossMap (Zhao, Sun et al. 2014). The hg19-to-

paternal/maternal chain files were obtained from the diploid genome reference data package and 

swapped to the other direction using program chainSwap downloaded from UCSC Genome Browser 

Utilities (Kent, Sugnet et al. 2002). BEDTools (Quinlan and Hall 2010) was used to intersect the 

alignments with all heterozygous variant positions in NA12878 obtained from the diploid genome 

reference package. Alignments were selected so that (1) either this read or its mate intersected with a 

heterozygous variant, and (2) both this read and its mate were assigned to the same parental genome. 

The alignments with mapping quality no lower than 20 were selected for Hi-C analysis. 

 We generated Hi-C data for populations at cell cycle phases G1, S, and G2/M for NA12878 cells. 

Respective to G1, S, and G2/M, we obtained 512.735, 550.288, and 615.226 million raw Hi-C sequence 

reads. On average, 62% of the raw reads were uniquely mapped to the genome of hg19 assembly. Of 

the mapped, on average we are able to identify 4.339 million paired-end reads containing heterozygous 

SNPs or short sequence variants. We used these informative reads to construct the diploid Hi-C matrices, 

consisting of haplotype-resolved Hi-C maps for the paternal Pat and maternal Mat genomes at G1, S, 

and G2/M. All Hi-C matrices were generated using the software HOMER 36. 

 

Determine mRNA abundance using RNA-seq analysis at G1, S, and G2/M 
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The live cells sorted were used for total RNA extraction. Subsequently RNA-seq library construction was 

carried out in the seq-core facility, and sequence reads of 50-base in length were generated on an 

Illumina HiSeq 2500 station.  

 

Determine allele-specific nascent transcription using Bru-seq analysis at G1, S, and G2/M 

We performed 5’-bromouridine (Bru) incorporation in live cells for 30 minutes, and the Bru-labeled cells 

were then stained on ice with Hoechst 33342 for 30 min before subjected to FACS at 4°C to isolate G1, S, 

and G2/M phase cells. The sorted cells were immediately lysed in TRizol (Cat # 15596026, ThermoFisher) 

and frozen. To isolate Bru-labeled RNA, DNAse-treated total RNA was incubated with anti-BrdU 

antibodies conjugated to magnetic beads 21. We converted the Bru-labeled transcripts from the different 

samples into cDNA libraries and they were deep-sequenced at 50-base length on an Illumina HiSeq2500 

platform.  

 

Allele specific RNA-seq and Bru-seq analyses 

We developed a pipeline for ABE analysis. The pipeline developed for estimating allele specific 

expression from RNA-seq and Bru-seq is outlined in Figure 3. The left side shows the normal flow of a 

non-allele specific RNA-seq or Bru-seq pipeline which is combined at the end with results from the allele 

specific portion of the pipeline to get abundance estimates for the maternal and paternal copy of each 

gene. 

The normal RNA-seq and Bru-seq analysis were performed as previously described (Seaman 

2017 and Paulsen 2013, respectively). Briefly, Bru-seq used Tophat (v1.3.2) to align reads without de 

novo splice junction calling after checking quality with FastQC. A custom gene annotation file was used 

in which introns are included but preference to overlapping genes is given on the basis of exon locations 
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and stranding where possible (See Paulsen 2013 for full details). Similarly, in RNA-seq data process, the 

raw reads were checked with FastQC (version 0.10.1). Tophat (version 2.0.11) and Bowtie (version 

2.1.0.0) were used to align the reads to the reference transcriptome (HG19). Cufflinks/Cuffdiff (version 

2.2.1) was used for expression quantification and differential expression analysis, using UCSC hg19.fa 

and hg19.gtf as the reference genome and transcriptome. A locally developed R script using 

CummeRbund was used to format the Cufflinks output. 

To determine allele specific transcription and gene expression through Bru-seq and RNA-seq, all 

reads were aligned using GSNAP, a SNV aware aligner (Wu 2010).  Hg19 and USCS gene annotations 

were used for the reference genome and gene annotation, respectively. The gene annotations were 

used to create the files for mapping to splice sites (used with –s option). Optional inputs to perform SNV 

aware alignment were included. Specifically, –v was used to include the list of heterozygous SNVs (ftp:// 

platgene_ro@ussd-ftp.illumina .com/2016-1.0/hg19/small _variants/NA12878/NA12878.vcf.gz) and --

use-sarray=0 was used to prevent bias against non-reference alleles. 

After alignment, the output SAM files were converted to BAM files, sorted and indexed using 

SAMTOOLs (Li 2009). SNV alleles were then quantified using bam-readcounter (D. Larson et al., 

https://github.com/ genome/bam-readcount) which was used to count the number of each base that 

was observed at each of the heterozygous SNV locations.  The statistical significance of allele specific 

expression for each SNV was then quantified by a binomial test with a null probability of 0.5. 

Allele specificity of each gene was then assessed by combining all of the SNVs in each gene. For 

RNA-seq only exonic SNVs. For Bru-seq exonic SNVs were counted first, and then non-exonic SNVs were 

counted if they were in a gene’s intronic region. Paternal and maternal abundance of each gene were 

calculated by multiplying the overall abundance estimate by the fraction of the SNV-covering reads that 

were paternal and maternal, respectively. 
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Gene level significance of allele specific expression for each gene in each cell cycle stage was 

evaluated using a negative binomial model variance estimation is improved through a local regression 

relating variance to the mean (https://www.mathworks.com/help/bioinfo/ref/nbintest.html). The same 

method was used to determine differential gene expression between the overall abundance in different 

cell cycle stages. ANOVA was used on the log2 RPKM values to determine what genes changed over the 

cell cycles as well as between maternal and paternal alleles. 

RNA-seq and Bru-seq were binned into 100kb and 1 Mb bins to match the resolution of the Hi-C 

data. This was done separately using the maternal and paternal expression estimates by adding the 

expression of the genes in a bin and when necessary dividing a gene’s counts according the proportion 

of the bin in each gene. About 75% of genes could not be assessed for allele specific expression due to a 

lack of SNVs in the gene body. When binning RNA-seq and Bru-seq, an assumption of 50% maternal and 

paternal expression was made for these genes to avoid losing that data. 

From the 23277 Refseq genes interrogated, we identified 6795 transcripts containing 

informative heterozygous SNVs or indels. There were 5058 informative genes with allele read counts ≥5, 

which is the minimum number of counts that we use to reliably estimate ABE. Since the variables 

consisting of three cell cycle phases and two parental origins, we performed two-way ANOVA on the log2 

transformed RPKM values for the 5080 genes to identify ABE genes. This model identified 1762 (34.8% 

of informative) genes (FDR < 0.05) that showed significant ABE (932 paternal allele high and 830 

maternal allele high).  Of the 1762 genes, 713 were also cell cycle regulated. In terms of genome 

distribution, on average there were 7.34% ABE genes among the chromosomes, chr8 has the lowest 

number of ABE genes (5.45%), and chr22 has the highest percentage (11.17%). The set of ABE genes 

consists of 7.4% of the total 23277 genes interrogates genes in our current work, which is consistent 

with the fractions of ABE genes among human tissues studied 18. 
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Identification of ABE genes from Bru-seq analysis 

Bru-seq detects nascent transcripts containing both exons and introns. Sequence reads from both exons 

and introns containing informative SNVs are used to evaluate ABE. We identified 266,899 informative 

SNVs from the Bru-seq data, while only 65,676 such SNVs from RNA-seq data. However, in the Bru-seq 

data, many SNVs show low read coverage depth to be able to be statistically evaluated compared to that 

in the RNA-seq data. We require allelic count ≥ 5 to estimate ABE for nascent transcripts as done for the 

RNA-seq data. This criterion found that there were similar numbers of informative SNVs (19,394 and 

19,998) in the RNA-seq and Bru-seq data, respectively. Inclusion of the intron SNVS makes the number 

of informative genes to 6,168 for ABE estimation.  

We observed that there were relative large variances between samples in the Bru-seq data set. 

Due to the increased variability between replicates in the Bru-seq data compared to the RNA-seq data, 

instead of using two-ANOVA, we used another method to identify ABE genes. In which we subtracted 

the expression values of each gene in the maternal samples from those in the paternal samples. We 

then identified 563 genes with ABE in G1, 594 in S, and 610 in G2/M, which yield the top 5% largest 

differences in allelic expression. There were 1039 unique genes from G1, S, and G2/M combined. 

 

Transcription factor binding sites analysis 

Transcription factor binding to boundary genes was defined using the union of data from public data 

sources, including the FactorBook Motif pipeline 37, ENCODE project consortium 33 and the NIH roadmap 

epigenomics mapping consortium 38. Gene set enrichment analysis was performed using Panther 

Amigo2 gene ontology 39 and network-based enrichment using Ingenuity Pathway Analysis® (Qiagen 

GmBH) 32. 
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Statistical significance via randomization test  

A randomization test builds the shape of null hypothesis (namely, the random background distribution) 

by resampling the observed data. In our analysis, unless specified otherwise, this sampling procedure 

was repeated 1000 times, and a rank-based P value is then calculated for the right or left-tailed event. 

For example, the background distribution in in Figure 2C is generated by calculating the average gene 

expression for randomly selected Hi-C bins. And the probability of the right-tailed event at our 

observation under the background distribution yields the P value. Similar statistical tests were used in 

Figure 4 and 6.  

 

Network connectivity measure: Fiedler number 

We regard a Hi-C contact map as a graph, where graph vertices correspond to biological units, such as 

bins, TADs, and genes, and edge weights are given by the interaction frequency between two vertices. 

More formally, let 𝐺 = (𝑉, 𝐸)  represent an undirected graph where 𝑉  is the set of nodes with 

cardinality |𝑉| = 𝑁, and 𝐸 ⊆ {1,2, … , 𝑁} × {1,2, … , 𝑁} denotes an edge set. The Hi-C matrix 𝑯 can be 

interpreted as an adjacency matrix of 𝐺 by removing its diagonal elements. And the corresponding 

graph Laplacian matrix is given by 𝑳 = 𝑫 −𝑯, or its normalized version 𝑳 = 𝑰 − 𝑫−
1

2𝑯𝑫−
1

2, where 𝑫 is 

the degree matrix 𝑫 = 𝑑𝑖𝑎𝑔(𝑯𝟏), 𝟏 is the vector of all ones, and 𝑑𝑖𝑎𝑔(𝒙) signifies the diagonal matrix 

with the diagonal vector 𝒙. It is known from spectral graph theory 40 that Fiedler number of 𝐺 is given by 

the second smallest eigenvalue of the graph Laplacian 𝑳. The magnitude of this value reflects how well 

connected the overall network is.  
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Network centrality analysis 

A network/graph centrality measure is a quantity that evaluates the influence of each node to the   

network, and thus provide essential topological characteristics of nodes 25 (Extended Data Figure 3).  In 

this paper, we extract structural features from Hi-C contact maps by using centrality measures discussed 

in 28: degree centrality, eigenvector centrality, local Fiedler vector centrality (LFVC), closeness, 

betweenness, local clustering coefficient (LCC), weight of multi-hop walks, and distance to reference 

nodes. Here a nodal degree is defined as the sum of edge weights (namely, Hi-C contacts) associated 

with each node. The eigenvector centrality is defined as the principal eigenvector of the adjacency 

matrix corresponding to its largest eigenvalue, which measures a node’s influence to the entire network 

based on its neighbors’ influence. LFVC evaluates the structural importance of a node regarding the 

network connectivity. Closeness is defined by the shortest-path distance of a node to all other nodes, 

which implies how far one node is from the geometrical center of a network. Betweenness is the 

fraction of the number of shortest paths passing through a node relative to the total number of shortest 

paths in a connected network. A node with high betweenness has the potential to disconnect the 

network if it is removed. LCC of a node quantifies how close its neighbors are to being a complete graph. 

The h-hop walk weight of a node is given by the sum of edge weights associated with paths departing 

from this node and traversing through h edges. Given nodes of interest, we can explore network 

distances of each node to the reference nodes as structural features. The use of network distances helps 

to avoid ambiguity of centrality measures due to the possibly high structural symmetry in networks. 

 

Overlapping degree and multiplex participation coefficient in multilayer networks 

In our proposed multilayer network, genes (namely, ‘nodes’) are connected by both intra-layer and 

inter-layer connections (namely, ‘edges’), where the intra-layer connection corresponds to the contact 
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frequency between genes, and the inter-layer connection gives a visual link between a gene and its 

counterpart at two cell cycle phases (Extended Data Figure 4). The overlapping degree and the multiplex 

participation coefficient are introduced to study how the nodal degree is distributed in a multilayer 

network. Let 𝑀 denote a multilayer network with 𝑁 nodes and 𝐿 layers, the degree of node 𝑖 on layer 𝛼 

is given by 𝑘𝑖
(𝛼)

= [𝑘𝑖
(1)
, … , 𝑘𝑖

(𝐿)
]. The overlapping degree of node 𝑖 is then given by 𝑜𝑖 = ∑ 𝑘𝑖

(𝛼)
𝛼 . It can 

be used to identify hubs from the network.  However, one node that is a hub in one layer may only have 

few connections in another layer. Therefore, it is desired to quantify the participation of a node to the 

various layers. A suitable quantity to describe the distribution of edges connected to node 𝑖 is the 

multiplex participation coefficient 41. 𝑃𝑖 =
𝐿

𝐿−1
[1 − ∑ (

𝑘𝑖
(𝛼)

𝑜𝑖
)
2

𝛼 ] . Here 𝑃𝑖  takes values in [0,1]  and 

measures whether or not the degree of node 𝑖 is uniformly distributed among the 𝐿 layers. If 𝑃𝑖 = 1, 

then node 𝑖 has exactly the same number of edges on each layer. If 𝑃𝑖 = 0, all the edges of node 𝑖 are 

concentrated in just one layer. The multiplex participation coefficient helps to capture the nodal 

dynamics in multilayer networks. 
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Figure legends 

Figure 1. Identification of chromatin compartment switching regions and correlation of switched 

regions with gene expression change between the Pat and Mat genomes. 

A: Illustration of chromatin compartment switching between Pat and Mat on chr3. A/B compartments 

are plotted on top of each Hi-C map, with TAD boundary locations. A zoomed-in view of a switched 

region is shown on the top of the G1 Hi-C plot. The red square in Hi-C matrices represent the maximum 

number of contacts after applying the Hi-C normalization method 26.   

B: Characterization of form-function difference between homologous chr3. Here Pat or Mat represents 

the Pat-specific or Mat-specific Hi-C contact map and gene expression.  In line plots, the X-axes of plots 

provide 100kb bin indices, and Y-axes correspond to log2(Pat/Mat) of RNA-seq or Bru-seq RPKM values, 

and in matrix plots, the X- and Y- axis are the genomic coordinates of chr3, and dot color represents the 

absolute value of log2(Pat/Mat) of normalized Hi-C contacts.  

C: Left shows the probability density function (PDF) of Hi-C contact allelic differences, given by the 

absolute values of log2(Pat/Mat), where Pat or Mat presents the column wise mean of Hi-C contact 

matrices for Pat allele or Mat allele. And the two times standard variation (𝜎) away from the mean (𝜇) of 

Hi-C contact allelic difference is the threshold to extract Hi-C bins (3.7%) with the largest allelic 

differences. Middle shows the locations of selected bins at chr3 (bar with read point head) and 

corresponding Bru-seq and RNA-seq difference between Pat and Mat. Right shows statistical significant 

test (Online Methods) of Hi-C difference correlation with gene expression differences in the same bins. 

Note that Bins with significant Hi-C magnitude difference yield significant Bru-seq allelic difference with 

P < 0.01.  
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Figure 2. Phase portrait of chromosomes of the Pat and Mat genomes.  

A:  Phase portrait of chromosomes at different cell cycle phases. Each chromosome is described by an 

allele-specific form-function domain (3D), made up of 3 cell cycle stages (G1, S, and G2/M) for the Pat 

and Mat homologs, respectively. We designate axis X as a measure of function given by z-scores of root 

mean square (RMS) of RNA-seq RPKM values, the axis Y as a measure of function in terms of z-scores of 

RMS of Bru-seq RPKM values, and the axis Z as a measure of form in terms of z-scores of the 

chromosome connectivity captured by Fiedler number. The filled square marker represents the cell cycle 

phase G1, and the other unfilled markers represent M and G2/M, respectively. The separation between 

the Pat portrait and the Mat counterpart implies the structural and functional difference.  

B: 2D projection of 3D phase portrait of Pat and Mat chr9 and X.  

Top: Allelically biased chromatin transcription on RNA-seq – Bru-seq plane.  

Bottom:  Allelically biased chromatin form-function state on Bru-seq – FN plane.  

C: Form-function difference between the Pat and Mat homologs, given by their Euclidean distance in the 

phase portrait. 

D: Form-function difference between cell cycle stages: G1 to S, and S to G2/M, given by the Euclidean 

distance at two consecutive cell cycle stages averaged over Pat and Mat homologs for all chromosomes. 

 

Figure 3. Allelically biased form-function dynamics of TADs. 

A: 2D representations (PCA) of form-function features of allelically biased TADs at different cell cycle 

stages. Left: Principal component (PC) analysis of form-function features of 2290 TADs in the whole 
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genome. The circle (or star) marker represents a TAD corresponding to the Pat (or Mat) genome. At each 

cell cycle stage, TADs with the top three largest Pat-Mat distance are marked. 

Right: Contribution of function-form features on each of PCs.  In PC1 and PC2, RNA-seq and Bru-seq 

describe the function of allele-specific genome, eigenvector centrality, betweenness centrality, degree 

centrality and local Fiedler vector centrality (LFVC) to characterize the topological properties of Hi-C 

contact maps at TAD scale. A feature score with larger magnitude implies a larger contribution of the 

corresponding feature to PCA. 

B:  Characteristics of TADs with top 10% paternal-maternal difference.  

Left-top: Pat-Mat difference versus TAD index, where the former is quantified by the Euclidean distance 

of allele-specific TADs on the PC1-PC2 plane. Left-bottom: Example of selected TADs on chr9. 

Right: Statistical significance of form-function differences (top three plots) and genome characteristics 

(TAD size and gene density in bottom two plots) of the selected TADs.  

 

Figure 4. Evolution of allele-specific inter-gene contact network over cell cycle phases.  

A: A representative allele-specific inter-gene network at G2/M, where nodes correspond to ABE genes 

(See Extended Data Table 5), and edges represent the presence of contacts between two genes. The 

positions of nodes are determined by a layout engine in MATLAB (dolayout) for a bio-graph object 

(biograph) generated by gene-level Hi-C.  

B: Characteristics of allelically biased inter-gene contact network, which include the overlapping degree 

(O) and the multiplex participation coefficient (M) (Online Methods). The larger the value of O, the more 

contacts a gene has during all cell cycle stages. Furthermore, the larger the value of M, the more equally 
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distributed is the participation of a gene to all cell cycle stages. In the O-M plane, we divide genes into 4 

clusters by using the K-means algorithm.  

C: Intra- and inter-chromosome contacts of the top 10% genes with the largest paternal-maternal 

difference (ranked by their position shift in the O-M plane).  

Top: Summary of allele-specific intra- and inter-chromosome contacts of the selected genes. 

Bottom: Evolution of allele-specific inter-gene contact for gene STK17B and LEPREL1.  

 

Figure 5. Characterization of intra-gene features for selected ABE genes. 

A: Chromosome distribution of the selected ABE genes (left), and a large portion of genes tend to 

localize on TAD boundary regions (right). Those regions contain TAD boundaries with +/- 1 bin (100 kb 

resolution) away from them.    

B: Comparison of Cis-REs (i.e., promoter, enhancer, CFCT and RAD21 binding site) and SNV/indel 

distribution in these elements for genes on TAD boundary regions against randomly picked genes (left); 

Identification of a subset of genes distinct from other genes by using PCA and Kmeans (right top), and 

genes with higher density of cis-regulatory elements or containing more SNVs/indels are plotted and 

identified by solid lines and points (right bottom).   

C: A composite view of the ABE gene B4GALT3. On the top left panel, genomic regions containing 

enhancers, promoter, CTCF sites, and RAD21 sites (cis-regulatory element, cis-RE) are indicated with 

color-coded lines; SNV/indel sites are shown with vertical bars; pointed by an arrow is genotype of an 

indel common to the promoter, an enhancer, and a CTCF/RAD21 binding region. Left bottom two panels 

show RPKM values of the Pat and Mat alleles measure by Bru-seq and RNA-seq at G1, S, and G2/M.  The 

Hi-C interactions formed around this indel region disappeared in the Mat genome (right bottom 3 panels) 

compared to the Pat genome (right top 3 panels), the red box denote the genomic coordinates of 
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B4GALT3, blue dots are Hi-C paired-end reads (interactions), and green shaded regions highlight 

predicted enhancers.   
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Main Figures 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Extended Data  

 

 

Extended Data Figure 1. Overview of gene expression for NA12878 cell populations at cell cycle phases 

G1, S, and G2/M.   

A. Bulk data analysis RNA-seq data shows a set of cell cycle regulated genes changing expression levels 

in different cell cycle stages (RNA-seq data, red color indicates increased expression, and green shows 

reduced expression at a given cell cycle phase compared to other phases).  

B. Bru-seq measurement of the nascent transcript of CCNB1 at G1, S, and G2/M. The Y-axis indicates 

RPKM values, and the X-axis shows mapped Bru-seq reads along the gene body coordinates. 
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Extended Data Figure 2.  A/B switching regions over the entire genome.  

(A) Percentage of bins that show changes in A/B compartment status between alleles versus 

chromosome number for all cell cycle phases, only 0.2 – 2.7% of the genome having A/B switch.  (B) A/B 

compartment pattern of chromosome 3 for each cell cycle stage. (C) A/B compartment pattern of 

chromosome 8 for each cell cycle stage. 
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Extended Data Figure 3. Illustration of network centrality features.  

Example network is built on the inter-gene contact map at G1 for 57 allelically biased genes within 

ch1~8. The considered centrality measures include eigenvector centrality, degree centrality, 

betweenness centrality, and local Fiedler vector centrality (LFVC). Genes with the top 5 largest centrality 

values are highlighted in magenta. Different centrality methods evaluate the nodal importance in the 

network from different perspectives.  
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Extended Data Figure 4. Schematic illustration of multilayer network representation of inter-gene 

contact map.  

Each node represents a gene shown in Extended Data Figure 4, and each layer represents a cell cycle 

phase. The inter-layer connection (dash edge) associates one gene to its counterpart in layers before 

and after the present layer. The multilayer network representation models the temporal network as an 

unification.  
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Extended Data Figure 5. Allele-specific inter-gene contact networks during the cell cycle. 
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Extended Data Figure 6.  Pathway containing the consensus transcription factor subset (bolded font) 

bound to the ABE genes. Pathway generated using IPA® 32 using filters and the grow function. Additional 

members of this pathway are not in bold font, and include AR (androgen receptor), CTCF (CCCTC-binding 

factor), ESR1 (estrogen receptor 1), HIST1H1C (histone cluster 1 H1 family member c), HIST3H3 (histone 

cluster 3 H3), HIST4H4 (histone cluster 4 H4), the mediator complex, Meis1 (Meis homeobox 1), RAD21 

(RAD21 cohesin complex component) and XIST (X inactive specific transcript (non-protein coding).  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/201715doi: bioRxiv preprint 

https://doi.org/10.1101/201715
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

45 
 

Extended Data Table Titles 

 

Extended Data Table 1, List of significant genes from Bulk RNA-seq pair-wise analysis 

 

Extended Data Table 2, List of significant genes from Bulk Bru-seq pair-wise analysis 

 

Extended Data Table 3, Common significant genes Bulk Bru-seq and RNA-seq pair-wise analysis 

 

Extended Data Table 4, Functional annotation of significant genes identified from RNA-seq analysis 

 

Extended Data Table 5, List of ABE genes from RNA-seq analysis 

 

Extended Data Table 6, List of ABE genes from Bru-seq analysis 

 

Extended Data Table 7, Mono-allelic genes identified from RNA-seq analysis 

 

Extended Data Table 8, Genome locations of A/B compartment switching 

 

Extended Data Table 9, Top 10% TADs with allelic difference between the Pat and Mat genomes 

  

Extended Data Table 10, Top 10% genes with inter-gene Hi-C contact difference between the Pat and 

Mat genomes 

 

Extended Data Table 11, List of genes mapped near TAD boundaries 

 

Extended Data Table 12, Transcription factor with binding site enriched in ABE genes mapped to TAD 

boundaries. 
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