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Abstract

Despite great efforts over several decades, our best models of primary visual cortex (V1) still predict
neural responses quite poorly when probed with natural stimuli, highlighting our limited understanding
of the nonlinear computations in V1. At the same time, recent advances in machine learning have
shown that deep neural networks can learn highly nonlinear functions for visual information processing.
Two approaches based on deep learning have recently been successfully applied to neural data: transfer
learning for predicting neural activity in higher areas of the primate ventral stream and data-driven
models to predict retina and V1 neural activity of mice. However, so far there exists no comparison
between the two approaches and neither of them has been used to model the early primate visual
system. Here, we test the ability of both approaches to predict neural responses to natural images in
V1 of awake monkeys. We found that both deep learning approaches outperformed classical linear-
nonlinear and wavelet-based feature representations building on existing V1 encoding theories. On
our dataset, transfer learning and data-driven models performed similarly, while the data-driven
model employed a much simpler architecture. Thus, multi-layer CNNs set the new state of the art for
predicting neural responses to natural images in primate V1. Having such good predictive in-silico
models opens the door for quantitative studies of yet unknown nonlinear computations in V1 without
being limited by the available experimental time.
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1 Introduction1

An essential step towards understanding visual processing in the brain is building models that accurately2

predict neural responses to arbitrary stimuli (Carandini et al., 2005). Primary visual cortex (V1) has been3

a strong focus of sensory neuroscience ever since Hubel and Wiesel’s seminal studies demonstrated that4

neurons in V1 respond selectively to distinct image features like local orientation and contrast (Hubel and5

Wiesel, 1959, 1968). Our current standard model of V1 is based on linear-nonlinear models (LN) (Jones6

and Palmer, 1987; Heeger, 1992) and energy models (Adelson and Bergen, 1985) to explain simple and7

complex cells, respectively. While these simple models explain responses to simple stimuli such as gratings8

reasonably well, they fail to account for neural responses to natural stimuli (Olshausen and Field, 2005;9

Talebi and Baker, 2012).10

Simple LN models fail because natural stimuli unlock nonlinear subunits that cannot be captured by a11

linear transformation of the stimulus. To address this issue, LN-LN cascade models have been proposed,12

which either learn (convolutional) subunits (Rust et al., 2005; Touryan et al., 2005; Vintch et al., 2015)13

or use handcrafted wavelet representations (Willmore et al., 2008). These cascade models outperform14

simple LN models, but they currently do not capture the full range of nonlinearities observed in V1,15

such as gain control mechanisms and potentially other not-yet-understood nonlinear response properties.16

Because experimental time is limited, LN-LN models have to be designed carefully to keep the number of17

parameters tractable, limiting their expressiveness to energy models for direction-selective and complex18

cells.19

Recent advances in machine learning and computer vision using deep neural networks (‘deep learning’)20

have opened a new door to learn much more complex non-linear models of neural responses. We identify21

two main approaches that we refer to as goal-driven, and data-driven.22

The goal-driven approach is based on transfer learning (Donahue et al., 2014), a paradigm that23

has been very successful in deep learning. Convolutional neural networks (CNNs) have reached human-24

level performance on visual tasks like object classification by training on more than one million images25

(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016; Huang et al., 2016). These CNNs26

optimized for visual tasks have proven extremely useful as nonlinear feature spaces for tasks where less27

labeled data is available (e.g. Kümmerer et al. 2014). This transfer to a new task is achieved by (linearly)28

reading out the network’s internal representations of the input. Yamins, DiCarlo and colleagues showed29

that using deep networks trained on large-scale object recognition as nonlinear feature spaces for neural30

system identification works remarkably well in higher areas of the ventral stream, such as V4 and IT31

(Yamins et al., 2014).32

The deep data-driven approach is based on fitting all model parameters directly to neural data (Antolík33

et al., 2016; Batty et al., 2016; McIntosh et al., 2016; Klindt et al., 2017). The critical advance of deep34

models in neural system identification is that they can have many more parameters than classical LN35

cascade models discussed above, because they exploit computational similarities between different neurons.36

While previous approaches treated each neuron as an individual multivariate regression problem, modern37

CNN-based approaches learn one model for an entire population of neurons, thereby exploiting two key38

properties of local neural circuits: (1) they share the same presynaptic circuitry (for V1: retina and LGN)39

and (2) many neurons perform essentially the same computation, but at different locations (topographic40

organization, implemented by convolutional weight sharing).41

While both, goal-driven and data-driven approaches have been shown to outperform LN models, it42

is currently unknown how their performance compares. Moreover, neither approach has been evaluated43
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in monkey V1 (see Kindel et al. 2017 for concurrent work). Here, we address this, and show that both44

methods perform similarly well outperforming classic LN cascade models by a substantial margin, offering45

an alternative to study unknown V1 nonlinear properties.46

2 Materials and Methods47

2.1 Electrophysiological recordings48

We performed non-chronic recordings from two adult male rhesus monkeys (aged 8 and 11; weighing 10.9kg49

and 12.1kg) with a 32-channel linear silicon probe (NeuroNexus V1x32-Edge-10mm-60-177). The surgical50

methods and recording protocol were described previously (Denfield et al., 2017). Briefly, form-specific51

titanium recording chambers and headposts were implanted under full anesthesia and aseptic conditions.52

The bone was originally left intact, and only prior to recordings small trephinations (2 mm) were made over53

medial primary visual cortex at eccentricities ranging from 1.4 to 3.0 degrees of visual angle. Recordings54

were done within two weeks of each trephination. Probes were lowered using a Narishige Microdrive55

(MO-97) and a guide tube to penetrate the dura. Care was taken lower the probe slowly, not to penetrate56

the cortex with the guide tube and to minimize tissue compression (for a detailed description of the57

procedure, see Denfield et al. 2017). All experimental procedures complied with guidelines of the NIH and58

were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee (permit59

number: AN-4367).60

2.2 Data acquisition and spike sorting61

Electrophysiological data were collected continuously as broadband signal (0.5–16,000 Hz) digitized at 2462

bits as described previously (Ecker et al., 2010). Our spike sorting methods are based on (Ecker et al. 2014,63

code available at https://github.com/aecker/moksm), but with adaptations to the novel type of silicon64

probe as described previously (Denfield et al., 2017). Briefly, we split the linear array of 32 channels into65

14 groups of 6 adjacent channels (with a stride of two), which we treated as virtual electrodes for spike66

detection and sorting. Spikes were detected when channel signals crossed a threshold of five times the67

standard deviation of the noise. After spike alignment, we extracted the first three principal components68

of each channel, resulting in an 18-dimensional feature space used for spike sorting. We fitted a Kalman69

filter mixture model (Calabrese and Paninski, 2011; Shan et al., 2017) to track waveform drift typical for70

non-chronic recordings. The shape of each cluster was modeled with a multivariate t-distribution (df = 5)71

with a ridge regularized covariance matrix. The number of clusters was determined based on a penalized72

average likelihood with a constant cost per additional cluster (Ecker et al., 2014). Subsequently, we used a73

custom graphical user interface to manually verify single-unit isolation by assessing the stability of the74

units (based on drifts and health of the cells throughout the session), identifying a refractory period, and75

inspecting the scatter plots of the pairs of channel principal components.76

2.3 Visual stimulation and eye tracking77

Visual stimuli were rendered by a dedicated graphics workstation and displayed on a CRT monitor with a78

100 Hz refresh rate. The monitors were gamma corrected to have a linear luminance response profile. A79

camera-based, custom-built eye tracking system verified that monkeys maintained fixation within ∼ 0.4280

degrees around the target. Offline analysis showed that monkeys typically fixated much more accurately.81
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The monkeys were trained to fixate on a red target of ∼ 0.15 degrees in the middle of the screen. After82

they maintained fixation for 300 ms, a visual stimulus appeared. If the monkeys fixated throughout the83

entire stimulus period, they received a drop of juice at the end of the trial.84

2.4 Receptive field mapping85

At the beginning of each session, we first mapped receptive fields. We used a sparse random dot stimulus86

for receptive field mapping. A single dot of size 0.12 degrees of visual field was presented on a uniform87

gray background, changing location and color (black or white) randomly every 30 ms. Each trial lasted 288

seconds. We obtained multi-unit receptive field profiles for every channel using reverse correlation. We89

then estimated the population receptive field location by fitting a 2D Gaussian to the spike-triggered90

average across channels at the time lag that maximizes the signal-to-noise-ratio. We subsequently placed91

our natural image stimulus at this location.92

2.5 Natural image stimulus93

We used an approach similar to Freeman et al. 2013. We generated stimuli with different degrees of94

“naturalness” by capturing different levels of higher order correlations from a local to a global scale. This95

was achieved by using a parametric model for texture synthesis proposed by Gatys et al. 2015 that uses96

the pre-trained feature maps of VGG-19 (Simonyan and Zisserman, 2014). Briefly, the algorithm consists97

of analysis and synthesis stages. During analysis, the summary statistics —given by the correlation matrix98

between feature maps (also, Gram matrix)— are computed for each layer in the net. During synthesis, by99

starting with a random white noise image, pixels are pushed (usually via gradient descend) in a direction100

that leads to Gram matrices matching those of the original image.101

For visual stimuli, we randomly selected and gray-scaled 1450 images from ImageNet (Russakovsky et102

al., 2015). Additionally, for every image, we synthesized four new types of images using the parametric103

texture model (Gatys et al., 2015). For displaying and further analyses, we cropped the central 140 pixels104

of each image. For texture synthesis, we matched all the Gram matrices cumulatively up to conv1, conv2105

and conv3 and conv4. (e.g. the conv3 model matches Gram matrices for layers conv1_1, conv2_1 and106

conv3_1 of VGG-19). Figure 1A shows three example images with their respective texturized versions.107

The entire data set contains 1450× 5 = 7250 images (original plus synthesized). During each trial, 29108

images were displayed, each for 60 ms, with no blanks in between (Figure 1 B). Each image was masked109

by a circular mask with a diameter of 2 degrees and a soft fade-out starting at a diameter of 1 degree:110

m(r) =

1 if r < 1

0.5 cos(π(r − 1)) + 0.5 otherwise

Images were randomized such that consecutive images were not of the same type or synthesized from111

the same image. A full pass through the dataset took 250 successful trials, after which it was traversed112

again in a new random order. Images were repeated between one and four times, depending on how many113

trials the monkeys completed in each session.114

2.6 GLM with pre-trained CNN features115

Our proposed model consists of two parts: feature extraction and a generalized linear model (GLM; Fig.116

3). The features are the output maps of intermediate convolutional layers of VGG-19 (Simonyan and117
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Zisserman, 2014) to a stimulus image. We fit a separate GLM for each convolutional layer of VGG-19.118

We used a normalized version of VGG-19, where the weights have been rescaled such that the average119

activation of each feature map over a large set of natural images is equal to one (Gatys et al., 2016). The120

original 140 px images were first cropped to omit the 30 px border and then downsampled by a factor of121

two, resulting in images of size 40 px. The output of the convolutional layers is a set of K feature maps122

(denoted as depth in Fig. 3).123

The GLM consists of linear fully connected weights wijk for each neuron that compute a dot product124

with the input feature maps ψijk(x), an exponential nonlinearity, and Poisson noise. Here, i and j index125

space, while k indexes feature maps. The weights have the same dimensionality as the feature maps. The126

spiking rate of a given neuron r will follow:127

log r(x) =
∑

qijkwijk + b (1)

Additionally, three regularization terms were applied to the weights:128

1. Sparsity: Most weights need to be zero since we expect the spatial pooling to be localized. We use129

the L1 norm of the weights:130

Lsparse = λsparse
∑
|wijk| (2)

2. Spatial Smoothness: Together with sparseness, spatial smoothness encourages spatial locality by131

imposing continual regular changes in space. We computed this by an L2 penalty on the Laplacian132

of the weights:133

Llaplace = λlaplace

√∑
(w:,:,k ∗ L)2ij , L =


0 −1 0

−1 4 −1

0 −1 0

 (3)

3. Group Sparsity: Encourages our model to pool from a reduced set of feature maps to explain each134

neuron’s responses:135

Lgroup = λgroup
∑
k

√
w2

ijk (4)

Considering the recorded image-response as (x, y) for one neuron, the resulting loss function is given136

by:137

L = −
∑

y log r(x) + r(x) + Lsparse + Llaplace + Lgroup (5)

We fit the model by minimizing the loss using the Adam optimizer (Kingma and Ba, 2014) on a training138

set consisting of 80% of the data, and reported performance on the remaining 20%. We cross-validated139

the parameters λsparse, λlap, λgroup for each neuron independently by performing a grid search over four140

logarithmically spaced values for each parameter. The validation was done on 20% of the training data.141

The same split of data for training, validation, and testing was used to fit all models in this study.142
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2.7 Convolutional neural network model143

We followed the results of Klindt et al. 2017 and use their best-performing architecture that obtained144

state-of-the-art performance on a public dataset (Antolík et al., 2016). As our VGG-based model, this145

model also consisted of convolutional feature extraction followed by a GLM, the difference being that here146

the convolutional feature space was learned from neural data instead of having been trained on object147

recognition. The feature extraction architecture consisted of three convolutional layers with filters of148

receptive field size 13× 13 px for the first layer and 3× 3 px for the subsequent layers. Each layer had 32149

feature maps (Fig. 5). As in the original publication (Klindt et al., 2017) we regularized the convolutional150

filters by imposing smoothness constraints on the first layer and group sparseness on the second and third.151

A notable difference to our VGG-based GLM is that here the readout weights are factorized in space and152

feature maps:153

wijk = uijvk

where uij is a spatial mask and vk a set of feature pooling weights. We used an exponential linear unit154

(ELU; Clevert et al. 2015) as the output nonlinearity.155

2.8 Other baseline models156

The performance of the two convolutional models was compared with two alternative models: a regularized157

linear nonlinear Poisson model (LNP; Simoncelli et al. 2004) and the Berkeley wavelet transform (BWT)158

linearized model (Willmore et al., 2008). Images were down-sampled to 40 px as in our proposed model.159

The LNP model was fitted using two regularization terms: smoothness and sparseness. Their corre-160

sponding parameters were cross-validated independently for each cell as above.161

The BWT model (Willmore et al., 2008, 2010) uses a set of scaled, oriented, frequency- and phase-162

shifted wavelets to decompose the original image. We used the publicly available implementation from163

StrfLab (Willmore et al., 2008) and we set the temporal size and temporal velocities to one. We picked the164

following parameters for the Gabor wavelet bank that lead to best performance on test set in order for it165

to be competitive with the other methods: 16 evenly spaced orientations, 5 frequency divisions between166

0.5 and 6 cycles per degree, 0.5 ratio between the Gaussian window and spatial frequency, 2.5 standard167

deviation of the Gaussian window of spatial separation of each wavelet. A log link and Poisson noise were168

used to fit the regression weights on top of the feature space.169

2.9 Performance evaluation170

We measured the performance of all models with the fraction of explainable variance explained FEV . That171

is, the ratio between the variance accounted for by the model (variance explained) and the explainable172

variance. The explainable variance is lower than the total variance, because observation noise prevents173

even a perfect model from accounting for all variance. We estimated the amount of observation noise174

by averaging the variance across images of responses to the same stimulus: Ej [V ari[yi|xj ]]. If our model175

predicted an average response of ŷ, then FEV is computed as in equation 6 for the observed spike counts176

y.177

FEV = 1− V ar[ŷ − y]− Ei [V arj [y]]

V ar[y]− Ei [V arj [y]]
(6)
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3 Results178

We measured the spiking activity of populations of neurons in V1 of two awake, fixating rhesus macaques179

using a 32-channel linear array spanning all cortical layers (Fig. 2A). We isolated 307 neurons in 23180

sessions. Our stimuli consisted of synthesized images that capture different levels of high order correlations181

present in natural images (see Methods). Each stimulus was shown for 60ms, with no in-between blanks,182

and was centered on the mapped population receptive field of the neurons. The images were scaled to183

have the same contrast.184

The entire set of stimuli has 7250 unique images and was shown one to four times for each session. We185

used only sessions with two or more repetitions, and applied a selection criterion to the neurons based186

on how much of their variability was induced by the stimulus. We estimated the observation noise by187

averaging the variance of responses to repeated presentations of the images. By subtracting the average188

trial-to-trial variance to repeated presentations from the total variance of the responses for every neuron,189

we obtain an estimate of the explainable variance. We discarded neurons with a ratio of explainable-to-total190

variance smaller than 0.15, yielding 166 isolated neurons recorded in 17 sessions. 51 neurons belonged to191

sessions with two repetitions and 115 to those with four.192

193

conv1 conv2 conv3 conv4 original

Time

0 - 60ms

60 - 120ms

A

B

Figure 1. Stimulus paradigm A.
Classes of images shown in the experiment.
We used grayscale natural images (labeled
‘original’) from the ImageNet dataset (Rus-
sakovsky et al., 2015) along with textures
synthesized from these images using the
texture synthesis algorithm described by
Gatys et al. 2015. Each row shows four
synthesized versions of three example orig-
inal images using different convolutional
layers (see Materials and Methods for de-
tails). Lower convolutional layers capture
more local statistics compared to higher
ones. B. Stimulus sequence. In each trial,
we showed a randomized sequence of im-
ages (each displayed for 60 ms covering 2
degrees of visual angle) centered on the re-
ceptive fields of the recorded neurons while
the monkey sustained fixation on a target.
The images were masked with a circular
mask with cosine fadeout.

3.1 Generalized linear model with pre-trained CNN features194

We used the network VGG-19 (Simonyan and Zisserman, 2014) to extract a nonlinear feature space for a195

generalized linear model (GLM). VGG-19 is a CNN trained on the large image classification task ImageNet196

(ILSVRC2012) that takes an RGB image as input and infers the class of the dominant object in the image197

(among 1000 possible classes). Its architecture consists of a hierarchy of linear-nonlinear transformations198
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Figure 2. V1 electrophysiolog-
ical responses. A. Isolated single-
unit activity. We performed acute
recordings with a 32-channel, lin-
ear array (NeuroNexus V1x32-Edge-
10mm-60-177, layout shown in the
left) to record in primary visual cor-
tex of two awake, fixating macaques.
The channel mean-waveform foot-
prints of the spiking activity of 23
well-isolated neurons in one exam-
ple session are shown in the cen-
tral larger panel. The upper panel
shows color-matched autocorrelo-
grams. B. Peri-stimulus time his-
tograms (PSTH) of four example
neurons from A. Spike counts where
binned with t = 1 ms, aligned to
the onset of each stimulus image,
and averaged over trials. The 60 ms
interval where the image was dis-
played is shown in red. We ignored
the temporal profile of the response
and extracted spike counts for each
image on the 40–100 ms interval af-
ter image onset (shown in light gray).
C. The Response Triggered Average
(RTA) calculated by reverse correla-
tion of the extracted responses.

(layers) where the input is spatially convolved with a set of filters and then passed through a rectifying199

nonlinearity (Fig. 3). The output of such layers produces a number of feature maps that serve as input for200

the next layer. Additionally, the network has pooling layers where the feature maps are down-sampled by201

taking the local maximum values of neighboring pixels. There are 16 convolutional layers that can be202

grouped into five groups with 2, 2, 4, 4, 4 convolutional layers and 64, 128, 256, 512, 512 output feature203

maps, respectively, and a pooling layer in between each group.204

For each convolutional layer of VGG-19, we fit a GLM that uses this layer’s representation of the205

stimulus as a nonlinear feature space. To do so, we fed all images in our stimulus set through the network206

and extracted the feature maps of every convolutional layer (Fig. 3). We then learned a set of linear weights207

followed by an exponential nonlinearity to predict each neuron’s response (Fig. 3). Since the convolutional208

feature spaces are larger than the number of pixels in the image, regularization of the readout weights209

is particularly important. We used three regularization terms for the weights. (1) Sparseness, because210

receptive fields are localized, we expect most weights to be zero; (2) smoothness, to encourage a regular211

spatial continuity of the receptive fields; and (3) group sparsity, which encourages the model to pool212

only from a small number of feature maps. We fit this model for each convolutional layer of VGG-19 to213

maximize the likelihood of the predicted response under a Poisson noise model and cross-validated over214

the three regularization terms for each cell independently.215

To measure our model’s performance and compare it to others, we computed the fraction of explain-216
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able variance explained (FEV ). This metric, which ranges from 0 to 1, measures what fraction of the217

stimulus-driven response is explained by the model, ignoring the unexplainable trial-to-trial variability in218

the neurons’ responses (for details see Methods).219

220

max pooling

convolution + ReLU

feature maps Linear readouts

N

N

Nonlinearity + noise V1 responses
Neuron 1

Neuron N

40x40x3

40x40x64

20x20x128

10x10x256
5x5x512 3x3x512

conv3_1 selected layer

VGG19

Figure 3. Our proposed model For each of the 16 convolutional layers of VGG-19 (Simonyan and Zisserman,
2014), we extract the output feature maps of the images shown to the monkey. We then train for each neuron a
Generalized Linear Model with Poisson noise and log link on top of this representation to predict the observed
spike counts from monkey V1. The linear readouts have the same size as the feature maps and their resulting
dot product is fed to the exponential nonlinearity. The learning objective was Maximum Likelihood with three
regularization terms on the weights for sparseness, spatial smoothness, and group sparseness (see Methods). This
facilitated identifying a reduced set of feature maps to pool from, as well as the location of each neuron’s receptive
field.

3.2 Intermediate layers of VGG best predict V1 responses221

The model based on the fifth (out of sixteen) layers’ features (called ‘conv3_1’, Fig. 3) best predicted222

neuronal responses to novel images not seen during training (Fig. 4). This model predicted on average223

50.1% of the explainable variance. In contrast, performance for the very first layer was poor (31% FEV ),224

but increased monotonically up to conv3_1. Afterwards, the performance again decreased continually up225

the hierarchy (Fig. 4). These results followed our intuition that early to intermediate processing stages in226

a hierarchical model should match primary visual cortex, given that V1 is the third processing stage in227

the visual hierarchy after the retina and LGN.228

One potential concern is that the performance curve may be related more to receptive field size229

of the units –the size of the input region which a unit depends on– than to actual nonlinear response230

properties. Each VGG layer convolves its inputs with a 3 × 3 px kernel, leading to growing receptive231

field sizes along the hierarchy. For example, the receptive field size of units in the first layer (‘conv1_1’)232
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is 3 × 3 px (which covers only 0.08 degrees of visual angle). Because nonlinear features are extracted233

at the scale of the units’ receptive field, it may be important to match receptive field sizes between234

each VGG layer and V1. To address this concern, we resized the input image for each layer model235

such that the receptive field size of units in the layer that provided the feature space roughly matched236

2 degrees of visual angle (the field of view that V1 neurons were stimulated with). In this way, the237

image patch each VGG unit saw was equivalent across layers. This procedure was done for the first nine238

convolutional layers as performance was already steadily decreasing. The resulting performance across239

layers agreed with the previous results (conv3_1 was still the best performing layer; Fig 4, dashed gray line).240

241

Figure 4. Model performance on test set Average fraction of explainable variance explained (FEV ) on test
set. Conv3_1 shows on average the highest predictive performance for both models trained with a fixed input size
for all layers, and rescaled inputs to match units’ receptive field sizes across layers.

3.3 Data-driven CNN model and GLM with pre-trained CNN set state of242

the art243

We next asked how the predictive performance of our VGG-based model compared to other quantitative244

models of monkey V1. We therefore compared it to a classical linear-nonlinear Poisson (LNP) model, a245

wavelet-based model and a multi-layer CNN fit directly to the data.246

We regularized the LNP model by selecting for smoothness and sparseness of the linear filters via247

cross-validation (see Methods). The wavelet-based model uses the Berkeley Wavelet Transform (BWT,248

Willmore et al. 2008, 2010), a handcrafted nonlinear feature space based on orthogonal wavelets that249

resemble Gabor functions. This model is the current state of the art in the neural prediction challenge250

for monkey V1 responses to natural images (http://neuralprediction.berkeley.edu). Because recent251

work has shown that multi-layer convolutional neural networks can be fit directly to neural data on natural252

image datasets (Antolík et al., 2016; Kindel et al., 2017; Klindt et al., 2017), we also fit a three-layer CNN253

identical to that of Klindt et al. 2017. This model is illustrated in Fig. 5. For more details on the models,254

see Methods.255

256

We compared the models for a number of cells from a representative recording (Fig. 6A) and found a257

diversity of cells. For simple-like cells – cells for which the LNP had a high predictive power – all models258
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Input stimulus convolutional layers

40x40
28x28x32 28x28x32 28x28x32

28x28x32
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3x3 3x3

Linear readouts

N

N

Nonlinearity + noise V1 responses

Neuron 1

Neuron N

Figure 5. Convolutional neural network architecture. Following the approach of Klindt et al. 2017, we
trained a three-layer convolutional neural network to produce a feature space fed to a GLM-like model. In contrast
to the VGG-based model, both feature space and readout weights are trained only on the neural data.

performed approximately equally. However, the nonlinear feature spaces were able to better represent259

nonlinear (e.g. complex) cells, for which the BWT had a much larger performance than LNP (Fig. 6A).260

The two deep learning approaches outperformed the other models of V1 (Fig. 6B, D). The LNP261

model achieved 17% FEV , the Berkeley Wavelet Transform model 39% FEV . The performance of the262

VGG-based model was comparable to that of the CNN trained directly on the data (Fig. 6C, D). On263

average, the VGG-based model yielded on average a slightly higher performance (50.1% FEV ) than264

the data-driven CNN (46% FEV ), but this difference was not significant (p = 0.09, t-test). In addition,265

a more extensive search of hyperparameters of the data-driven CNN architecture might lead to better266

performance.267

4 Discussion268

We fit two models based on convolutional neural networks to V1 responses to natural stimuli in awake,269

fixating monkeys: a goal-driven model, which uses the representations learned by a CNN trained on270

object recognition (VGG), and a data-driven model, which learns both the convolutional and readout271

parameters using stimulus-response pairs with multiple neurons simultaneously. Both approaches yielded272

comparable performance and outperformed the widely used LNP (Simoncelli et al., 2004) and the wavelet-273

decomposition model (BWT; Willmore et al. 2008), which held the previous state of the art in prediction274

of V1 responses to natural images. For the goal-driven model, we found that features of intermediate275

layers of VGG (layer conv3_1) explain V1 best.276

The most successful system identification approaches to date all build on feature spaces shared by all277

neurons. There are three main ways in which this feature space can be chosen. First, handcrafted features278

have been used, which are based on existing neural encoding theories (e.g. BWT, Willmore et al. 2008; or279

HMAX, Riesenhuber and Poggio 1999). Second, more recent studies have learned shared feature spaces by280

jointly fitting the stimulus-response of all neurons in the dataset (Antolík et al., 2016; Batty et al., 2016;281

Kindel et al., 2017; Klindt et al., 2017; McIntosh et al., 2016). Third, inspired by the success of transfer282

learning in the machine learning community, researchers have borrowed representations optimized to solve283

a visual task like object recognition and used them to predict responses in high-level areas of the ventral284

stream (Yamins et al., 2014). We compared these three approaches quantitatively and showed that the285

last two have comparable and the highest predictive performance on our monkey V1 dataset.286

This result has two important implications that we want to briefly discuss. First, the fact that deep287

models substantially outperformed the handcrafted feature spaces (BWT) shows that we still do not fully288

understand the computations performed by V1 – or at least that there still does not exist an explicit model289

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/201764doi: bioRxiv preprint 

https://doi.org/10.1101/201764
http://creativecommons.org/licenses/by/4.0/


A

B

C D

Figure 6. Deep models are the new state of the art. A Randomly selected cells. The normalized explainable
variance (oracle) per cell is shown in gray. For each cell from left to right, the variance explained of: regularized
LNP (Simoncelli et al., 2004), BWT (Willmore et al., 2008), three-layer CNN trained on neural responses, and
VGG conv3_1 model (ours). B CNN and VGG conv3_1 models outperform for most cells LNP and BWT. Black
line denotes the identity. The performance is given in FEV (see Methods). C. VGG conv3_1 features perform
slightly better than the three-layer CNN. D. Average performance of the four models given in mean fraction of
explainable variance explained (FEV ).

applicable to natural images. Second, an architecture optimized for fitting the neural data (CNN model)290

did not outperform a feature space trained on a different task (object recognition). On the one hand, this291

result underscores the power of transfer learning and stresses the relevance of nonlinearities learned by292

VGG for predicting neural responses along the ventral visual stream. On the other hand, the fact that293

the data-driven model reached comparable performance with a shallower and less complex architecture,294

shows that the VGG feature space is not identical to that of V1. If it was, the VGG-based model should295

have outperformed the data-driven approach. Note, though, that these two approaches are each at one296

end of a spectrum: a hybrid approach, where a pre-trained feature space is used as initialization and297

subsequently fine-tuned may provide the right balance of inductive bias and flexibility, perhaps leading to298

even higher performance than either the data-driven or transfer-learning-based approaches. Moreover, it is299

possible that increasing the entropy of the stimulus set or the number of neurons (or both) could improve300

performance of purely data-driven models. We leave these questions for future work.301

Our work contributes to a growing body of research where goal-driven deep learning models (Yamins302

and DiCarlo, 2016) have shown unprecedented predictive performance of higher areas of the visual stream303

(Cadieu et al., 2014; Yamins et al., 2014), and a hierarchical correspondence between deep networks304

and the ventral stream (Güçlü and van Gerven, 2015; Cichy et al., 2016). Studies based on fMRI have305
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established a correspondence between early layers of CNNs trained on object recognition and V1 (Güçlü306

and van Gerven, 2015; Kriegeskorte, 2015), somewhat in contrast to our findings that intermediate layers307

performed best. However, these studies are based on fMRI data, which is an average of many neurons’308

responses and therefore possibly more linear than individual neurons’ responses. Moreover, they used a309

shallower and less well performing CNN (AlexNet, Krizhevsky et al. 2012), which has larger, Gabor-shaped310

receptive fields in its early layers.311

Interestingly, the features of multiple VGG layers performed similarly well, with only a shallow peak312

at layer conv3_1 (Fig. 4). This result is to be expected, as it has been observed that in deep neural313

networks the features of subsequent convolutional layers are highly redundant. That is, one can predict314

the feature maps in any given layer very well by those of a previous layer. More recent state-of-the-art315

architectures for object recognition avoid this type of redundancy by enabling ‘shortcut’ connections that316

skip layers. These skip connections encourage each layer to extract ‘new’ information instead of mainly317

carrying along information that has already been extracted. Recent examples for such architectures are318

Densely Connected CNNs (Huang et al., 2016), and the residual paths of Residual Networks (He et al.,319

2016). Some of these novel architectures hold more similarities with known cortical circuitry. They may320

be exploited in the future to extract features for neural system identification in the same way and could321

potentially be more interpretable.322

Although deep models capture nonlinearities that go beyond complex cells, they lack a minimalistic323

description that could be meaningfully linked to biology. However, their success over other models makes324

them good candidates for an in-silico investigation. The advantage of having a good predictive in-silico325

model is that, unlike a real brain, one can probe it with completely arbitrary stimuli and run unlimited326

experiments. Thus, we argue that the chances of finding simple descriptions of the nonlinear computations327

performed by the brain are much larger when probing a highly predictive model than when measuring328

activity in the brain directly without a predictive model.329
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