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Abstract 

A spate of recent work demonstrates that humans seek to avoid the expenditure of cognitive 

effort, much like physical effort or economic resources. Less is clear, however, about the 

circumstances dictating how and when people decide to expend cognitive effort. Here we adopt a 

popular theory of opportunity costs and response vigor and to elucidate this question. This 

account, grounded in Reinforcement Learning, formalizes a trade-off between two costs: the 

harder work assumed necessary to emit faster actions and the opportunity cost inherent in acting 

more slowly (i.e., the delay that results to the next reward and subsequent rewards). Recent work 

reveals that the opportunity cost of time—operationalized as the average reward rate per unit 

time, theorized to be signaled by tonic dopamine levels, modulates the speed with which a 

person responds in a simple discrimination tasks. We extend this framework to cognitive effort 

in a diverse range of cognitive tasks, for which 1) the amount of cognitive effort demanded from 

the task varies from trial to trial and 2) the putative expenditure of cognitive effort holds 

measureable consequences in terms of accuracy and response time. In the domains of cognitive 

control, perceptual decision-making, and task-switching, we found that subjects tuned their level 

of effort exertion in accordance with the experienced average reward rate: when the opportunity 

cost of time was high, subjects made more errors and responded more quickly, which we 

interpret as a withdrawal of cognitive effort. That is, expenditure of cognitive effort appeared to 

be modulated by the opportunity cost of time. Further, and consistent with our account, the 

strength of this modulation was predicted by individual differences in efficacy of cognitive 

control. Taken together, our results elucidate the circumstances dictating how and when people 

expend cognitive effort.  
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Introduction 

"There is no expedient to which a man will not resort to avoid the real labor of thinking." 

-- Sir Joshua Reynolds 

Many human behaviors necessitate a trade-off between effort and reward: how a person 

performs in a given task is due, in part, to his or her decision to expend cognitive effort in the 

service of obtaining rewards. A critical constraint underlying this trade-off is the inherently 

limited information-processing of the “central executive”, (Navon & Gopher, 1979; Norman & 

Shallice, 1986), which necessitates that cognitive processing resources be allocated in 

accordance with our behavioral goals. Accordingly, the question of when and why people decide 

to expend—or withhold—cognitive effort has been the subject of vigorous examination in recent 

literature (Boksem & Tops, 2008; Boureau, Sokol-Hessner, & Daw, 2015; Inzlicht, Schmeichel, 

& Macrae, 2014; Kool, McGuire, Rosen, & Botvinick, 2010; Kurzban, Duckworth, Kable, & 

Myers, 2013; Westbrook & Braver, 2016).  

Much of this work takes the perspective that the level of processing adopted by an 

individual at a given moment—in, say, a response conflict task—is chosen strategically on the 

basis of a cost-benefit analysis (Botvinick & Braver, 2015; Boureau et al., 2015; Gratton, Coles, 

& Donchin, 1992; Sandra & Otto, 2018; Shenhav et al., 2017).  However, although people 

consistently and systematically appear to avoid cognitive demands (Dreisbach & Fischer, 2012; 

Kool et al., 2010; Schouppe, Demanet, Boehler, Ridderinkhof, & Notebaert, 2014; Westbrook, 

Kester, & Braver, 2013),  a key difficulty in achieving a decision-theoretic understanding of 

mental effort allocation is quantifying, or even defining, the benefits and especially the costs of 

cognitively effortful strategies. Highlighting this question, a number of lines of research find that 
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even when cognitive demands are held constant over time, an individual’s exertion of flexible 

control over behavior fluctuates considerably over time—and these shifts thought to arise—in 

part—from changes in the perceived costs and benefits of engaging the central executive 

(Botvinick & Braver, 2015; Braver, Reynolds, & Donaldson, 2003; Kahneman, 1973). Although 

the nature of cognitive costs (for instance, whether or not cognitive effort depletes some 

objective resource, like energy) is unclear, we here focus on one subtype of cost – opportunity 

cost – whose existence and properties can be inferred from first principles.  In this respect, a key, 

but untested, proposal is that internal cost signals represent, in whole or part, opportunity costs, 

owing to the limited nature of cognitive resources—that is,  occupying cognitive resources in the 

service of a particular goal, for a particular time, foregoes the benefits that could be obtained by 

using them for some other goal (Botvinick & Braver, 2015; Kurzban et al., 2013; Shenhav et al., 

2017). Up to now, there is little empirical evidence supporting the idea that an individual’s 

moment-to-moment allocation of cognitive resources are directed by opportunity costs. Here we 

provide a novel test of this idea, revealing how the outlay of cognitive effort across three diverse 

task paradigms is modulated by the opportunity cost of time.  

To do this, we leverage an influential model of opportunity costs rooted in reinforcement 

learning  (Niv, Daw, Joel, & Dayan, 2007), which has been previously applied to physical effort, 

to investigate the effects of opportunity costs on the allocation of cognitive effort. In its original 

formulation, this model formalizes a trade-off between two costs: the harder physical work 

assumed necessary to emit faster actions (“vigor”) and the opportunity cost inherent in acting 

more slowly. Thus, the opportunity cost of time—which in many settings equals the long-run 

average reward rate of the environment—should dictate response speed: when delayed action is 

more expensive, actions should be made more quickly because more rewards would be foregone 
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by slow responses (Niv et al., 2007). Supporting this idea empirically, Guitart-Masip et al. 

(2011) and Beierholm et al. (2013) demonstrate how people adjust their response speeds in 

simple detection tasks depending on the prevailing reward rate, in accordance with the 

opportunity cost of time (Beierholm et al., 2013; Guitart-Masip, Beierholm, Dolan, Duzel, & 

Dayan, 2011). However, the reaction-time tasks employed by these studies were, by design, too 

simple to detect changes in response accuracy, or its relationship with response speed.  

In a series of experiments, we test the idea that reliance upon cognitively demanding 

strategies should analogously shift with changing opportunity costs: when time is perceived to be 

expensive, we should shift our effort engagement so as to use quicker and less accurate, 

presumably cognitively inexpensive strategies to make decisions or solve tasks (Westbrook & 

Braver, 2016). Here, we draw upon Niv et al.’s formalization of response vigor to examine 

whether increasing the opportunity cost of time prompts a withdrawal of cognitive effort. Just as 

in the case of physical vigor, if the long-run average reward rate is higher in a cognitive task, 

then more reward can be obtained by moving on to the next trial sooner, which should shift the 

reward-rate-optimizing solution to accept a higher error rate (thus lower reward in a trial) by 

finishing more quickly. Such an effect, due to the opportunity cost of time, is predicted whether 

or not we assume that more or less cognitive engagement also carries additional, objective (e.g., 

energetic) costs. Following this computational framework and the empirical work it stemmed 

(Beierholm et al., 2013, 2013), we manipulated the average reward rate of the environment—and 

thereby the cost, in terms of foregone potential rewards, for acting slowly—while participants 

performed three distinct, but well-characterized cognitive tasks. For example, in simple response 

conflict paradigms, successfully overriding inappropriate, stimulus-driven responses requires 

engagement of effortful, ‘top-down’ control (Westbrook & Braver, 2015). Critically, in the tasks 
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considered here, withholding cognitive effort (e.g., responding faster) carries a performance 

consequence in terms of response accuracy (and consequently, obtained rewards).  

Accordingly, we reasoned that opportunity cost-evoked withdrawal of effort investment 

could manifest in simultaneous changes to speed and accuracy because disengagement of 

cognitive control is thought to decrease the quality of information accumulation (Cohen, Dunbar, 

& McClelland, 1990; Egner & Hirsch, 2005). At the same time, as the opportunity cost of time is 

demonstrated to speed responding overall (Beierholm et al., 2013; Guitart-Masip et al., 2011). 

Given that, in many cognitive task domains, fast responses incur larger error rates—a 

phenomenon known as the speed-accuracy tradeoff—a further important question is to what 

extent the pattern of changes we observe arises from some sort of strategic resource optimization 

against a fixed speed-accuracy tradeoff profile inherent to the task. An alternative possibility—

also suggested by Niv et al. (2007) for the case of physical vigor—is that the general logic of 

opportunity costs is hardwired as a sort of reflexive or Pavlovian strategy, which automatically 

evokes faster responding in high average reward circumstances; even when this would ultimately 

be counterproductive (Boureau & Dayan, 2011). Across our three experiments we find some 

hints supporting for the latter perspective. First, we find that higher opportunity costs evoke 

faster, less accurate performance over and above what can be explained from the fixed speed-

accuracy tradeoff as deduced at a fixed level of average reward. Second, we see analogous 

reward-related changes even in a task for which slower responding does not (holding average 

reward fixed) confer any accuracy benefit. We tentatively interpret these effects as reflecting 

more or less investment of cognitive effort, per se, so as to change (rather than merely optimize 

along) a fixed, task-imposed speed-accuracy tradeoff.  
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Experiment 1: Perceptual Decision Task 

We first sought to examine how the opportunity cost of time modulates the accumulation of 

information in a perceptual decision task, which itself costly in terms of time and presumably 

cognitive effort (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012). Indeed, 

explicit time pressure alters the effort-accuracy tradeoff in multi-attribute and perceptual 

decision-making (Forstmann, Dutilh, et al., 2008; Payne, 1982) such that perceived time scarcity 

engenders decision strategies that utilize less information in order to make faster decisions.  

Methods 

Participants 

We recruited 37 participants on Amazon Mechanical Turk (AMT), an online crowd-

sourcing tool, to perform the two-alternative forced choice perceptual decision-making task. 

AMT allows experimenters to post small jobs to be performed anonymously by “workers” for a 

small amount of compensation (Crump, McDonnell, & Gureckis, 2013). Participants were all US 

residents, paid a fixed amount ($2 USD) plus a bonus contingent on their decision task 

performance, ranging from $1-3 USD. We excluded the data of 5 subjects who missed more than 

20 response deadlines in either the calibration phase or the main task, yielding 32 subjects 

remaining in our subsequent analyses. The protocol for all the experiments was approved by the  

committee on human subjects at NYU, where the authors were affiliated when the experiments 

were conducted. 

Calibration Phase 

Before performing the main perceptual task, each subject underwent a calibration session 

to determine the stimulus set used in the main 2AFC task. Each trial, two squares were presented 

on screen, each of which were filled with 10x10 array of asterisks (*) in a 40-point font. The 
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“reference” square always contained 50 dots, while the “variable” square contained of 20, 39, 43, 

47, 53, 57, 61, or 80 dots (Figure 1A).  Dots were placed randomly in the array for each square 

on each trial. The order of stimuli was randomly determined and evenly distributed except the 

extreme stimuli (20 and 80 points), which occurred on 3.2% of trials. Each trial, the two boxes 

were displayed simultaneously, and subjects had 600ms to choose which of the two squares 

contained more dots using the ‘E’ and ‘I’ buttons on the keyboard. To encourage quick 

responding 10% of these trials had deadlines of 500ms (Guitart-Masip et al., 2011). The stimuli 

remained on screen for 500ms following a response, and then feedback (“CORRECT” or 

“WRONG”) was displayed on screen for 1000ms. If no response was detected, the message 

“TOO SLOW” was displayed for 1000ms. Following feedback, a fixation cross was displayed 

with an inter-trial interval (ITI) ranging from 750 to 1250ms (uniformly distributed). Subjects 

completed 125 of these calibration trials.  

Stimulus sets used in the main phase were individually determined for each subject from 

online fits to the calibration data. Specifically, we identified stimulus strengths that led to 

“bigger” response probabilities of 0.23, 0.44, 0.56, 0.77, and 0.95 by fitting a cumulative normal 

psychometric function to each participants’ response data (Fleming, Maloney, & Daw, 2013; see 

Figure 1B). We recovered two parameters for each subjects: the mean of the cumulative normal 

distribution, which can be interpreted as response bias, and the standard deviation of the 

distribution, interpreted as the slope of the psychometric function. The average best-fitting values 

of bias and slope parameters were 0.56 (SD=1.48) and 11.69 (SD=7.05), respectively. 

Main Phase 

For each subject, dot stimuli strengths were randomly and uniformly sampled from the 

stimulus strengths selected in the calibration phase. Rewards available were determined 
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randomly using a Gaussian random walk with standard deviation 30 and reflecting boundaries at 

5 and 95 cents (Figure 1C). At the outset of each trial, subjects were presented visually with a 

number representing the reward on offer that trial, ranging from 1–100 cents (Figure 1A), which 

lasted from 750-1000ms, after which the same trial timing was used as in the calibration phase, 

with the exception that on correct trials, the feedback displayed was the reward obtained (e.g. 

“you win 9¢”) for 1000ms. Subjects completed as many dots trials as they could in the time limit 

of 20 min. Trials completed ranged from 152 to 312 trials (M=220). After completing the main 

phase, subjects were then paid a bonus proportional to their earnings in the task. 

 Regression Analyses 

In the following analyses, focusing on the main phase of the experiment, we excluded the 

first 10 trials in order to allow subjects to acclimate to the procedure and excluded outlier trials 

with RTs greater than 3 standard deviations from each subject’s mean RT (< 2% of trials for all 

subjects). Following previous work we calculated average reward, , in units of reward/sec, 

using the following update rule  (Constantino & Daw, 2015): 

����� � �1 � ������ 	 �1 � �1 � ���� 
�

�
 

where r is the obtained reward on trial t, τ is the time elapsed since the last update (which 

depends, critically, on each trial’s RT and ITI), and α is a learning rate parameter. Following 

previous work (Beierholm et al., 2013; Guitart-Masip et al., 2011) we fit a single learning rate to 

the RTs of the entire sample of subjects using a nonlinear optimization routine. However, rather 

than combine all subjects’ RTs and run a single regression, we accomplished this by running a 

separate regression for each subject finding the learning rate that minimizes the total error across 

the group. Specifically, the subject-level RT regression included the following terms: 

r
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where RTs were log-transformed and z-scored, R is the reward available that trial, stim is the 

dots stimulus strength (expressed as the absolute value of the difference between the reference 

stimulus and the variable stimulus), missed is a binary variable representing whether the subject 

missed the previous trial’s response deadline, trial_num is a linear term representing trial number 

(to capture speeding over time), and resp_side represents whether a left or right-hand response 

was made (to capture simple response bias).  

We found a best-fitting α of 0.0031. Note that this learning rate is smaller than that 

estimated in previous work (Beierholm et al., 2013) because the learning rule used here 

calculates average reward in unit of rewards per second rather than rewards per trial. We found 

that this formulation of average reward per unit time— which accords closely with the 

theoretical work on average reward and vigor (Niv et al., 2007)—explains RT variance 

considerably better than the average reward per trial. 

 To assess the influence of average reward upon RTs at the group level, we conducted 

mixed-effects regressions using the lme4 package (Pinheiro & Bates, 2000) in the R 

programming language, using the same predictors as the individual-level regression outlined 

above. All terms estimated at the fixed-effects level and as random effects at the subject level. 

Continuously-valued variables were inputted as within-subject z-scores. To examine accuracy 

we estimated a logistic regression with the same predictors but with the subject’s response 

(correct/error) as the outcome variable each. Significance values were computed using the car 

package in R (Fox & Weisberg, 2011). 

Because the average reward predictor variable is determined by the free parameter α, 

which was itself estimated using a regression (resulting in the loss of a degree of freedom), it was 

RT = r + R + stim + missed + ITI + trial _ num + resp _ side
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critical to demonstrate that the regression results were not biased by the free parameter. To do 

this, we employed a cross-validation procedure whereby we fit the learning rate (using the 

procedure described above) to one half of the subjects, finding a best-fitting learning rate 

comparable to the full sample (α = 0.0026), and performed the regressions (as described above) 

on the remaining half the subjects. We recovered significant effects of average reward on both 

RT (β=-0.015, SE=0.0069, p=0.026) and accuracy (β=-0.221, SE=0.0069, p<0.001)—mirroring 

the main results—suggesting that the estimation of the learning rate does not bias our estimation 

of average reward effects. 

Drift Diffusion Model 

We used hierarchical Bayesian estimation of drift diffusion model parameters, which has 

the advantage that fits to individual subjects are constrained by the group-level distribution 

(Frank et al., 2015; Wiecki, Sofer, & Frank, 2013). Hierarchical drift diffusion models (HDDMs) 

are particularly useful for estimating decision parameters—via regressions within the 

hierarchical model—that are allowed to vary from one trial to the next as a function of 

psychological or neural variables that vary from trial-to-trial. In particular, our regression was 

specified such that on each trial t, the threshold a and the drift rate v are influenced by both 

average reward (as calculated above) and reward on offer R: 

� �  
� 	 
��� 	 
�� 

� �  
� 	 
��� 	 
�� 

Estimation of the joint distribution of the parameters of the HDDM was performed using 

the hierarchical Bayesian implementation of the HDDM toolbox (version 0.6.1) via Markov 

Chain Monte Carlo techniques. Following previous work (Frank et al., 2015), each DDM 

parameter for each subject and condition was modeled to be distributed according to a normal 
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(for real-valued parameters), or a Gamma (for positive-valued parameters), centered around the 

group mean with group variance. Prior distributions for each parameter were informed by several 

studies reporting best-fitting DDM parameters recovered on a range of decision-making tasks 

(Wiecki et al., 2013). Ten thousand samples were drawn from this model, discarding the first 

2,000 samples for ‘burn-in.’ 

Results 

In the perceptual decision task, subjects made a series of judgments about which of two 

squares contained more dots (Figure 1A), following the task design of Fleming et al. ( 2014). 

Importantly, one square always contained 50 (out of 100 possible) dots, while the other square 

contained a variable amount of dots, which allowed us to examine subjects’ accuracy as a 

function of relative stimulus strength—here, the difference in number of dots between the two 

squares (Figure 1B). As subjects were free to make responses as quickly or as slowly as they 

wanted (up to a deadline), they could control the amount of evidence that they used to make a 

perceptual decision.  Following a calibration phase, which ensured that test stimuli generated 

comparable accuracy levels across subjects (Fleming et al., 2013), subjects then made a series of 

perceptual decisions for the chance of receiving a monetary reward whose magnitude was shown 

at the beginning of each trial (Figure 1A).  

 To manipulate the perceived opportunity cost of time, we induced random fluctuations in 

these available rewards, which—in conjunction with an individual subject’s history of response 

times (RTs) and errors—yields a time-varying empirical average reward rate per second (Figure 

1 C and D). As participants had a fixed amount of time in which to complete as many trials as 

possible, the prevailing average reward rate effectively imposes an “opportunity cost of time.”  

Thus, when the average reward rate is high (and thus, the opportunity cost of time is high), we 
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expected participants to make faster responses, following previous findings (Beierholm et al., 

2013; Guitart-Masip et al., 2011)—but at the expense of accuracy because less perceptual 

evidence can be accumulated during fast responses. 

 We then examined perceptual decision-making accuracy and response times (RTs) as a 

function of opportunity costs using a tertile split on experienced average reward rate, further 

grouping trials by difficulty of perceptual discrimination based on stimulus strength (yielding 

“easy” and “difficult” trials). We found that when the average reward rate was high, subjects 

made less accurate (Figure 2A) and faster (Figure 2B) responses compares to when the average 

reward rate was low. Following (Guitart-Masip et al., 2011) we estimated mixed-effects 

regressions (with a number of other predictor variables including reward currently ‘on offer’ and  

stimulus strength) to quantify the continuous effect of average reward rate upon accuracy and 

RTs (coefficient estimates reported in Tables 1 and 2). While reward ‘on offer’ exerted no 

significant effects on RT or accuracy, the average reward rate significantly sped RTs (β=-0.009, 

SE=0.004, p<.05) —corroborating previous findings (Beierholm et al., 2013; Guitart-Masip et 

al., 2011)—and here, also significantly reduced accuracy (β=-0.144, SE=0.033, p<.0001; 

Figures 2C and D).  

To elucidate in greater detail how opportunity costs influence task behavior, we jointly fit 

subjects’ choices and RTs with a drift diffusion model (DDM), a widely employed mathematical 

model of evidence accumulation, which has successfully explained choice behavior (both 

accuracy and RT) and neurophysiological measures in a variety of perceptual decision tasks 

(Gold & Shadlen, 2007; Ratcliff & Rouder, 1998). DDMs assume that evidence for one response 

over the other accumulates over time until the integrated evidence passes a threshold and a 

choice is made. The threshold parameter governs the speed-accuracy tradeoff between the 
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benefits of accumulating more information with the cost of taking more time to reach a decision; 

we therefore hypothesized that the a high average reward would decrease the threshold of 

evidence accumulation. The DDM also allows us to explore whether evidence threshold changes 

are simultaneously accompanied by a change in quality of information accumulated (Rae, 

Heathcote, Donkin, Averell, & Brown, 2014). 

Using hierarchical Bayesian model-fitting (Wiecki et al., 2013), we quantified, on a trial-

by-trial basis, how the opportunity cost of time alters a subjects’ decision threshold. We found 

that the average reward rate, but not reward ‘on offer’ or stimulus strength, significantly reduced 

decision thresholds (Figure 3A)—that is, as average reward rate increased, responses were more 

likely to have a faster, more skewed RT distribution and have a higher probability of erroneous 

response, which is corroborated by the RTs and accuracies we found (Figures 2A and B). Indeed, 

the hypothesis that people should set evidence thresholds in accordance with the average reward 

rate has been difficult to demonstrate experimentally, by manipulating trial timing (i.e. delays; 

(Bogacz, Hu, Holmes, & Cohen, 2010). Here, people strategically modulate their evidence 

thresholds on a trial-to-trial basis in accordance with average reward rate, demonstrating the 

potency of this average reward manipulation. 

A second parameter of the model controls the rate of evidence accumulation or “drift 

rate.” This parameter normally captures factors such as objective signal strength (Palmer, Huk, & 

Shadlen, 2005)—here, the difference in the number of dots between the two stimuli—and indeed 

increased with stimulus strength here (Figure 3B). Unexpectedly, we found that the drift rate was 

also negatively influenced by the average reward rate, suggesting that the opportunity cost of 

time did not solely induce a threshold adjustment (e.g., a change along a fixed speed-accuracy 

tradeoff), but could reflect a shift in the way evidence is processed (Dambacher & Hübner, 
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2015). This might represent a decreased investment of cognitive effort per se when opportunity 

costs are high, over and above the change in behavior attributable to decreased time investment 

(i.e., lower threshold), in line with the idea that evidence accumulation is itself cognitively 

effortful (Drugowitsch et al., 2012; Mathias et al., 2017).  

In a subsequent experiment we more directly demonstrate that cognitive effort—beyond 

accumulation of perceptual evidence—can be modulated by these opportunity costs, using a 

classic cognitive control task (Forstmann, van den Wildenberg, & Ridderinkhof, 2008; Simon, 

1990) for which participants need to inhibit pre-potent responses to respond accurately. 

 

Experiment 2: Simon Task 

Methods 

Participants 

We recruited 69 participants on AMT who paid a fixed amount ($2 USD) plus a bonus 

contingent on their decision task performance, ranging from $1-3 USD. We excluded the data of 

19 subjects who missed more than 20 response deadlines in either the preliminary phase or the 

main task, yielding 50 subjects remaining in our subsequent analyses. 

Preliminary Phase 

 Before the main phase of the task subjects competed a preliminary task phase to gain 

familiarity with the task. Our version of the Simon task used blue and green circles as stimuli. 

The blue or green color was either associated with a left or right hand response (the ‘E’ or ‘I’ 

buttons on the keyboard). On each trial, a green or blue circle was presented on the left or right 

side of the screen (Figure 4A). The timing of events followed the timing of Experiment 1. In the 

version of the Simon task used here, 75% percent of trials were congruent—that is, the side on 
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which the stimulus was presented matched the correct response hand. On the remaining 25% of 

trials, subjects needed to use stimulus color and fully ignore the stimulus side in order to respond 

correctly. Participants completed 120 preliminary trials. 

Main Phase 

 Following the preliminary phase, subjects began the main phase of the experiment, 

following the same reward manipulation and timing as Experiment 1 (Figure 3A). Subjects 

completed as many trials as they could in 20 minutes. 

Regression Analyses 

 To avoid bias issues stemming from simultaneously fitting α and estimating effects as a 

function of α (as described above), we simply used the best-fitting α of .0031 from Experiment 1 

to calculate average reward rate. Mixed-effects regressions upon RTs were then conducted with 

the following terms: 

�� �  � � 	 � 	 ����������� 	 �������	� 	 ��� 	 

�����_��� 	 �� _��� 	   ����_� �� 

where incongruent codes whether the stimulus was incongruent or not, stim_rep represents 

whether the stimulus is a repetition from the previous trial, documented to facilitate faster RTs 

(Hommel, Proctor, & Vu, 2003), and prev_error and prev_type code for whether the subject 

committed an error on the previous trial and whether the previous trial’s stimulus was 

incongruent or not, which also exert effects on RTs and error rates (Ridderinkhof, 2002). 

Following Experiment 1, we also conducted a logistic regression using the same predictor 

variables with the exception of the ITI, with correct/incorrect response as the outcome variable. 

Results 
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In the Simon conflict task, subjects are required to make a right-button response to a 

green circle and a left-button response to a blue circle (Figure 4A). As the circle can appear 

either on the left or right side of the display, on most trials (“congruent” trials) subjects can 

effectively use the location of the stimulus to guide their responses, but on other trials 

(“incongruent” trials), subjects need to ignore the location of the stimulus in order to make a 

correct, color-based response. Because these congruent trials occurred 75% of the time, the more 

difficult incongruent trials require subjects to override a prepotent, stimulus-driven response 

established by congruent trials, and as a result, responses are markedly slower and more error-

prone on these trials. As expected, we found that subjects made more errors (Figure 4B; β=-

3.029, SE=0.152, p<.0001) and were much slower to respond (Figure 4C; β=0.076, SE=0.003, 

p<.0001) on incongruent trials.   

We then analyzed accuracy and RT as a function of average reward rate. Mirroring the 

results of the perceptual decision-making experiment, we found that a high average reward rate 

engendered an overall speeding of responses, as well as a marked decrease in accuracy on the 

more difficult incongruent trials. Mixed-effects regressions confirmed these effects statistically, 

finding main effects of average reward rate upon both accuracy and RT (Figures 4D and E; 

accuracy: β= 0.100, SE=0.036, p<.01; RT:  β= -0.011, SE=0.001, p<.0001), but no effect of 

reward on offer (accuracy: β= 0.014, SE= 0.035, p= 0.686; RT: β= -0.001, SE=0.001, p=.615; 

see Tables 3 and 4). Taken together, these results again suggest that the opportunity cost of time 

may shift subjects’ speed-accuracy tradeoff on difficult trials, in favor of faster and less accurate 

responses.  

Following previous work (Forstmann, van den Wildenberg, et al., 2008; Ridderinkhof, 

2002), we visualized conditional accuracy functions—which plot accuracy as a function of RT 
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quartile—revealing a marked speed-accuracy tradeoff on incongruent trials: faster responses 

were increasingly influenced by the irrelevant stimulus location (Figure 5A; RT accuracy effect: 

β= 1.132, SE=0.085, p<.0001). However, from the foregoing analyses it is not clear whether the 

effect of the opportunity cost of time is merely to move subjects along the SATF—from slower, 

accurate responses to faster, more error-prone responses—or if instead the average reward rate 

alters the SATF itself. As in the case of perceptual decision making, the first possibility suggests 

opportunity costs simply drive a speed-accuracy tradeoff over time investment; the second might 

reflect additional changes in the investment of cognitive resources per se.  

Visualized separately for high and low levels of the opportunity cost of time, the speed-

accuracy tradeoff function (SATF) for incongruent trials (Figure 5B) indeed appears to shift 

downward, toward faster and more error-prone responses when the opportunity cost of time is 

higher. To quantify the change in SATF statistically, we used a mixed-effects logistic regression 

which jointly estimated the effect of average reward and response speed upon trial-by-trial 

accuracy, finding that the average reward rate significantly and negatively predicted accuracy 

over and above RT (β= -0.258, SE=0.058, p<.0001; Table 5). In other words, because these 

accuracy changes were not accounted for by response speed adjustments, these opportunity cost-

induced changes in accuracy are not attributable to simple shift along a fixed SATF but rather 

change the SATF itself, again possibly reflecting changes in resource investment. Indeed, 

reward-related changes in speed-accuracy curves in response conflict tasks have been interpreted 

as reflecting effortful mobilization of attentional resources (Hübner & Schlösser, 2010). 

Experiment 3: Task-Switching 

We next sought to examine whether modulations of cognitive effort in accordance with 

the opportunity cost of time generalize beyond tasks or circumstances for which speed and 
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accuracy objectively trade off—that is, situations where devoting additional time to making a 

response does not yield greater accuracy. By decoupling response speed and accuracy, changes 

in accuracy can be interpreted not as potentially strategic shifts in time allocation (as in the 

Simon Task) but potentially as more purely reflective of the amount of cognitive effort invested 

in a particular response. This would be expected, for instance, if the link between opportunity 

cost and effort investment were obligatory (e.g. reflexive or Pavlovian; Niv et al., 2007; Boureau 

et al., 2015) rather than learned online.   

In contrast, two recent theories suggest that people learn to select cognitively expensive 

versus cognitively cheap ‘heuristic’ strategies on the basis of their learned costs and efficacy 

(Kool, Gershman, & Cushman, 2017; Lieder & Griffiths, 2017; Shenhav et al., 2017). In turn, 

the observed shifts in cognitive effort allocation in response to changing task circumstances are 

thought to reflect rational cost-benefit decisions at the aggregate level—most notably, the 

sacrifice of accuracy to improve the speed with which responses are made (Lieder & Griffiths, 

2017). The absence of an inherent SATF in the task used below allows for a stringent test of 

whether individuals’ withholding of cognitive effort in the face of high opportunity costs are 

adaptively learned responses or if they simply result from a reflexive, Pavlovian response to high 

costs. Put another way, the observation of an opportunity cost-induced decrease in accuracy with 

no apparent upside in speed would suggest, compellingly, that the modulations of cognitive 

effort observed here are not the result of an adaptive learning mechanism per se.  

In a third and final experiment we examine how the opportunity cost of time bears upon 

behavior in a task-switching paradigm, for which flexible responding in the face of shifts in 

stimulus-response rules demands central executive resources (Blain, Hollard, & Pessiglione, 

2016; Kool et al., 2010; Monsell, 2003), and critically, there is no apparent SATF.  
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Methods 

Participants 

We recruited 42 participants on AMT who paid a fixed amount ($5 USD) plus a bonus 

contingent on their decision task performance, ranging from $1-3 USD. We excluded the data of 

9 subjects who missed more than 20 response deadlines in either the preliminary phase or the 

main task, yielding 33 subjects remaining in our subsequent analyses. 

Preliminary Phase 

 Before the manipulation of opportunity costs phase, participants first completed a task-

switching paradigm in the absence of rewards to gain familiarity with the task. On each trial, a 

box appeared on screen and participants’ needed either to report whether the box that appeared 

on screen was blue or orange (the “COLOR” task) or whether the box’s fill was solid or striped 

(the “PATTERN” task). Critically, the position of the box on the screen (lower half versus upper 

half, counterbalanced across subjects) indicated which subtask the subject was to perform. 

Across both subtasks, responses were either associated with a left- or right-hand button press 

(e.g. blue = left, orange = right; solid = left, striped=right), using the ‘E’ or ‘I’ buttons on the 

keyboard. Mappings of stimuli features to keys were counterbalanced across participants. 

Following Kool et al. (2010), the sequence of subtasks followed an m-sequence-based order, in 

which half the trials repeated the previous subtask. The trial timing was the same as in the 

calibration phase of Experiment 1 except that to accommodate the increased difficulty of this 

task, the response deadline was set to 800ms.  Participants completed 120 preliminary trials. 

Main Phase 

 Following the preliminary phase, subjects began the main phase of the experiment, 

following the same reward-on-offer manipulation and timing as Experiment 1, again with the 
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exception of the response deadline of 800ms.  Subjects completed as many trials as they could in 

15 minutes. 

Data Analyses 

 As in Experiment 2, we used the best-fitting α of .0031 from Experiment 1 to calculate 

average reward rate. For RT plots, RTs were z-scored within-subject to take into account. 

Mixed-effects regressions upon RTs were conducted with the following terms: 

�� �  �� 	 � 	 ��!�_!"���# 	  ��!�_� �� 	 ����_��!�_!"���# 	 �����_��� 	 ����_�����

	  �� _��� 	 ��� 

where task_switch codes whether the subtask repeated from the previous trial, task_type 

indicated whether the color versus pattern subtask was to be performed (thus capturing any 

differences in difficulty between subtasks). The accuracy analyses used a logistic regression 

using the same predictor variables with the exception of the ITI, with correct/incorrect response 

as the outcome variable.  

Results 

In our task-switching paradigm, subjects responded to a stimulus based on a rule that 

varied from from trial to trial—here, subjects were required to indicate either the color (orange or 

blue) or the fill pattern (solid or striped) of a stimulus, depending on its position (Figure 6). On 

half of the trials, the required subtask (COLOR versus PATTERN) repeated, yielding a “repeat” 

trial, while the other half of trials entailed a switch to the other subtask (a “switch” trial). 

Following the previous experiments, we induced fluctuations in available reward (Figure 1C) 

and examined behavior as a function of the effective opportunity cost of time (i.e., the average 

reward rate).  
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Mirroring previous work (Kool et al., 2010; Monsell, 2003), we found significant task 

switch costs in both response accuracy (Fig 7A; β= -0.258, SE=0.045, p<.0001) and RTs (Fig 

7B; β=0.060,  SE = 0.007)—task switches engendered less accurate and slower responses. 

Examining task-switching behavior as a function of the average reward rate, we found that the 

opportunity cost of time decreased accuracy, particularly on the more cognitively demanding 

switch trials and sped RTs overall. In other words, the apparent withdrawal of cognitive effort 

brought about by these opportunity costs manifested in an accuracy cost, particularly on the more 

cognitively demanding ‘switch’ trials. Mixed-effects regressions corroborated these effects (Figs 

7C and D), revealing main effects of average reward rate upon both accuracy (β= -0.183, 

SE=0.051, p<.0001) and RT (β=-0.009, SE=0.004, p<.05), and but again, no effects of reward-

on-offer on either accuracy or RT (Tables 6 and 7).  

Critically, we found no evidence for a positive SATF in overall behavior (RT effect on 

accuracy β= -0.17, SE=0.036, p<.0001, see Table 8)— faster RTs were associated with more 

accurate responding in both task switches and repetitions (Conditional Accuracy Functions 

plotted in Figures 8A and B). When we decompose the conditional accuracy function according 

to the observed average reward rates we find that, in both task switches and repetitions, we found 

that a high average reward rate simultaneously sped responding and decreased accuracy (Figures 

8C and D), that is, holding the effects of reward rate constant, there is no evidence that the task 

trades off speed against accuracy. Interestingly, while the task-switching paradigm itself imposed 

no inherent speed-accuracy tradeoff—insofar as faster responses are also more likely to be 

correct, and therefore more rewarded, for a fixed reward rate— the opportunity cost of time 

exerted the same effects upon response speed and accuracy in the same way as observed in the 

previous experiment, further suggesting a decrease in effort investment. 
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We also examined how individual differences in task-switching difficulty—thought to 

reflect processing efficiency and/or aversion to cognitive effort exertion (Kool et al., 2010)— 

predict the extent to which opportunity costs influence withholding of cognitive effort. Using 

separately obtained estimates of RT switch costs from a preliminary task phase, we found that 

greater RT switch costs predicted larger average reward rate-driven detriments to accuracy on 

switch trials (Figure 9). Critically, these separately obtained RT switch costs significantly 

predicted trial-by-trial accuracy modulations (β = 0.153, SE=0.065, p<05) even after controlling 

for 1) their predictive effect on individual’s overall error commissure rates and 2) individual 

differences in overall error commissure rates (Table 9). Put simply, individuals who experienced 

large task-switching costs were, in a subsequent task phase, more sensitive to the opportunity 

cost of time in their modulations of cognitive effort investment. 

 

Discussion 

Increasingly, researchers have attempted to extend accounts of rational decision making 

inward, to the question of how we allocate cognitive effort (Botvinick & Braver, 2015; Boureau 

et al., 2015; Kahneman, 2011; Kurzban et al., 2013; Shenhav et al., 2017). While the idea that 

cognitive effort should be invested (or withheld) in accordance with costs and benefits is 

intuitively appealing, it has been difficult to demonstrate conclusively. Here we leveraged 

research on the opportunity cost of time (Beierholm et al., 2013; Niv et al., 2007), which 

proposes a computationally explicit (though not necessarily exclusive) source for the costs of 

cognitive effort. Manipulating this quantity —operationalized as the average reward rate—

allowed us to reveal how people withhold cognitively effortful processing when time is 

expensive, but will readily expend cognitive effort when time is ‘cheap’. By providing 
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convergent evidence across diverse task domains, our approach yields a clear picture of how 

people negotiate the ubiquitous effort-reward trade-off.  

We found that opportunity costs “invigorated” behavior such that individuals consistently 

sped their responses, mirroring past work (Beierholm et al., 2013; Guitart-Masip et al., 2011), 

and further, these opportunity costs resulted in more response errors. These accuracy effects 

could not simply be understood in terms of time allocation—rather, there were additional 

behavioral manifestations of the presumed withdrawal of cognitive effort in each of our three 

experiments. In a perceptual decision task, these costs reduced the amount of acceptable 

perceptual evidence required to make a decision (engendering faster, but less accurate decisions), 

but also altered the costly evidence accumulation process in favor of lower-fidelity perceptual 

evidence (bringing about less accurate decisions).  

Similarly, in a response conflict task, the opportunity cost of time modulated the level of 

cognitive control that individuals applied to inhibiting inappropriate, prepotent responses—over 

and above what can be explained by a shift along a fixed speed-accuracy tradeoff (SATF). These 

results suggest that this moment-to-moment varying cost impacted strategic allocation of 

cognitive resources, perhaps in the same way that adjustments to cognitive control are made in 

response to individuals’ changing expectancy of response conflict (Gratton et al., 1992; Yu, 

Dayan, & Cohen, 2009). Intriguingly, this perspective suggests that the source of the 

performance costs seen in the face of response conflict (e.g., on incongruent trials) here and 

throughout the literature may in part be due to a withdrawal of effort on the basis of the added 

effort costs of responding correctly on those trials (rather than a direct effect of those trials being 

harder, per se). The observation the opportunity cost of time decreases performance when 
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individuals experience response conflict lends credibility to the notion that failures of cognitive 

control, more generally, may arise in part from motivational deficits rather than cognitive ability.  

In a final study, we observed that high opportunity costs prompted the withdrawal of 

cognitive effort during task-switching, which is understood to be cognitively demanding 

(Monsell, 2003).  Notably, the speed-accuracy relationship implied by the task-switching 

paradigm (holding average reward fixed) does not appear to impose an inherent SATF upon 

behavior (in contrast to the Simon task; hence our choice of this task paradigm), and thus slower 

and presumably more effortful responses confer no advantages in terms of accuracy (and 

consequently, local rewards). However, individuals appeared to change their SATFs in response 

to the opportunity cost of time, simultaneously increasing speed and decreasing accuracy (Figure 

8C and D), conceptually reproducing its observed effect in the Simon Task (Figure 5B) and 

suggesting a generality to the effects of the opportunity cost of time upon effort exertion—

specifically, that opportunity costs appear to trigger a reflexive withdrawal of cognitive effort. 

Future investigation is needed to better understand how effort cost-benefit computations impact 

the relationship between speed and accuracy observed in many task domains. 

Turning to individual differences, these modulations in effort expenditure depended in 

part on how costly task-switches are for an individual: when these cognitive costs loomed larger, 

individuals made larger opportunity-cost induced adjustments to effort allocation (Figure 9). This 

result dovetails well with the observation that individuals with fewer central executive resources 

avoid cognitive effort outlay compared to individuals with greater central executive function 

capacities (Kool et al., 2010; Otto, Skatova, Madlon-Kay, & Daw, 2015) and are more sensitive 

to shifts in benefits of effort expenditure (Sandra & Otto, 2018). To be sure, since the changes in 

accuracy observed here conferred no benefit in response speed (Figure 8), we interpret these 
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effort adjustments as reflexive or obligatory. However, if such a reflexive strategy implements an 

approximation to adaptive cost-benefit tradeoff (albeit one not well suited to this task) it may still 

be adaptive in other circumstances for its strength to be modulated by an individual's executive 

resources. The extent to which these opportunity cost-evoked effort modulations are governed by 

strategic or rational cost-benefit considerations (versus a reflexive response to costs) remains an 

important question for future research.  

A potentially puzzling result uncovered across all three of our studies – which was also 

found  in a similar opportunity cost manipulation (Beierholm et al., 2013; Guitart-Masip et al., 

2011)—is the lack of significant effect of reward currently ‘on offer’ on effort investment. 

Indeed, even in estimating regressions that omit the average reward rate as a predictor, reward 

‘on offer’ exerted no significant effect upon RT or accuracy in any of the three experiments 

reported (all ps > 0.25). Intriguingly, the motor control literature also reveals how available 

rewards can alter the speed-accuracy tradeoff—presumably by engendering increased cognitive 

resource investment—simultaneously engendering faster and more precise movements (Manohar 

et al., 2015). Taken together with the present work, a picture emerges that speed-accuracy 

tradeoffs are malleable and reflect, at any given moment, the investment (or withholding) of 

cognitive resources. 

Opportunity cost models of time allocation models predict opposing effects of offered 

reward versus average reward: i.e., when the current trial’s reward is high, relative to the 

prevailing average, one should invest more time and resources. Indeed, much other work has 

found that various sorts of motivational cues—seemingly similar to the available reward ‘on 

offer’ manipulated here—increase engagement of executive or attentional resources (Bijleveld, 

Custers, & Aarts, 2010; Krebs, Boehler, & Woldorff, 2010; Manohar et al., 2015; Padmala & 
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Pessoa, 2011). The reason for the lack of effect in the current paradigms remains unclear. It is 

possible that the average reward effect could contravene its presumably opposite effects on 

effort, or that the explicit numerical signaling of reward offers is less efficacious than that of 

obtained (also numerical) reward amounts.  

Considering all three experiments together, the modulations of response accuracy 

revealed here suggest that the average reward rate signals not only a cost for slow physical 

movement—as originally ascribed to tonic dopamine level in the midbrain (Niv et al., 2007)—

but also directs other, more cognitive speed-accuracy tradeoffs and the allocation of cognitive 

processing resources under the current circumstances. Indeed, the idea that the opportunity cost 

of time provides an internal signal that directs effortful processing away from the task at hand 

dovetails well with a previous account positing that mental effort is aversive because of 

opportunity costs inherent to the limited processing capacity of the central executive—i.e. the 

foregone benefits of putting these processing resources towards a different task (Kurzban et al., 

2013). These results also hint that the apparent spontaneous fluctuations in cognitive effort 

outlay observed previously (Braver et al., 2003; Kahneman, 1973) could be explained, in part, by 

the opportunity cost of time.  

Understanding how people modulate cognitive effort expenditures in accordance with 

opportunity costs is also relevant to neuroscientific research. Notably, there is compelling 

evidence that tonic midbrain dopamine level encodes the average reward rate of the environment 

(Beierholm et al., 2013; Niv et al., 2007) and this neuromodulatory system thus underpins an 

adaptive motivational control system. Relatedly, as neuroscientists find themselves increasingly 

interested in dopamine’s role in motivating deployment of cognitive resources during goal-

directed behavior (Cools, 2015; Manohar et al., 2015; Westbrook & Braver, 2016), establishing 
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the behavioral phenomenology of cognitive effort modulation will be critical for understanding 

the neuromodulator’s role in mobilizing cognitive resources. 
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Tables 
 

Table 1: Mixed-effects Regression coefficients indicating the influence of the average reward 
rate and a number of other trial-by-trial covariates upon RTs in Experiment 1 (Perceptual 
Decision-Making). Asterisks denote significance at the .05 level. 
 
 
Coefficient Estimate (SE) p-value 
(Intercept) 6.070 (0.020) <.0001* 
iti -0.013 (0.004) <.0001* 
avg_reward -0.009 (0.004) 0.010* 
reward 0.005 (0.004) 0.350 
dots_difference -0.004 (0.003) 0.827 
prev_error -0.018 (0.006) <.0001* 
trial_num -0.018 (0.010) 0.118 
resp_side 0.006 (0.016) 0.108 

 
 
Table 2: Mixed-effects logistic regression coefficients indicating the influence of the average 
reward rate and a number of other trial-by-trial covariates upon accuracy in Experiment 1 
(Perceptual Decision-Making). Asterisks denote significance at the .05 level. 
 
Coefficient Estimate (SE) p-value 
(Intercept) 0.608 (0.087) <.0001* 
avg_reward -0.144 (0.033) <.0001* 
reward -0.014 (0.028) 0.601 
dots_difference 0.751 (0.105) <.0001* 
prev_error 0.021 (0.031) 0.494 
trial_num -0.001 (0.001) 0.060 
resp_side 0.037 (0.033) 0.260 
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Table 3: Mixed-effects Regression coefficients indicating the influence of the average reward 
rate and a number of other trial-by-trial covariates upon RTs in Experiment 2 (Simon Task). 
Asterisks denote significance at the .05 level. 
 
Coefficient Estimate (SE) p-value 
(Intercept) 5.913 (0.009) <.0001* 
incongruent 0.076 (0.003) <.0001* 
iti -0.015 (0.002) <.0001* 
prev_errors 0.010 (0.004) 0.013* 
trial_num -0.005 (0.002) 0.024* 
key_rep 0.017 (0.003) <.0001* 
prev_type 0.020 (0.003) <.0001* 
reward -0.001 (0.001) 0.526 
avg_reward -0.006 (0.002) 0.002* 

 
 
 
Table 4: Mixed-effects logistic regression coefficients indicating the influence of the average 
reward rate and other trial-by-trial covariates upon accuracy in Experiment 2 (Simon Task). 
Asterisks denote significance at the .05 level. 
Coefficient Estimate (SE) p-value 
(Intercept) 3.852 (0.154) <.0001* 
incongruent -3.023 (0.152) <.0001* 
prev_errors -0.214 (0.081) 0.008* 
trial_num 0.107 (0.042) 0.011* 
key_rep -0.068 (0.036) 0.060 
prev_type 0.151 (0.057) 0.008* 
reward -0.037 (0.036) 0.300 
avg_reward -0.106 (0.042) 0.012* 

 
 
 
Table 5: Mixed-effects logistic regression coefficients indicating the joint influence of the 
average reward rate and RT upon response accuracy in Experiment 2 (Simon Task, incongruent 
trials). Asterisks denote significance at the .05 level. 
Coefficient Estimate (SE) p-value 
(Intercept) 1.258 (0.145) <.0001* 
z_rt 1.398 (0.104) <.0001* 
avg_reward -0.258 (0.058) <.0001* 
z_rt:avg_reward -0.033 (0.071) 0.638 
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Table 6: Mixed-effects Regression coefficients indicating the influence of the average reward 
rate and a number of other trial-by-trial covariates upon RTs in Experiment 3 (Task-Switching). 
Asterisks denote significance at the .05 level. 
Coefficient Estimate (SE) p-value 
(Intercept) 6.323 (0.016) <.0001* 
iti -0.012 (0.002) <.0001* 
task_switch 0.060 (0.008) <.0001* 
task_type -0.009 (0.009) 0.318 

prev_type -0.011 (0.005) 0.037* 
trial_num 0.006 (0.005) 0.183 
prev_errors 0.033 (0.008) <.0001* 
key_rep -0.017 (0.005) 0.002* 
avg_reward -0.012 (0.004) 0.006* 
reward -0.001 (0.003) 0.778 

 
Table 7: Mixed-effects logistic regression coefficients indicating the influence of the average 
reward rate and a number of other trial-by-trial covariates upon accuracy in Experiment 3 (Task-
Switching). Asterisks denote significance at the .05 level. 
Coefficient Estimate (SE) p-value 
(Intercept) 1.779 (0.106) <.0001* 
task_switch -0.268 (0.054) <.0001* 
task_type 0.060 (0.083) 0.469 
prev_type -0.001 (0.047) 0.979 
trial_num 0.141 (0.058) 0.014* 
prev_errors -0.065 (0.071) 0.361 
key_rep 0.069 (0.053) 0.193 
avg_reward -0.120 (0.056) 0.031* 
reward 0.021 (0.046) 0.650 

 
Table 8: Mixed-effects logistic regression coefficients indicating the influence of RT in 
Experiment 3 (Task-switching). Asterisks denote significance at the .05 level. Note that this 
model specification does not include an intercept term because the combination of the 
task_switch and task_repeat terms is equivalent to the intercept term. 
Coefficient Estimate (SE) p-value 
task_switch 1.292 (0.103) <.0001* 
task_repeat 1.892 (0.096) <.0001* 
task_switch × z_rt -0.123 (0.060) 0.041* 
task_repeat × z_rt -0.295 (0.069) <.0001* 
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Table 9: Mixed effects logistic regression coefficients indicating the joint influence of 
preliminary task switch costs (prelim_rt_switch_cost) and average reward effects (as well as 
other trial-by-trial covariates) upon accuracy in Experiment 3. Asterisks denote significance at 
the .05 level. The term of interest, depicted in bold, is the interaction between the preliminary 
task switch cost and the average reward rate (prelim_rt_switch_cost:avg_reward).  
 
Coefficient Estimate (SE) p-value 
(Intercept) 1.704 (0.096) <.0001* 
z_prelim_rt_switch_cost 0.114 (0.091) 0.213 
trial_type -0.268 (0.047) <.0001* 
prev_type -0.013 (0.045) 0.776 
prev_errors -0.073 (0.070) 0.302 
avg_reward -0.127 (0.051) 0.012* 
reward 0.013 (0.044) 0.766 
z_prelim_rt_switch_cost × trial_type -0.160 (0.045) <.0001* 
z_prelim_rt_switch_cost × prev_type 0.072 (0.044) 0.101 
z_prelim_rt_switch_cost × prev_errors 0.034 (0.064) 0.594 
z_prelim_rt_switch_cost × 
avg_reward -0.101 (0.049) 0.039* 
z_prelim_rt_switch_cost × reward -0.039 (0.043) 0.362 
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Figures 

 

 
 
 
 
 
Figure 1. (A) Task flow in the perceptual decision-making experiment. Before the stimulus is 
displayed, subjects are shown the potential reward for making a correct response, then a decision 
is made about which square contains more dots, and following an inter-stimulus interval, the 
reward obtained is displayed. (B) An example subject’s data from the calibration phase of the 
perceptual decision-making experiment. Closed circles reflect the proportion of that the 
subjected indicated that the variable stimulus contained more dots as a function of stimulus 
strength.  Lines indicate the fit of a cumulative Gaussian to these data. Dotted vertical lines 
indicate the stimulus strength values selected for use in the main experiment for this subject. (C) 
Top: we induced fluctuation in trial-to-trial available rewards (top), which, in conjunction with 
the subject’s history of responses, yielded an empirical average reward. Bottom: an example 
subject’s experienced average reward rate, in units of reward per second. 
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Figure 2. (A-B) Examining accuracy on easy trials (high stimulus strength) versus hard trials 
(low stimulus strength) as a function of the opportunity cost of time (lower versus upper tertile of 
average reward rate) revealed that responses were faster and less accurate when the opportunity 
cost of time was high. Error bars indicate standard error of the mean. (C-D) Mixed-effects 
regressions revealed that the average reward rate significantly reduced accuracy and sped RTs, 
but the amount of reward on offer on the present trial did not exert an effect on either RT or 
accuracy. Error bars indicate standard error of the regression coefficient estimate. 
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Figure 3. Posterior distributions of DDM parameters reveal that the average reward rate 
decreased decision thresholds (A), while drift rate decreased with the average reward rate and 
increased with strength of stimulus (B). Available reward did not affect either decision 
thresholds or drift rates. Error bars represent the 95% confidence interval of the posterior 
distribution. 
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Figure 4. (A) Task flow in the Simon task. Before the stimulus is displayed, subjects are shown 
the potential reward for making a correct response, then they respond to a circle on the basis of 
its color, ignoring its location. (B-C) When the average reward rate was high, subjects made 
more errors on incongruent trials, where they needed to override innapropriate, prepotent 
responses, and made faster responses overall. Error bars indicate standard error of the mean. 
 (D-E) Mixed-effects regressions revealed that the average reward rate significantly reduced 
accuracy and hastened RTs, but available reward did not exert an effect on either RT or 
accuracy. Error bars indicate standard error of the regression coefficient estimate. 
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Figure 5. (A) Conditional accuracy plots reveal a marked speed-accuracy tradeoff on 
incongruent trials in the Simon task, such that fast responses appeared to be more driven by the 
task-irrelevant stimulus location, while slower responses yielded more accurate responses. (B) 
The opportunity cost of time altered the SATF on incongruent trials such that when the average 
reward rate was high, responses were faster and appeared to be driven more by stimulus position. 
Error bars indicate standard error of the mean. 
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Figure 6. In the Task-Switching paradigm, subjects either indicated the color (blue or orange) or 
the pattern (stripes or solid) of a square, depending on its location on the display.  
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Figure 7. (A and B) Subjects exhibited significant task switch costs both in terms of accuracy 
and RT. When the average reward rate was high, subjects made more errors on task switches and 
made faster responses overall. Error bars indicate standard error of the mean. (C and D) Mixed-
effects regressions revealed that on task switches, the average reward rate again significantly 
reduced accuracy and sped RTs, but available reward did not exert an effect on either RT or 
accuracy. Error bars indicate standard error of the regression coefficient estimate. 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2018. ; https://doi.org/10.1101/201863doi: bioRxiv preprint 

https://doi.org/10.1101/201863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

47

 
 

  
 Figure 8. (A and B) Conditional accuracy plots reveal an absence of a positive speed-accuracy 
tradeoff on both task repetitions and task switch trials. (C and D) Conditional accuracy functions 
for stay and switch trials, split by average reward rate. Error bars indicate standard error of the 
mean. 
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Figure 9. Task switch costs assessed in a preliminary phase (expressed in terms of RT) 
significantly predicted the effect of average reward upon task-switching accuracy in a subsequent 
phase. The regression lines is computed from the group-level fixed effect. Dashed lines indicate 
standard error about the regression line estimated from the group-level mixed effects regression. 
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