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248 

Figure 4: Population phylogenies of Montipora capitata (left) and Porites compressa (right). M. capitata phylogeny 
did not reach convergence after 1000 standard bootstrap iterations in RAxML-NG. M. capitata tree is rooted by M. 
spumosa and P. compressa tree is rooted by P. lutea. 
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Maximum likelihood phylogeny: 249 

According to BIC, ModelTest-NG determined the best-fit model of evolution for both M. 250 

capitata and P. compressa was TVM+ASC. RAxML-NG maximum likelihood analyses of 251 

Montipora samples did not converge after 1000 bootstrap iterations. Analysis of Porites data 252 

converged after 500 bootstrap iterations. Transfer bootstrap expectation (TBE) support values 253 

were mapped to the maximum likelihood tree topology and phylogenies for both species are 254 

reported in Fig. 4. The unconverged M. capitata tree was poorly supported and had strong support 255 

only at tips. The P. compressa tree was strongly supported at both basal and terminal nodes.  256 

 257 

Clonal groups: 258 

Analysis of pairwise percent similarity between individuals showed an average genetic 259 

similarity of 78.64% with a standard deviation (SD) of 1.05% in Montipora capitata and 77.37% 260 

with a SD of 2.95% in Porites compressa. Distribution of values was unimodal in M. capitata and 261 

bimodal in P. compressa. Clonal groups were identified by a threshold of 95%, following the logic 262 

that clonal individuals should be nearly 100% identical. In M. capitata, this present study found 263 

only one clonal pair of colonies, existing at site 1, adjacent to Coconut Island. In P. compressa, 264 

two clonal triplets and four clonal pairs were detected (Fig. 5). Spatially, these clonal groupings 265 

occurred predominantly at outer bay sites 2, 4, 6, and 8, with only one inner bay colony, P3W_A, 266 

being represented as part of a clonal group. Clonal colonies made up the majority of samples 267 

recovered in sites 2, 4, and 6. At these three sites, a total of 17 genotypes were expected but only 268 

11 were detected using our sampling design and ddRAD methods. 269 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.860585doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.860585
http://creativecommons.org/licenses/by/4.0/


 
 
 

18 
 

18 
 

 270 

 271 

Discussion 272 

Patterns of population structure: 273 

 This study found signals of population structure in M. capitata on a very fine-scale 274 

seascape. Such a finding is unusual for both the system – broadcast spawning marine organisms – 275 

and the spatial scale. Despite findings, this study cannot discern what drives spatial patterns of 276 

structure.  In this study, mantel tests revealed significant correlations between M. capitata FST 277 

values and geographic distance, water residence time, and temperature and salinity variability at 278 

various temporal scales. Because all of these variables are linked, it is difficult to discern which 279 

variable or multiple variables drive the patterns of structure. However, global and local analyses 280 

Figure 5: Distribution of pairwise percent similarity values for Montipora capitata and Porites compressa. Putative 
clonal groups (as suggested by distributions and a 95% threshold) are shown on the right. 
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have found high-frequency temperature variability to be the most influential factor in predicting 281 

bleaching occurrence and percent coral coverage (Soto et al. 2011, Carilli et al. 2012, Safaie et al. 282 

2018). This present study, combined with results of past studies, suggest that temperature 283 

variability may be playing a role in population structure of M. capitata in KB. However, it is worth 284 

noting that these studies focused on either a) all reef regions globally or b) forereef systems locally 285 

and may not have captured the effect that salinity can have on fine-scale lagoonal systems such as 286 

KB. 287 

In addition to parameters such as temperature and salinity, physical barriers such as ocean 288 

currents may partially explain patterns of structure in corals. The presence of the Mokapu 289 

peninsula at the eastern side of KB causes ocean currents to split the bay into a northern and 290 

southern section during the course of the coral spawning period (Richmond and Hunter 1990, 291 

Padilla-Gamiño and Gates 2012) (Fig. 6). Because water cannot easily escape the sheltered 292 

southern portion of the bay, the north and south are distinct in their residence times. In the north, 293 

water remains in the bay for ≤5 days while water in the south can remain in the bay for ≥15 days 294 

(Lowe et al. 2009).  The distinct zones of residence in KB may partially drive patterns of settlement 295 

and population structure that we observe in this study. Acroporids have short times to settlement, 296 

typically ranging between 1-6 days (Jones et al. 2015). Due to residence times ≥15 days, southern 297 

bay sites would be restricted primarily to self-recruitment of acroporid larvae. Sites in the north 298 

experience shorter water residence times than typical time-to-settlement durations of acroporids 299 

and, thus, can export and exchange larvae with peripheral habitats. It is worth noting that the 300 

models predicting residence time in Lowe et. al were not specific to the coral spawning period.  301 
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 No apparent spatial patterns of population structure that align with temperature, salinity, or 302 

residence time zones were detected in P. compressa. Carilli et al. found historical temperature 303 

variability to be an important predictor of bleaching and partial mortalities in massive Porites spp. 304 

(2012). However, Mantel tests utilized this present study did not suggest temperature to be an 305 

important factor. Residence time zones may not be important as typical pelagic larval duration 306 

may exceed the longest residence times found in KB. Studies of Porites larval duration and 307 

reproductive success are rare, but other taxa with similar massive morphologies show drastically 308 

longer larval longevities than those of acroporids (Graham et al. 2008). P. compressa has 309 

preference for sheltered lagoons and has been shown in models and surveys to not hold up to 310 

significant wave action (Rodgers et al. 2004, Franklin et al. 2013). Correlations between P. 311 

Figure 6: A map of surface currents in Kaneohe Bay during the coral spawning period (June-August) of Hawaii 
for 2018 and 2019. Data sourced from the Pacific Islands Ocean Observing System ROMS model. 
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compressa FST values and yearly average sea surface height found in this present study align with 312 

these models and surveys.  313 

It is worth noting that in broader phylogenetic studies, P. compressa and P. lobata do not 314 

form distinct clades and morphologically identified P. compressa may fall in P. lobata dominated 315 

clades, and vice versa (Forsman et al. 2017). It is possible that cryptic species may be obfuscating 316 

patterns of structure and FST-environment correlations. A majority of P. compressa in outer bay 317 

sites 2, 6, and 8 form a strongly supported clade at the base of the phylogeny. Sites 2 and 6 represent 318 

regions of overlap for modeled coral range and abundance of morphologically-identified P. 319 

compressa and P. lobata (Franklin et al. 2013). It is plausible that this strongly-supported basal 320 

clade is present due to cryptic species or hybridization and introgression between species. 321 

Additional evidence of cryptic species or reticulate evolution can be found in distributions of 322 

percent pairwise similarity between P. compressa individuals (Fig. 5). Bimodal distributions of 323 

percent pairwise similarity may suggest populations of a single species undergoing disruptive 324 

selection or two separate taxa being represented in the genetic dataset.  325 

 326 

Spatial distribution of clonality:  327 

 Past work to quantify prevalence of clonality in P. compressa found that regions with 328 

histories of disturbance contained proportionally fewer clonal colonies compared to those of sexual 329 

origin (Hunter 1993). Specifically, less disturbed locations were more likely to be space-limited 330 

and recruits of sexual origin would struggle to settle. In disturbed locations, openings would 331 

commonly exist on the benthic substrate and allow for recruitment of larvae. Although the 332 

methodology of our study was not designed specifically to address the question of clonality, we 333 

show that clonality is much more prevalent in locations in the outer bay. These regions experience 334 
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high energy swells and are prone to storm surge which can fragment corals or dislodge natural 335 

subspheroidal coralliths (Glynn 1974, Roff 2008, Capel et al. 2012). However, this phenomenon 336 

appears to be biased toward P. compressa as few clones were detected in M. capitata. It is possible 337 

that clonal colony formation may be more prevalent in P. compressa due to fundamental 338 

differences in life history traits. When natural growth rate is slow, as in Porites spp., new colonies 339 

may be given a “jump start” by growing from wave-induced fragments or rolling coralliths, rather 340 

than having to grow from larvae. Additionally, hydrodynamic studies have predicted that 341 

nudibranch larvae can settle only on sheltered areas of reefs because wave action can dislodge 342 

settling larvae (Reidenbach et al. 2009). Perhaps this same mechanism is at work in P. compressa 343 

and is what drives fragmentary reproduction to be favored over sexually produced larvae in reefs 344 

with high wave action. In Montipora spp., growth is fast and fragmentation may not offer 345 

significant benefits over reproduction that occurs sexually. Despite the advantages of clonal colony 346 

formation, asexual reproduction lowers per-population genetic diversity. If storm frequency and 347 

intensity are to increase as suggested by climate models of Hawaii (Murakami et al. 2013), it is 348 

possible that population genetic diversity of P. compressa populations will decrease, regardless of 349 

other pressures such as temperature increases and sedimentation.  350 

 351 

Phylogeographic and population structure patterns in relation to bleaching extent and recovery: 352 

Although we cannot necessarily tease apart the causality of genetic patterns in this study, 353 

it is worth noting parallels between our results and past bleaching events in KB. A study of the 354 

1996 bleaching event focused on sites with >90% coral cover and these sites contained >90% P. 355 

compressa by percent cover (Jokiel and Brown 2004). As such, we cannot compare this study to 356 

our findings of M. capitata. During this 1996 bleaching event, surveys were performed 357 
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immediately adjacent to our sites 1, 2, 3, 5, and 6. In this set of surveys, it was found that sites in 358 

the inner bay (adjacent to sites 1, 3, and 5) encountered extensive bleaching while outer bay sites 359 

(adjacent to sites 2 and 6) remained mostly unscathed. Our data show that four out of five 360 

individuals at site 2 and two out of six individuals at site 6 are members of a strongly supported 361 

basal clade in the P. compressa phylogeny. While there are other factors that are likely to drive 362 

bleaching response, we show in this present study that there is also some level of genetic 363 

divergence between populations that exhibited different responses to bleaching thresholds.  364 

In the bleaching event of 2014, the symbiont community composition of M. capitata 365 

colonies was monitored as bleaching progressed as well as during recovery after the event 366 

(Cunning et al. 2016). This study only included colonies in the inner bay, adjacent to our sites 1, 367 

3, and 5. Cunning et al. (2016) found that bleaching response in M. capitata was significantly 368 

associated with dominant symbiont clade but that the symbiont communities did not cluster 369 

spatially. Additionally, it was found that recovery rates increased the further north individuals were 370 

within the bay. Our study shows that there is population structure along a north-south gradient 371 

within KB and that this aligns with the spatial distribution of post-bleaching recovery rates. 372 

It is important to note that these bleaching events were fundamentally different, as 373 

discussed by Bahr et al. (2017). The timing and environmental conditions both played a key role 374 

in their extent, severity, and mortality rates. Despite the spatial and temporal differences between 375 

events, we believe that past studies, combined with the genetic results of this study, provide some 376 

support that the population genetics of the coral host likely acts synergistically with environmental 377 

variables, stochastic events, and symbiont community compositions to produce a bleaching 378 

response. 379 

 380 
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Supplemental materials 544 

Supplemental Table 1: Sample inventory (as of 12/10/2019) and sampling coordinates of coral colony samples 545 
obtained from Kaneohe Bay, Oahu. 546 

Sample Species Sampling Location Disposition 

M1E_A Montipora capitata (21.442255, -157.795856) Preserved in ethanol at -20°C. In 
possession of principal permittee. 

M1E_B "           " "           " "           " 
M1E_C "           " "           " "           " 
M1W_A "           " "           " "           " 
M1W_B "           " "           " "           " 
M1W_C "           " "           " "           " 
M2_A "           " (21.454082, -157.783207) "           " 
M2_B "           " "           " "           " 
M2_C "           " "           " "           " 
M2_D "           " "           " "           " 
M2_E "           " "           " "           " 
M2_F "           " "           " "           " 
M3E_A "           " (21.461603, -157.816057) "           " 
M3E_B "           " "           " "           " 
M3E_C "           " "           " "           " 
M3W_A "           " "           " "           " 
M3W_B "           " "           " "           " 
M3W_C "           " "           " "           " 
M4_A "           " (21.473036, -157.816057) "           " 
M4_B "           " "           " "           " 
M4_C "           " "           " "           " 
M4_D "           " "           " "           " 
M4_E "           " "           " "           " 
M4_F "           " "           " "           " 
M5E_A "           " (21.473490, -157.832663) "           " 
M5E_B "           " "           " "           " 
M5E_C "           " "           " "           " 
M5W_A "           " "           " "           " 
M5W_B "           " "           " "           " 
M5W_C "           " "           " "           " 
M6_A "           " (21.487500, -157.824600) "           " 
M6_B "           " "           " "           " 
M6_C "           " "           " "           " 
M6_D "           " "           " "           " 
M6_E "           " "           " "           " 
M6_F "           " "           " "           " 
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M7E_A "           " (21.499910, -157.841188) "           " 
M7E_B "           " "           " "           " 
M7E_C "           " "           " "           " 
M7W_A "           " "           " "           " 
M7W_B "           " "           " "           " 
M7W_C "           " "           " "           " 
M8_A "           " (21.515498, -157.832748) "           " 
M8_B "           " "           " "           " 
M8_C "           " "           " "           " 
M8_D "           " "           " "           " 
M8_E "           " "           " "           " 
M8_F "           " "           " "           " 
P1E_A Porites compressa (21.442255, -157.795856) "           " 
P1E_B "           " "           " "           " 
P1E_C "           " "           " "           " 
P1W_A "           " "           " "           " 
P1W_B "           " "           " "           " 
P1W_C "           " "           " "           " 
P2_A "           " (21.454082, -157.783207) "           " 
P2_B "           " "           " "           " 
P2_C "           " "           " "           " 
P2_D "           " "           " "           " 
P2_E "           " "           " "           " 
P2_F "           " "           " "           " 
P3E_A "           " (21.461603, -157.816057) "           " 
P3E_B "           " "           " "           " 
P3E_C "           " "           " "           " 
P3W_A "           " "           " "           " 
P3W_B "           " "           " "           " 
P3W_C "           " "           " "           " 
P4_A "           " (21.473036, -157.816057) "           " 
P4_B "           " "           " "           " 
P4_C "           " "           " "           " 
P4_D "           " "           " "           " 
P4_E "           " "           " "           " 
P4_F "           " "           " "           " 
P5E_A "           " (21.473490, -157.832663) "           " 
P5E_B "           " "           " "           " 
P5E_C "           " "           " "           " 
P5W_A "           " "           " "           " 
P5W_B "           " "           " "           " 
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P5W_C "           " "           " "           " 
P6_A "           " (21.487500, -157.824600) "           " 
P6_B "           " "           " "           " 
P6_C "           " "           " "           " 
P6_D "           " "           " "           " 
P6_E "           " "           " "           " 
P6_F "           " "           " "           " 
P7E_A "           " (21.499910, -157.841188) "           " 
P7E_B "           " "           " "           " 
P7E_C "           " "           " "           " 
P7W_A "           " "           " "           " 
P7W_B "           " "           " "           " 
P7W_C "           " "           " "           " 
P8_A "           " (21.515498, -157.832748) "           " 
P8_B "           " "           " "           " 
P8_C "           " "           " "           " 
P8_D "           " "           " "           " 
P8_E "           " "           " "           " 
P8_F "           " "           " "           " 

 547 

 548 

Supplemental Figure 1: DeltaK values for Montipora capitata and Porites compressa as evaluated by 549 
StructureHarvester. 550 
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