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Abstract6

Most organisms are more closely related to nearby than distant members of their species, creating7

spatial autocorrelations in genetic data. This allows us to predict the location of origin of a genetic8

sample by comparing it to a set of samples of known geographic origin. Here we describe a deep9

learning method, which we call Locator, to accomplish this task faster and more accurately than10

existing approaches. In simulations, Locator infers sample location to within 4.1 generations of11

dispersal and runs at least an order of magnitude faster than a recent model-based approach.12

We leverage Locator’s computational efficiency to predict locations separately in windows across13

the genome, which allows us to both quantify uncertainty and describe the mosaic ancestry and14

patterns of geographic mixing that characterize many populations. Applied to whole-genome15

sequence data from Plasmodium parasites, Anopheles mosquitoes, and global human populations,16

this approach yields median test errors of 16.9km, 5.7km, and 85km, respectively.17

Introduction18

In natural populations, local mate selection and dispersal create correlations between geographic19

location and genetic variation – each individual’s genome is a mosaic of material inherited from20

recent ancestors that are usually geographically nearby. Given a set of genotyped individuals of21

known geographic provenance, it is therefore possible to predict the location of new samples from22

genetic information alone (Guillot et al., 2015; Yang et al., 2012; Wasser et al., 2004; Rañola et al.,23

2014; Bhaskar et al., 2016; Baran et al., 2013). This task has forensic applications – for example,24

estimating the location of trafficked elephant ivory as in Wasser et al. (2004) – and also offers a way25

to analyze variation in geographic ancestry without assuming the existence of discrete ancestral26

populations.27

The most common approaches to estimating sample locations are based on unsupervised geno-28

type clustering or dimensionality reduction techniques. Genetic data from samples of both known29

and unknown origin are jointly analyzed, and unknown samples are assigned to the location of30

known individuals with which they share a genotype cluster or region of PC space (Breidenbach31

et al., 2019; Battey et al., 2018; Cong et al., 2019). However, these methods require an additional32

mapping from genotype clusters or PC space to geography, and can produce nonsensical results if33

unknown samples are hybrids or do not originate from any of the sampled reference populations.34

Existing methods for estimating sample location that explicitly model continuous landscapes35

use a two-step procedure. A smoothed map describing variation in allele frequencies over space36
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is first estimated for each allele based on the genotypes of individuals with known locations, and37

locations of new samples are then predicted by maximizing the likelihood of observing a given38

combination of alleles at the predicted location. In methods like SPASIBA (Guillot et al., 2015)39

and SCAT (Wasser et al., 2004), allele frequency surfaces are estimated by fitting parameters of40

a Gaussian function of set form (but see Rañola et al. (2014) for an alternate approach based on41

smoothing techniques from image analysis).42

Since all such methods use relatedness to other contemporary samples, any information about43

the location of a new sample necessarily comes from ancestors shared with the reference set. As44

illustrated in Figure 1, we expect a priori, that the genealogical relationships among a set of45

samples (and therefore the spatial location of ancestors) will vary along the genome. This means46

that a complete look at geographic ancestry would include not just a point estimate of spatial47

location, but an estimate of uncertainty that accounts for the partially correlated genealogies of48

recombining chromosomes.49

In the past few years there has been a explosion in the use of supervised machine learning50

for population genetics for a number of tasks, including detecting selection (Schrider and Kern,51

2016; Mughal and DeGiorgio, 2018; Sugden et al., 2018), inferring admixture (Schrider et al., 2018;52

Durvasula and Sankararaman, 2019), and performing demographic model selection (Pudlo et al.,53

2015; Villanea and Schraiber, 2019). Applications to population genetics increasingly make use54

of the latest generation of machine learning tools: deep neural networks (a.k.a. “deep learning”)55

(Sheehan and Song, 2016; Kern and Schrider, 2018; Chan et al., 2018; Flagel et al., 2018; Adrion56

et al., 2019). A significant feature of neural networks is that they allow the input of raw genotype57

information, as we perform below, without initial compression into summary statistics.58

In this paper, we introduce Locator, a highly efficient deep learning method for the prediction of59

geographic origin of individuals from unphased genotype data. Locator uses deep neural networks60

to perform prediction directly from genotypes, but without assuming any explicit model of how61

genotypes vary over the landscape. Moreover, unlike many modern supervised machine learning62

methods in population genetics, (e.g., Kern and Schrider, 2018) our training set need not be63

obtained via simulation. We assume only that there is some function relating geographic locations64

to the probability of observing a given combination of alleles, and use a deep, fully-connected neural65

network to approximate this mapping for a set of genotyped individuals with known locations. The66

trained network is then evaluated against a set of known individuals held out from the training67

routine and used to predict the geographic location of new samples based on their genotypes.68

Applied separately to windows across the genome, Locator also estimates uncertainty in individual-69

level predictions, and can reveal portions of an individual’s genome enriched for ancestry from70

specific geographic areas.71

For the empirical population genomic data we analyze here, Locator achieves state-of-the-art72

accuracy an order of magnitude faster than competing methods. Here we describe the implemen-73

tation, test on simulated data, and demonstrate its use in empirical data by estimating sampling74

locations for Anopheles mosquitoes in Africa from the AG1000G project (The Anopheles gambiae75

1000 Genomes Consortium, 2015), P. falciparum parasites from Asia, Africa, and the Americas76

from the P. falciparum community project (Pearson et al., 2019), and global human populations77

from the Human Genome Diversity Project (HGDP; Bergström et al. (2019)).78

Results79

Locator is fast and accurate80

We first evaluated Locator’s performance in simulations of populations evolving in continuous81

space with varying rates of dispersal – an idealized setting in which all alleles should vary smoothly82

over the map. In Figure 2 we show that validation error increases along with the dispersal rate83
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Figure 1: Conceptual schematic of our approach. Regions of the genome reflect correlated sets
of genealogical relationships (A), each of which represents a set of ancestors with varying spatial
positions back in time. We extract genotypes from windows across the genome (B), and train
a deep neural network to approximate the relationship between genotypes and locations using
Euclidean distance as the loss function (C). We can then use the trained network to predict the
location of new genotypes held out from the training routine (D).
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Figure 2: Validation error for Locator runs on simulations with varying neighborhood size. Sim-
ulations were on a 50 x 50 landscape and error is expressed in map units. A: True and predicted
locations by neighborhood size and number of SNPs. 450 randomly-sampled individuals were used
for training. B: Error for runs with 100,000 SNPs and varying numbers of training samples. C:
Error for runs with 450 training samples and varying number of SNPs. Plots with error in terms
of generations of expected dispersal are shown in Figure S2.
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of the population. Interestingly, error is roughly constant when correcting for the dispersal rate84

in each simulation, ranging from 3.16 to 4.09 generations of dispersal given our largest training85

dataset (450 samples, 100,000 SNPs; Figure S2). This suggests that error primarily reflects the86

underlying biological processes of dispersal and mate selection rather than simple noise from model87

fitting.88

Increasing the number of training samples or the number of SNPs improves accuracy for all89

simulations (Figure 2B). However, we observed diminishing returns when using over 10,000 SNPs90

or over 200 training samples. Median error for all simulations was also below 10 generations of91

dispersal for all but the least-dispersive simulation using just 25 training samples; suggesting that92

even relatively small training datasets can allow inference of broad-scale spatial locations. We93

discuss theoretical limits on the accuracy of genetic location estimation in Appendix 1 .94

We were interested to compare the performance of Locator to that of SPASIBA (Guillot et al.,95

2015), the current state-of-the-art method for geographic prediction of genotype data (Figure 3).96

However, we were unable to succesfully run SPASIBA with 100,000 or more SNPs from a simulated97

dataset or on simulations with dispersal rates of 0.63 or 1.29 map units/generation, due to out-98

of-memory errors on a 64-bit system with 400Gb of RAM. We could however compare at smaller99

numbers of SNPs and reduced dispersal. At a mean dispersal distance of 0.45 map units SPASIBA’s100

median test error was slightly lower when run on 1,000 SNPs (Wilcoxon test, p=0.009) but results101

were similar at 100 or 10,000 SNPs. (Wilcoxon test, p = 0.184 and 0.936). However, Locator is102

much faster – training on 10,000 SNPs in less than two minutes while SPASIBA requires around103

six and a half hours (Figure 2). These long run times are caused in part by the large number of104

training localities in our simulated data, because SPASIBA’s run time scales with the product of105

the number of genetic variants and the number of training localities (Guillot et al., 2015).106

While the simulations conform well to modeling assumptions of most methods, we can also107

compare performance on empirical data. By way of example, we applied Locator and SPASIBA to108

subsets of SNPs from the first five million base pairs of chromosome 2L from the Ag1000G dataset109

Miles and Harding (2017) (figure 3). Locator achieves much lower mean error on all runs with110

more than 100 SNPs, and runs from 3.1x to 532x faster, depending on the number of SNPs. Maps111

of predictions from both methods are shown in Figure S5. Extrapolating from these run times,112

running a windowed whole-genome analysis of Anopheles in SPASIBA would require roughly 70113

days of computation on an 80-CPU system for model training alone, versus 3.2 hours on one GPU114

for Locator.115

Uncertainty and Variation along the Genome116

By running Locator in windows across the genome we aim to integrate over error associated with117

the model training procedure while also representing the inherent uncertainty caused by spatial118

drift of ancestral lineages backwards in time (Kelleher et al., 2016). This produces a cloud of119

predicted locations distributed around the true sample location (Figure 4). For individuals near120

the center of the landscape these clouds are roughly symmetrical, as expected from our model.121

Predictions for individuals close to the edge of the landscape appear slightly asymmetrical and122

are bounded by the true landscape edges, suggesting that our networks have learned the rough123

shape of the sampled range. The true location was within the 50% contour of a 2d-kernel density124

surface estimated from the set of per-window predictions for all test samples, demonstrating that125

this distribution is indeed centered on the true location. We also tested the alternate approach of126

bootstrapping over a single set of SNPs, which could be useful for smaller datasets or those lacking127

a reference alignment. Results for this method are discussed in Supplementary figure S4.128

Windowed analyses for the three empirical systems we studied are shown in the bottom panels129

of Figures 5–7. We discuss the implications of these predictions for each species below, but in130

general we find that the windowed analysis accurately describes uncertainty in a sample’s location131
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Figure 3: Test error and run times for Locator and SPASIBA on simulated data with dispersal
distance equal to 0.45 map units/generation (top; 450 randomly sampled training samples) and
empirical data from the ag1000g phase 1 dataset (bottom; 612 training samples from 14 sampling
localities).

Figure 4: Predicted and true locations for 8 individuals simulated in a population with neighbor-
hood size ≈ 25. Black points are predictions from 2Mbp windows, blue points are training sample
locations, and the red point is the true location for each individual. Contours show the 95%, 50%,
and 10% quantiles of a two-dimensional kernel density across all windows.
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– either surrounding a single location for samples with low error, or distributed across a wide132

region including multiple training localities for samples with high error. In several cases predicted133

locations also project in the direction of known historic migrations (as in human data), or are split134

among localities shown in previous analyses to experience high gene flow (as in Anopheles).135

We summarize genome-wide window predictions in two ways: 1) by taking a kernel density136

estimate of the predictions and then finding the point of maximum density, and 2) by computing137

the centroid of the windowed predictions. These estimates are similar in spirit to ensemble predic-138

tion methods (Ho, 1995; Breiman, 1996). In general we found that the maximum kernel density139

estimator has lower error, but tends to show classification behavior more than the centroid esti-140

mator – snapping to a single training locality rather than interpolating between sets of localities141

for samples with variable window predictions.142

Empirical Analysis143

Anopheles mosquitoes144

We next turn our attention to the application of Locator to empirical population genomic datasets.145

In Figure 5 we show predicted and true locations for 153 individuals from the Ag1000g dataset of146

Anopheles gambiae and A. coluzzii, estimated in 2Mbp windows across the genome. The location147

with highest kernel density across all windows had a median error of 5.7km, and the centroid of the148

per-window predictions had a median error of 36 km (Table S2). Significant prediction error occurs149

only between sites in Cameroon, Burkina Faso, and the Republic of Guinea – localities which were150

also assigned to a single ancestry cluster in the ADMIXTURE analysis in Miles et al. (2017).151

However uncertainty for these samples was relatively well described by visualizing the spread of152

per-window predictions, with predicted locations generally lying between sets of localities. The153

true locality was within the 95% interval of the kernel density across all windows for all samples.154

Plasmodium falciparum155

In a windowed analysis of P. falciparum, Locator’s median error is 16.92 km using the maximum156

kernel density and 218.99 km using the geographic centroid of window predictions (Figure 6;157

Table S2). Mean predicted locations across all windows consistently separate populations in the158

Americas, West Africa, East Africa, southeast Asia, and Papua New Guinea; consistent with the159

major population subdivisions described via PCA in Pearson et al. (2019). We also see good160

discrimination within clusters, particularly in southeast Asia where the average test error is less161

than 200km for all but two localities. Error is highest in West Africa, where mean predictions tend162

towards the center of a set of regional collecting localities (Figure 6). These patterns are consistent163

with previous findings of fine-scale spatial structure in P. falciparum in Cambodia (Miotto et al.,164

2013) and low levels of relative genetic differentiation (as measured by FST ) in Africa (Pearson165

et al., 2019).166

Rates of mixed-strain infection are elevated in West Africa relative to Southeast Asia (Zhu167

et al., 2019; Pearson et al., 2019), which we hypothesized could explain the higher prediction error168

in this region. To test this effect we plotted Locator’s centroid prediction error as a function of169

within-host diversity (FWS ; Auburn et al. (2012)). FWS measures the proportion of population170

genetic diversity present in individual hosts, with a value of 0 representing maximum within-171

host diversity and 1 minimum within-host diversity. If mixed-strain infections explain outliers of172

prediction error, we would expect that samples with the highest prediction error had low FWS .173

Instead we found a weak positive relationship (Figure S6), with the highest prediction errors seen174

in samples with maximum FWS (i.e., minimum infection diversity). Test error then likely reflects175

low levels of differentiation within Plasmodium lineages in West Africa rather than local prevalence176

of mixed-strain infections.177
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Figure 5: Top – Predicted locations for 153 Anopheles gambiae / coluzzii genomes from the
AG1000G panel, using 612 training samples and a 2Mbp window size. The geographic centroid of
per-window predictions for each individual is shown in black points, and lines connect predicted to
true locations. Sample localities are colored by the mean test error with size scaled to the number
of training samples. Bottom – Uncertainty from predictions in 2Mbp windows. Contours show
the 95%, 50%, and 10% quantiles of a two-dimensional kernel density across windows.
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Figure 6: Top – Predicted locations for 881 Plasmodium falciparum from the Plasmodium falci-
parum Community Project (Pearson et al., 2019) (5% of samples for each collecting locality), using
5084 training samples and a 500Kbp window size. The geographic centroid of per-window predic-
tions for each individual is shown in black points, and lines connect predicted to true locations
Sample localities are colored by the mean test error with size scaled to the number of training
samples. Bottom – Uncertainty from predictions in 500Kbp windows. Contours show the 95%,
50%, and 10% quantiles of a two-dimensional kernel density across windows.
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Again we found that visualizing per-window predictions reflects expected patterns of uncer-178

tainty in samples with high mean prediction error. For example, sample QM0215-C was collected179

in Madagascar and has a mean predicted location in Mozambique, but the spread of per-window180

predictions indicates a 95% interval that includes the true locality (Figure 6, bottom right).181

The good performance we observed on this dataset also highlights a strength of Locator’s182

model-free approach. Recall that the sequencing strategy of preparing libraries from human blood183

samples suggests variant calls represent binned allele frequencies across the population of Plas-184

modium in a human blood sample rather than SNPs in a single Plasmodium individual. From the185

perspective of the network; however, the input genotypes are simply a set of normalized vectors,186

and the network can approximate the relationship between these vectors and the spatial location187

of training samples regardless of the generative process.188

Human Populations189

For humans in the HGDP dataset, the location with highest kernel density across all windows has190

a median test error of 85km, and the centroid of window predictions has a median error of 452.6191

kilometers (Figure 7, Table S2). Visualizing the geographic distribution of predictions across the192

genome shows that predictions tend to cluster around the true reported sampling location, but193

also extend towards other sampling locations in a manner that reflects known patterns of human194

migration.195

For example, the two largest individual errors in our analysis are found in South African196

Bantu individuals and Xibo people from western China. Predicted locations of South African197

Bantu people project towards the historic source of Bantu migrations in west Africa (De Filippo198

et al., 2012), with some regions of the genome also projecting in the direction of east African199

Bantu populations (Figure 7, sample HGDP00993). In the case of Xibo people from western200

China Locator consistently predicts locations in Manchuria, central China, and southern Sibera201

– significantly east of the true sample location. This may reflect the known movement of this202

population, which historically originated in Manchuria and was resettled in western China during203

the 18th century (Gorelova, 2002; Zikmundová, 2013) (Figure 7, sample HGDP01250). A sample204

of individual-level predictions is included in Figure 7.205

To test whether outlier geographic predictions reflect error in the model fitting procedure206

versus true variation in ancestry in a given region of the genome, we ran principal component207

analyses on windows for which a Maya individual (sample HGDP00871) has predicted locations208

in Europe and Africa. In these windows the Maya sample clusters with other individuals from the209

regions predicted by Locator – western Europe and Africa, respectively – rather than with other210

individuals from the Americas (Figure S9). This suggests outlier predictions reflect variation in211

ancestry in different regions of the genome, rather than stochastic error in model fitting.212

We also examined how recombination rate interacts with the accuracy of Locator predictions213

generated from different regions of the genome. We might expect recombination rate to affect214

accuracy because in regions of the genome with higher recombination, there are a greater number215

of distinct genealogies, and hence a given sample has inherited from a larger subset of the possible216

ancestors. Test error was estimated as the distance in kilometers from the true sampling loca-217

tion to the geographic centroid of the cloud of per-window predictions, and is shown in figure 8218

plotted against local recombination rates from the HapMap genetic map (International HapMap219

Consortium, 2003). We find a relatively strong negative correlation (p < 0.0001, R2 = 0.27) –220

windows with the lowest recombination rates in general have the highest prediction error. This221

is consistent with our expectation that regions of the genome representing a greater number of222

marginal genealogies will yield more accurate predictions of a sample’s location.223
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Figure 7: Top – Predicted locations for 162 individuals from the HGDP panel, using 773 training
samples and a 10Mbp window size. The geographic centroid of per-window predictions for each
individual is shown in black points, and lines connect predicted to true locations. Sample localities
are colored by the mean test error with size scaled to the number of training samples. Bottom –
Uncertainty from predictions in 10Mbp windows. Contours show the 95%, 50%, and 10% quantiles
of a two-dimensional kernel density across windows.
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Figure 8: Per-window test error and mean recombination rate for human populations in the HGDP
dataset. The top 2% of windows by test error were excluded from this analysis. The slope of the
least-squares linear fit is -99.9723 km/(cM/Mbp) and has adjusted R2 = 0.2704.

Effects of Unsampled Populations224

In figures S7 and S8 we show predictions from a single window in the Anopheles dataset when225

no samples from a given geographic region are included in the training set at two scales – either226

dropping only sites from a specific sampling location or dropping all sites from a given country.227

Prediction error is much higher for individuals from regions excluded from training – increasing228

from a median of 14km when training and test samples are randomly split to 116km when excluding229

individual localities, and 778km when excluding whole countries.230

In most cases predicted locations appear to project towards the nearest locality included in the231

training set (figure S8). This is particularly the case when populations at the edge of the map232

are excluded. Locator networks appear to learn something about the boundaries of the landscape233

based on the distribution of training points, and show a tendency to project towards the middle of234

the landscape when given a small number of SNPs (e.g., the top right panel of Figure 2A), a trivial235

optimization of the loss function. We also see evidence of Locator learning some nonlinear aspects236

of population structure in the sample. For example, when Angolan A. coluzzii are excluded from237

the training set many of their predicted locations project towards the A. coluzzii sample localities238

in Burkina Faso rather than the much closer sampling localities for A. gambiae in Cameroon and239

Gabon. In general we find that Locator can interpolate unsampled localities relatively well when240

genetic differentiation is smooth over the landscape (as among A. gambiae localities in west Africa),241

but does not extrapolate outside the bounds of the training set. Sampling the full landscape, or242

at least a sufficient portion thereof, is thus an important consideration in running our method.243

Discussion244

The correlation of genealogy and geography leaves genetic signals of ancestral location across the245

genome that one can leverage for practical inference. For instance, tracking the migratory routes246

of disease vectors such as Anopheles (Huestis et al., 2019) could in principle be achieved if one247

could accurately predict origin from DNA sequence data. Similarly, establishing the location of248

origin from biological samples is critical to anti-poaching conservation efforts (Wasser et al., 2004).249

In this report we present a new tool, Locator, which uses a deep neural network to predict the250

geographic location of a sample on the basis of its genotype. We show that Locator is highly251

accurate, computationally efficient, and can scale to thousands of genomes.252

In simulations we showed that our method returns the same results as a state-of-the-art model-253
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based approach, SPASIBA (Guillot et al., 2015), and does so at least an order of magnitude faster.254

We show that the accuracy of our estimator is naturally measured in terms of the dispersal rate of255

the population and that predictions from Locator are consistently within 3–4 generations of mean256

dispersal across a wide range of dispersal distances (Figure 2, Figure S2). However we found that257

the greatest increase in performance relative to the model-based approach is in empirical data for258

which the assumption of smooth variation in allele frequencies across the landscape is unlikely to259

hold, such as the complex multi-species Anopheles sample analyzed here (Figure 3).260

Locator’s computational efficiency makes it practical to estimate uncertainty through resam-261

pling approaches like windowed analysis or bootstrapping over the complete genotype matrix. The262

full windowed analysis of the HGDP data took roughly 30 hours to run on a single GPU, and263

windowed analysis of all 5,965 complete Plasmodium genomes took just 8 hours. Thus training264

Locator models for biobank-scale datasets including whole genomes of tens or hundreds of thou-265

sands of samples is well within reach, particularly if windows can be run on separate GPUs. This266

allows us to estimate uncertainty in predicted locations due both to our prediction methodology as267

well as biology; with repeated training runs integrating over error associated with network training268

and prediction and the windowed analysis allowing us to predict geographic origins for regions of269

the genome reflecting distinct sets of genealogical relationships.270

Disentangling these sources of error is challenging, but analysis of human data for which we271

have strong prior knowledge of recent population movements suggests that much of the variation in272

genome-wide prediction we see reflects historic patterns of migration rather than simple prediction273

error. For example, genomes from Hazara individuals in central Asia return predicted locations274

extending from central Asia to Mongolia (Figure 7 bottom, sample HGDP00118), which is consis-275

tent with historic records (Qamar et al., 2002), previous analysis of Y chromosome data (Zerjal276

et al., 2003), and identity-by-descent tract sharing (Lawson et al., 2012) all of which find evidence277

of recent shared ancestry between Mongolian and Hazara individuals. Similarly some Maya indi-278

viduals found to have a small proportion of European ancestry in previous analyses (Rosenberg279

et al., 2002) have predicted locations extending from central Mexico across the Atlantic to Europe280

and west Africa in windowed Locator analysis (Figure 7 bottom, sample HGDP00871), and these281

signals are replicated in principal components analysis (Figure S9).282

This also points to a critical consideration in running any form of supervised population clus-283

tering. Information about population structure comes only from the relative relationships among284

training and test samples, and interpretations can only be made relative to the set of training285

samples used. In the case of the HGDP panel, samples were intentionally selected to cover what286

were thought to be distinctive populations reflecting a vaguely pre-modern distribution of human287

genetic diversity (Harry and Marks, 1999), and so would probably not be a good reference set288

for random individuals drawn from regions or groups with recent histories of large population289

movements such as the United States.290

Here we have shown that our method, Locator, is fast, accurate, and scales well to large291

samples. However we see several next steps that could improve the approach. First, our current292

implementation uses only diploid genotypes and does not pass the network any direct information293

about haplotype structure (though in theory the fully-connected nature of our network could allow294

inference of pairwise correlations among sites). Incorporating SNP position information and phased295

haploid sequences would likely increase inferential power, as in the case of unsupervised clustering296

(Lawson et al., 2012). Second, our network currently uses a simple fully-connected architecture; it297

could be that other network architectures such as recurrent neural networks might be better suited298

for this task (e.g., Adrion et al., 2019). Indeed the application of deep learning to population299

genetics is still in its infancy and we imagine much progress will be made in the coming years300

along these lines.301
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Methods302

Preprocessing303

Locator transforms input data in VCF or Zarr format to vectors of derived allele counts per304

individual using the scikit-allel (Miles and Harding, 2017) and numpy (Van Der Walt et al., 2011)305

libraries. Sites with missing data are replaced with two draws from a binomial distribution with306

probability equal to the frequency of the derived allele across all individuals – a discrete version of307

the common practice of assigning missing data as the mean allele frequency in genotype PCAs (e.g.308

the default settings for PCA in the R package adegenet (Jombart, 2008)). We provide functions309

for filtering SNPs based on minor allele count, and by default remove singleton sites from the310

alignment prior to model fitting. The geographical x and y coordinates are scaled to have mean311

0 and variance 1 prior to training, while allele counts are scaled prior to model fitting by a batch312

normalization layer within the network. Batch normalization Z-normalizes activations of a neural313

network during training to reduce shifts in the distribution of parameter values across batches,314

which allows faster learning rates and sometimes reduces overfitting (Ioffe and Szegedy, 2015).315

Locator selects a user-defined fraction of the samples with known locations to use in training the316

model (the default is 0.9); remaining samples with known locations are kept aside as “validation”317

samples. The validation set is used to tune the learning rate of the optimizer and set the stopping318

time of model training, but does not directly contribute to the loss used to fit model parameters.319

Throughout this manuscript we use “validation loss” to refer to error estimated on the validation320

set, and “test error” to refer to error calculated on a set of samples entirely held out from the321

model training procedure.322

Network323

We use the unphased, diploid genotype vector of each individual as input to the network, whose324

target output is the two-dimensional coordinates of that individual in space. Locator uses a deep325

neural network consisting of a stack of fully-connected “dense” layers, implemented using the Keras326

(Chollet et al., 2015) frontend to tensorflow (Abadi et al., 2015). Roughly speaking, the network327

is trained to estimate a nonlinear function mapping genotypes to locations using gradient-based328

optimization. Models start with randomized initial parameters and are fit to data by looping329

through the training set and iteratively adjusting the weights and biases of the network. We use330

an early stopping function to monitor loss during training and under default settings stop training331

runs when validation loss has not improved for 100 epochs. We also use a learning rate scheduler332

to decrease the learning rate of the optimizer when validation loss stops improving, which we found333

to be effective in preventing the trajectories of training and validation loss from diverging. The334

program also outputs a plot of training and validation loss after each training run (Figure S1).335

Locator’s architecture uses a batch normalization layer followed by a sequence of fully-connected336

layers with a dropout layer in the middle of the network (Figure 1). The “dropout” layer sets a337

random selection of weights to zero during each training step, which helps prevent overfitting (Sri-338

vastava et al., 2014). Our implementation allows users to adjust the shape of the network, but339

current default settings use 10 dense layers of 256 nodes each with “ELU” activations (Clevert340

et al., 2015) and a 25% dropout after the fifth layer. We describe performance under varying341

network width and depth in Supplementary Figure S3. In general we found that all networks with342

over four layers perform similarly.343

We use the Adam optimizer (Kingma and Ba, 2014) with Euclidean distance as a loss function:

loss =
√

(xpredicted − xtrue)2 + (ypredicted − ytrue)2. (1)
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Uncertainty and Genome-wide Variation344

Individuals are born at a single location, but have inherited their genomes as a mosaic from345

ancestors spreading geographically into the past (as discussed in, for instance, Wright (1943);346

Kelleher et al. (2016); Bradburd and Ralph (2019)). Any signal our method hopes to extract from347

the data must be due to geographic signal of recent ancestors shared between the test and training348

datasets. This suggests that any analogous method must quantify, roughly, “which modern day349

populations are most similar to this genome?”. The spatial spread of genetic relatedness both350

back in time from an individual’s to its ancestors’ locations and forward in time from ancestors to351

the present-day location of training samples means that even a perfect inference algorithm should352

have significant uncertainty associated with any predicted location from genetic data, and the353

magnitude of uncertainty should be in part a function of the dispersal rate of the population. In354

particular, no such method can infer locations more accurately than the mean dispersal distance,355

because in most cases an individual’s genome is not informative about where they live relative to356

their parents. Besides this fundamental limit to uncertainty, error in georeferencing of training357

samples and in model fitting will introduce additional prediction uncertainty.358

We use a windowed analysis across the genome to describe this uncertainty, which is possible359

thanks to Locator’s computational efficiency. Genealogical relatedness on each contiguous stretch360

of genome can be described by a sequence of genealogical trees, separated by ancestral recombina-361

tion events. By running Locator on a particular window of the genome, we restrict inference to362

a subset of these marginal trees, and hence to a subset of the genetic relationships between test363

and training samples. Predictions from different regions of the genome can then be visualized as364

a cloud of points, and the distribution of these points in space gives us a rough idea of the uncer-365

tainty associated with an individual-level prediction. Because windowed analyses involve repeated366

training runs from randomized starting parameters, they also help us to integrate over uncertainty367

associated with the model fitting process.368

Some datasets lack the size or reference alignments necessary to conduct windowed analyses.369

In this case we recommend uncertainty be assessed by training replicate models on bootstrapped370

samples drawn from a single set of unlinked SNPs (that is, resampling SNPs with replacement).371

Though this procedure does not reduce the number of marginal trees represented in the data, it372

does allow us to assess uncertainty associated with model training and prediction. In both cases373

we summarize uncertainty in predicted locations by estimating a two-dimensional kernel density374

surface over a set of predicted locations, and provide plotting scripts to visualize the 95%, 50%,375

and 10% quantiles in geographic space (see figures 5–7 for examples). The location of an individual376

can then be predicted as either the location with highest kernel density (the modal prediction) or377

the geographic center of the cloud of predictions (the mean prediction).378

We tested this approach in simulated data and in all empirical datasets. To explore factors379

affecting the accuracy of predicted locations generated from different regions of the genome, we380

also examined the relationship between recombination rate and test error from windowed Locator381

runs on human data from the HGDP panel (Bergström et al., 2019). Recombination rates for382

each window were estimated by averaging per-base rates from the HapMap project (International383

HapMap Consortium, 2003).384

Simulations385

We first evaluated our method on genotypes from populations simulated by SLiM v3 (Haller and386

Messer, 2019), using the model of continuous space described in Battey et al. (2019). We simulated387

a 50× 50 unit square landscape with expected density (d) of 5 individuals per unit area, resulting388

in census sizes of around 12,500. We varied the mean parent-offspring dispersal distance σ across389

simulations from 0.45 to 3, to create populations with varying levels of isolation by distance.390

In terms of Wright’s “neighborhood size” (Wright, 1946), defined as Nloc = 4πσ2d, this yields391
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populations with neighborhood sizes from 13 to 565. Each diploid individual carried two copies of392

a 108 bp chromosome on which mutations and recombinations occured at a rate of 10−8 per bp393

per generation. Simulations were run until all extant individuals shared a single common ancestor394

within the simulation at all locations on the genome (i.e., the tree sequence had coalesced). 500395

individuals were randomly sampled from the final generation of each simulation for use in model396

fitting.397

We selected 50 individuals from each simulation as a validation set and ran Locator while398

varying the number of training samples from 10 to 450 and the number of SNPs from 100 to 100,000.399

The SNPs used were a subset sampled from the full genotype matrix without replacement and thus400

mimic the semi-random distribution of genome-wide SNPs generated by reduced-representation401

sequencing approaches like RADseq (Etter et al., 2012). To compare performance with an existing402

model-based approach, we also ran SPASIBA (Guillot et al., 2015) on the simulation with σ = 0.44403

using 450 training samples and varying the number of SNPs from 100 to 100,000. Locator was404

run on a CUDA-enabled GPU and SPASIBA was run on 80 CPU cores. Last, we ran a windowed405

analysis on the σ = 0.63 (neighborhood size ≈ 25) simulation in Locator using a 2Mbp window406

size (each window then contains ≈ 8, 000 SNPs).407

Empirical Data408

We applied Locator to three whole-genome resequencing datasets of geographically widespread409

samples: (1) 765 mosquitoes from the Anopheles gambiae / coluzzii species complex collected410

across sub-Saharan Africa (Miles et al., 2017), (2) 5,965 samples of the malaria parasite Plasmodium411

falciparum sequenced from human blood samples collected across Papua New Guinea, southeast412

Asia, sub-Saharan Africa, and northern South America (Pearson et al., 2019) and (3) whole-genome413

data for 56 human populations from the Human Genome Diversity Project (Bergström et al., 2019).414

Genotype calls for the Anopheles dataset are available at https://www.malariagen.net/data/415

ag1000g-phase1-ar3, for P. falciparum at https://www.malariagen.net/resource/26, and for416

human data at ftp://ngs.sanger.ac.uk/production/hgdp. We used VCF files as provided with417

no further postprocessing.418

The Plasmodium falciparum dataset is unusual relative to our other empirical examples in419

that sequencing libraries were prepared from blood samples without filtering for coinfections or420

isolating individual Plasmodium. Sequence reads returned from short read sequencing then reflect421

the population of Plasmodium present in a human blood sample, or even multiple lineages of422

parasite if an individual is co-infected with multiple strains (Zhu et al., 2019), rather than individual423

Plasmodium. The VCFs we analyzed were prepared by aligning illumina short read sequences to424

the Plasmodium falciparum reference genome prepared by the Pf3K project (Pf3K Consortium425

(2016); https://www.malariagen.net/data/pf3K-5), then calling SNPs in GATK (McKenna426

et al., 2010). Variant calls then represent the pool of mutations present in the infecting Plasmodium427

population rather than SNPs in a single individual. We used only field-collected samples from the428

“analysis” set, as described in (Pearson et al., 2019).429

For the Anopheles dataset we ran Locator in 2Mbp windows across the genome with a randomly430

selected 10% of individuals held out as a test set. We also ran SPASIBA on subsets sampled from431

the first five million base pairs of chromosome 2L while varying the number of SNPs from 100 to432

100,000. For the P. falciparum dataset we used 500kb windows and held out 5% of samples from433

each collection locality as a test set. Last, for humans we used 10Mbp windows and selected three434

individuals from each HGDP population to hold out as a test set. Window sizes in each case were435

chosen to include roughly 100,000–200,000 SNPs per window. All empirical analyses were run436

with default settings (10×256 network size, patience 100, 25% dropout, a random 10% of training437

samples used for validation).438

We also tested Locator’s performance with empirical data when the true location is not rep-439

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.872051doi: bioRxiv preprint 

https://www.malariagen.net/data/ag1000g-phase1-ar3
https://www.malariagen.net/data/ag1000g-phase1-ar3
https://www.malariagen.net/data/ag1000g-phase1-ar3
https://www.malariagen.net/resource/26
ftp://ngs.sanger.ac.uk/production/hgdp
https://www.malariagen.net/data/pf3K-5
https://doi.org/10.1101/2019.12.11.872051
http://creativecommons.org/licenses/by/4.0/


Battey et al. 2019 Locator

resented in the training sample. To do this we ran a series of models on 10,000 SNPs randomly440

selected from the first 5Mbp of chromosome 2L in the Anopheles data. For each run we held out all441

samples from a given sampling locality from the training set, then predicted the locations of these442

individuals using the trained model. We also tested this approach while holding out all samples443

collected in a given country, which eliminates even nearby localities from the training set.444

Data & Code445

Locator is implemented as a command-line program written in Python: www.github.com/kern-lab/446

locator. SNP calls for the Anopheles dataset are available at https://www.malariagen.net/447

data/ag1000g-phase1-ar3, for P. falciparum at https://www.malariagen.net/resource/26,448

and for the HGDP at ftp://ngs.sanger.ac.uk/production/hgdp. This publication uses data449

from the MalariaGEN Plasmodium falciparum Community Project as described in Pearson et al.450

(2019). Statistical analyses and many plots were produced in R (R Core Team, 2018).451
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Appendix 1: Theoretical limits on accuracy625

Suppose that we know the spatial locations of some relatives of a given individual, and want to626

predict the location of that focal individual. This is a best-case scenario for our actual problem, as627

in fact we would have to infer the degrees of relatedness of the reference set to the focal individual,628

but the calculations are useful in establishing a lower bound on the resolution of inference.629

Suppose furthermore that the displacement in spatial position along each parent-child rela-630

tionship has mean zero and variance σ, so that the net distance traveled along any path along k631

links in the pedigree has mean zero and variance kσ. Given the location of n relatives of a focal632

individual, a simple estimator of that individual’s spatial location is simply the average of their633

locations. How well does this do?634

We can associate each link between parent p and child c in the pedigree with the displacement
between them, Xpc = −Xcp; we have assumed that var[Xcp] = σ2 for each. Suppose that the ith

relative can be reached by traversing relatives ri1, . . . , riki , and so their location relative to the
focal individual is Yi = Xri1,ri2 + · · · + Xri(ki−1),riki

. To compute the variance of our estimator,

Ȳ =
∑n

i=1 Yi/n, let ncp be the number of i for which Xcp appears in the sum for Yi, so that
Ȳ =

∑
cp ncpXcp/n. Then, simply, var[Ȳ ] =

∑
cp(ncp/n)2Xcp. For instance, if those relatives are

all 2k ancestors k generations ago (i.e., the greatk−2-grandparents) of the focal individual, then
each of the 2` links between the `th and (` − 1)th generations are traversed by 2k−` of the paths,
and so

var[Ȳ ] =
k∑

`=1

2`
(

2k−`

2k

)2

σ2 = (1 − 2−k)σ2.

Clearly, with less full pedigree coverage and more distant relatives, the error would become worse,635

but it does not depend strongly on the degree of relatedness used: in general, using a few close or636

many distant relatives should give an estimate of location within some moderate factor of σ.637
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Supplementary Figures and Tables638

Neighborhood
Size

Expected dispersal
(map units/gen)

Error (map units)
mean (95% interval)

Error
(generations)

13 0.45 1.84 (0.259-3.633) 4.09
25 0.63 2.44 (0.388-6.033) 3.87

105 1.29 4.07 (0.685-8.874) 3.16
251 2.00 6.44 (0.639-14.526) 3.22
565 3.00 9.70 (0.871-21.146) 3.23

Table S1: Validation error in terms of map units and generations of dispersal for Locator runs in
simulations with 450 training samples and 100,000 SNPs.

Species kernel peak error (km) centroid error (km)
median (90% interval)

Plasmodium falciparum 16.92 (1.357 - 892.751) 218.98 (16.186 - 978.691)
Anopheles gambiae/coluzzii 5.69 (0.52 - 654.66) 36.03 (2.27 - 1579.79)

Homo sapiens 84.97 (4.42 - 2826.33) 452.62 (37.67 - 2178.94)

Table S2: Test error for windowed analyses of empirical datasets using the location with highest
kernel density and the centroid of per-window predictions, as median (90% interval).
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Figure S1: Example training and validation loss histories for a run on a single window of the
dispersal=0.63 simulation. Epochs are shown on the horizontal axis and normalized loss on the
vertical axis. The first three epochs (with very high loss) were excluded from the plot to improve
axis scaling.
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Figure S2: Validation error for Locator runs on simulations with varying dispersal distance,
expressed in generations of mean dispersal (test error divided by mean dispersal distance per
generation). A: Error for runs with 100,000 SNPs and varying numbers of training samples. B:
Error for runs with 450 training samples and varying number of SNPs.
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Figure S3: Comparison of cross-validation performance on the ag1000g dataset using SNPs from
chromosome 3R, under varying network architectures and numbers of SNPs. Boxplots show the
distribution of Euclidean distance between the true and predicted locations of validation samples
across 10 replicate training runs. Network shapes are described on the horizontal axis as “layers ×
width”. Though 2-layer networks are typically the least accurate, no single architecture provides
consistently better performance across datasets of different sizes. Missing networks required over
12GB GPU RAM.
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Figure S4: Predicted and true locations for 8 individuals simulated in a population with an expected
dispersal rate of 0.63 map units / generation, using a set of 10,000 randomly sampled SNPs. Here
we generate predictions (black points) from bootstrap samples of the complete genotype matrix
(in contrast to using separate sets of SNPs extracted from windows as used for figures in the main
text). This could be useful for low-density genotyping data from approaches like ddRADseq, or
when users lack a reference genome for windowing. In this setting we see that the distribution of
predictions is much smaller than fitting individual windows.
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Figure S5: Predicted (colored points) and true (black circles) locations for Locator and SPASIBA
on the ag1000g dataset. Number of SNPs per run is shown on the right. Both methods were run
on randomly selected SNPs with minor allele count > 2 from the first five million base pairs of
chromosome 2L.
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Figure S6: Centroid prediction error as a function of within-host diversity (FWS) for the Plasmod-
ium falciparum dataset. FWS scales from 0 (maximum complexity) to 1 (minimum complexity).
The blue line shows a linear regression (p < 2.2e−16, R2 = 0.006, slope = 148.1). High within-host
diversity does not appear to explain outliers in Locator’s prediction error.

Figure S7: Performance on 10,000 SNPs from chromosome 2L in the ag1000g phase 1 dataset when
all samples from localities in the true country are dropped from the training set.
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Figure S8: Performance on 10,000 SNPs from chromosome 2L in the ag1000g phase 1 dataset when
all samples from the true locality are dropped from the training set.
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Figure S9: Outliers in windowed Locator analyses identify genomic regions enriched for admixed
ancestry. A: Windowed Locator predictions for Maya sample HGDP00871. B: PCAs of all HGDP
samples run on SNPs extracted from windows with predicted locations in western Europe (left) and
west Africa (right). In these windows sample HGDP00871 (open points) clusters with individuals
from region predicted by Locator in PC space, rather than with other genomes from the Americas.
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