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Abstract 

Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder characterized 

by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which 

genes are associated with the aetiology of FTD (C9orf72, GRN and MAPT), the biological 

basis of how mutations in these genes lead to cell loss in specific cortical regions remains 

unclear. In this work we combined gene expression data for 16,912 genes from the Allen 

Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic 

C9orf72, GRN and MAPT carriers obtained from the Genetic FTD Initiative study. A set of 

405 and 250 genes showed significant positive and negative correlation, respectively, with 

atrophy patterns in all three maps. The gene set with increased expression in spared cortical 

regions, i.e., signaling regional resilience to atrophy, is enriched for neuronal genes, while the 

gene set with increased expression in atrophied regions, i.e., signaling regional vulnerability, 

is enriched for astrocyte genes. Notably, these results extend earlier findings from proteomic 

analyses in the same cortical regions of interest comparing healthy controls and patients with 

FTD. Thus, our analysis indicates that cortical regions showing the most severe atrophy in 

genetic FTD are those with the highest astrocyte density in healthy subjects. Therefore, 

astrocytes may play a more active role in the onset of neurodegeneration in FTD than 

previously assumed, e.g., through emergence of neurotoxic (A1) astrocytes.  
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Abbreviated summary (50 words): 

Altmann et al. investigated the concordance between spatial cortical gene expression in 

healthy subjects and atrophy patterns in genetic frontotemporal dementia. They found that 

gene expression of astrocyte-related genes was higher in regions with atrophy. Thus, 

suggesting a more active role of astrocytes in the onset of neurodegeneration.   
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Abbreviations 
 
AIBS  Allen Institute for Brain Science 
C9orf72 Chromosome 9 open reading frame 72 gene  
EWCE  Expression Weighted Cell-type Enrichment 
FTD  Frontotemporal dementia 
GENFI  Genetic FTD Initiative 
GFAP  glial fibrillary acidic protein 
GO  Gene Ontology 
GRN  Progrenulin gene 
LME  Linear Mixed Effects 
LSD  Lysosomal Storage Disorder 
MAPT  tau gene 
MNI  Montreal Neurological Institute and Hospital 
NCL  neuronal ceroid lipofuscinosis 
OR  Odds Ratio 
VBM  Voxel Based Morphometry 
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Introduction 

Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder characterized 

by neuronal loss in the frontal and temporal lobes, with clinical symptoms including 

behavioral, language and motor deficits (Seelaar et al., 2011). Around 30% of FTD is 

familial, most commonly caused by autosomal dominant genetic mutations in one of three 

genes: progranulin (GRN), microtubule-associated protein tau (MAPT) or chromosome 9 

open reading frame 72 (C9orf72) (Rohrer et al., 2009). Despite progress in understanding the 

pathophysiological basis of genetic FTD, the biological basis of how mutations in these genes 

leads to cell loss in specific cortical regions and subsequently to specific clinical phenotypes 

is unclear.  

 

An alternative approach to elucidate the molecular biology of autosomal dominant FTD is to 

study the gene expression profiles of brain regions which are atrophic in symptomatic 

mutation carriers. This approach has been enabled by publicly available data from the Allen 

Institute for Brain Science (AIBS) which features post-mortem high-resolution brain-wide 

gene expression data from cognitively normal individuals (Hawrylycz et al., 2012). In recent 

years the AIBS atlas has been successfully integrated with brain maps obtained from case-

control studies. For instance, one study investigated the link between gene expression and 

both regional patterns of atrophy and amyloid deposition, finding a positive correlation of 

APP gene expression and amyloid (Grothe et al., 2018). A transcriptional analysis of cortical 

regions vulnerable to cortical thinning in the common epilepsies implicated microglia 

(Altmann et al., 2018). In the broader FTD context, Rittman et al. (2016) studied the 

expression of MAPT in the context of Parkinson’s disease and progressive supranuclear 

palsy. 

 

In this work we combine gene expression data from the AIBS atlas with brain maps of gray 

matter atrophy in symptomatic C9orf72, GRN and MAPT mutation carriers from the Genetic 

FTD Initiative (GENFI) compared with non-carriers (Cash et al., 2017). The aim of this study 

was to investigate the molecular basis of the atrophy pattern in mutation carriers. We firstly 

investigated the spatial overlap between gray matter atrophy in each of the three genetic 

groups and the gene expression of the corresponding gene. Secondly, we aimed to identify 

which genes showed a high spatial correspondence between their expression throughout the 

brain and the atrophy pattern in each genetic group. We hypothesized that these genes or 
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groups of genes may implicate molecular processes or brain cell types that explain why these 

regions are particularly vulnerable in FTD. 
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Methods 

 

Allen Human Brain Atlas Data 

We used the brain-wide microarray gene expression data generated by the Allen Institute for 

Brain Science (AIBS) (downloaded from http://human.brain-map.org/) (Hawrylycz et al., 

2012). The dataset consists of a total of 3,702 microarray samples from six donors (one 

female). Each sample comprised 58,692 gene probes and provides coordinates in MNI152 

space. The gene expression data have been normalized and corrected for batch effects by the 

Allen Institute (‘TECHNICAL WHITE PAPER: MICROARRAY DATA 

NORMALIZATION’, n.d.). We first restricted the set of samples to cortical regions based on 

the provided slab type (‘cortex’), retaining only samples with a maximal distance of 2mm to 

a cortical region of interest (ROI) obtained by a parcellation (Cardoso et al., 2015) of the 

study template used in Cash et al. (2017) leaving 1,654 microarray samples in total. Next, as 

previously described (Richiardi et al., 2015) we reannotated all microarray probe sequences 

with gene names using Re-Annotator (Arloth et al., 2015). We excluded probes that sampled 

more than one gene (N=6,434), were mapped to intergenic regions (N=91) or could not be 

mapped to any genomic region (N=1,569), leaving 50,598 probes covering 19,980 unique 

genes. Furthermore, we removed probes that were marked as expressed in less than 300 of 

the 1,654 cortical samples (N=12,082). Thus, the analysis was carried out using 37,031 

microarray probes covering 16,912 distinct genes. Further, since the majority of the samples 

were obtained from the left hemisphere, and the high correlation between right and left 

hemisphere gene expression (Hawrylycz et al., 2012), we attributed all right hemisphere 

samples to the left hemisphere by mirroring the MNI coordinate at the x-axis. 

 

Image data preparation 

In order to quantify the amount of atrophy in carriers of FTD mutations, we used results from 

a voxel-based morphometry (VBM) analysis of the GENFI dataset (Cash et al., 2017). In 

particular, in this analysis we used the maps showing the voxel-wise t-statistic (t-maps) 

comparing symptomatic mutation carriers (MAPT: N=10; GRN: N=12; C9orf72: N=25) to 

non-carriers (N=144) (Figure 1; top). Here, higher t-scores signify more atrophy in the 

symptomatic group analysis. A mean bias corrected image from all the normalized T1 images 

in the GENFI study served as a study template. This template was warped into MNI space 

using the non-rigid registration based on fast free form deformation implemented in 
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NiftyReg (version 10.4.15) (Modat et al., 2010). The obtained transformation was then 

applied to each of the three t-maps. For each MNI coordinate of the eligible cortical gene 

expression samples we located the corresponding voxel in the t-map and extracted a 3x3x3 

voxel cube of t-values centered on that MNI coordinate, then the t-score corresponding to a 

gene expression sample was computed as the mean of the non-zero values in the 3x3x3 cube. 

This was done in order to accommodate uncertainties in registration. This procedure was 

carried out for each of the three t-maps and resulted in a 1,654 by three matrix, i.e., each gene 

expression sample was linked to three t-scores from the VBM analysis (one for each FTD 

gene).  

 

Association analysis 

The overall analysis is depicted in Figure 1. We analyzed the association between atrophy 

and gene expression in a non-parametric fashion. For a given atrophy map and a given probe, 

we computed the Spearman (or rank) correlation (ρ) between the local t-score and the gene 

expression level separately for each of the six donors. We computed separate P-values for 

positive and negative correlation using the cor.test function in R with one-sided 

hypotheses, respectively. Next, we combined the six p-values for positive correlations into a 

single meta p-value (P+) using the sum of Z scores method. The process was repeated for the 

six p-values for negative correlations (P-). On purpose, we did not use a weighted approach in 

order to avoid over-emphasizing the impact of donors with more gene expression samples. 

This procedure was carried out for each for the 37,031 probes and each of the three genetic 

group atrophy maps. P-values in each of the six resulting lists were corrected for multiple 

testing using the method by Holm (Holm, 1979). Significantly positively correlated genes 

(i.e., higher gene expression is linked to higher atrophy) were those where any probe 

targeting the gene reached a holm-corrected p-value < 0.05 for positive correlations (P+
Holm < 

0.05); likewise significantly negatively correlated genes (i.e., higher gene expression is linked 

to lower atrophy) were required to have a holm-corrected p-value < 0.05 for negative 

correlations (P-
Holm < 0.05) for any of the probes targeting that gene. We also created two 

overlap lists, one containing the overlap of genes in the three positive lists, the other the 

overlap of genes in all three negative lists. In the following we refer to these two lists as 

consensus lists. The entire analysis was repeated using a linear mixed effects models (lme4 

package in R (Bates et al., 2015)) for testing the association between gene expression and 

atrophy. In this analysis the local VBM t-score and donor were the fixed effect and the 

random effect, respectively. Due to high agreement between the results produced by the two 
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association approaches, results based on the Spearman correlation analysis will be reported, 

since it is the approach with the least model assumptions.  

 

Overrepresentation analysis 

In order to identify cellular pathways or cellular processes and cell type signature genes that 

may be enriched in the significant gene lists, we conducted an overrepresentation analysis. 

We obtained the following gene sets and gene ontologies from the MSigDB database version 

6.1 (date accessed 11/23/2017): KEGG (N=186 pathways), REACTOME (N=674 pathways) 

and Gene Ontology (N=5,917 ontologies). We used Fisher’s exact test to compute the p-value 

for overrepresentation of genes in a given set. All tests were carried out using the 16,912 

cortex expressed genes as the background set. For each of the six gene lists (i.e., two per FTD 

gene) we corrected the p-values using the FDR across all 6,777 pathways and ontologies. 

 

In addition to enrichment analysis for GO terms and pathways we used marker gene lists for 

six brain cell-types obtained from RNA sequencing of purified human cells (Zhang et al., 

2016) to determine if the expressed genes implicate a specific class of brain cell types.  

 

Expression Weighted Cell-Type Enrichment 

In an additional analysis we sought to identify potential brain cell types that were implicated 

by all three FTD genes. To this end we conducted Expression Weighted Cell-type 

Enrichment (EWCE) analysis (Skene and Grant, 2016) on the two consensus lists using a 

recently published dataset of brain single-cell sequencing data in the mouse brain that 

identified 265 different cell types (www.mousebrain.org) (Zeisel et al., 2018). From this 

dataset we removed 76 cell types that were not directly brain related (e.g., cell belonging to 

enteric nervous system or the spinal cord), leaving 189 different cell-type signatures. Each of 

the cell types is also attributed with a high-level annotation (astrocytes, ependymal, immune, 

neurons, oligos, vascular). In brief, from the single cell mouse dataset we used only genes 

that had a unique human homolog (1-to-1 mapping). Then, we analyzed the two consensus 

lists separately for high-level cell type enrichment using EWCE with correction for gene 

length and GC content. P-values are based on 100,000 permutations and enrichment P-values 

were corrected for multiple testing using the FDR method. We used the available R package 

for EWCE.  
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Results 

We tested 16,912 genes (from 37,031 microarray probes) for their association with atrophy 

pattern across the cortex in genetic FTD using two different approaches (Figure 1). The 

Spearman rank correlation approach showed a high agreement with the LME-based analysis: 

the Pearson’s correlation coefficient between the two sets of -log10 p-values for each FTD 

gene ranged from 0.925 to 0.959. The numbers of significant probes (PHolm<0.05) and genes 

with their direction for each of the three FTD genes are listed in Table 1. The association 

results per probe are available as supplementary material (Dataset S1).  

 

C9orf72 

The strongest association between C9orf72 and the atrophy pattern in symptomatic C9orf72 

repeat extension carriers was measured with microarray probe A_23_P405873, which 

showed a negative Spearman correlation ρ=-0.0973 (Puncor=0.00076; Figure 2).  

 

The most negatively associated gene was NEFH (neurofilament heavy; represented by probe 

CUST_463_PI416408490; ρ=-0.35; P=2.53e-56; Figure 2; Dataset S1). Other negatively 

correlated genes included those encoding synaptic (SYT2, VAMP1) and ion channel proteins 

(KCNA1, SCN4B) (Table 2). Top-ranked gene sets based on the significantly negatively 

correlated genes include genes related to mitochondria (GO_MITOCHONDRIAL_PART; 

OR=2.73; PFDR=2.32e-24) and the respiratory chain (GO_RESPIRATORY_CHAIN; 

OR=9.78; PFDR=1.11e-17; Dataset S2). Notably, KEGG pathways for neurodegenerative 

disorders were highly enriched (KEGG_PARKINSONS_DISEASE OR=7.03 PFDR=2.60e-17; 

KEGG_HUNTINGTONS_DISEASE OR=4.81 PFDR=3.69e-15; 

KEGG_ALZHEIMERS_DISEASE OR=5.50 PFDR=4.67e-17). Among brain cell types, there 

was a strong enrichment for neuronal genes (OR=2.57; P=2.83e-37; Dataset S3).  

 

Among the most significantly positively correlated genes were ion channel related genes such 

as KCNG1 (ρ=0.31; P=2.92e-45), SCN9A (ρ=0.32; P=8.42e-43) and KCTD4 (ρ=0.32; 

P=1.46e-44). Top-ranked GO terms for positively correlated genes included cell-cell 

signaling (GO_CELL_CELL_SIGNALLING, OR=2.31, PFDR=2.43e-10; Dataset S2). Among 

brain cell types, there was a strong enrichment for genes associated with mature astrocytes 

(OR=4.92; P=2.2e-70) as well as neuronal genes (OR=2.05; P=4.43e-20; Dataset S3).  
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GRN 

The strongest association between GRN expression and the atrophy pattern in symptomatic 

GRN mutation carriers was measured with microarray probe A_23_P49708, which showed a 

positive Spearman correlation ρ=0.0587 (Puncor=0.0013; Figure 2).  

 

Negatively associated genes include those encoding synaptic proteins (SLC17A, Table 2). For 

the negatively correlated genes, none of the tested gene sets showed statistically significant 

enrichment after multiple testing correction (Dataset S2). However, among brain cell types, 

there was a strong enrichment for neuronal genes (OR=2.77; P=8.61e-22; Dataset S3).  

 

Positively associated genes included those encoding proteins involved in the immune 

response (CD6, WFDC1, SPON2). Top-ranked GO terms (Dataset S2) for positively 

correlated genes are related to tissue development, (GO_TISSUE_DEVELOPMENT OR=2.2 

PFDR=2.58e-12), the extracellular matrix (GO_EXTRACELLULAR_MATRIX OR=3.28 

PFDR=1.4e-10) and response to wounding (GO_RESPONSE_TO_WOUNDING OR=2.51 

PFDR=2.10e-07). Again, genes related to mature astrocytes showed the strongest enrichment 

(OR=3.34; P=8.23e-28), followed by endothelial cells (OR=2.17; P=2.59e-06) and weak 

enrichment for neuron related genes (OR=1.28; P=0.0076; Dataset S3).  

 

MAPT 

The strongest association between MAPT expression and the atrophy pattern in symptomatic 

MAPT mutation carriers was measured with microarray probe CUST_449_PI416408490, 

which showed a positive Spearman correlation ρ=0.0831 (Puncor=1.96e-07; Figure 2).  

 

Among the most significantly negatively correlated genes were those encoding ion channels 

(SCN1B, SCN1A, SLC24A2, Table 2). As in the case of C9orf72, the significantly negatively 

correlated genes showed enrichment for mitochondria (GO_MITOCHONDRIAL_PART; 

OR=1.69; PFDR=6.06e-09) and cellular respiration (GO_CELLULAR_RESPIRATION; 

OR=3.11; PFDR=1.07e-07; Dataset S2). Notably, neuron related genes were strongly enriched 

(OR=1.85; P=1.59e-26) as well as genes associated with neurodegenerative disorders in 

KEGG (KEGG_PARKINSON OR=3.19 PFDR=1.23e-06; KEGG_ALZHEIMERS_DISEASE 

OR=2.49 PFDR=1.97e-05; KEGG_HUNTINGTONS_DISEASE OR=2.36 PFDR=3.17e-05). 
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Significantly positively associated genes included those encoding ion channels (KCTD4, 

SCN9A). Significantly positively correlated genes are enriched for cell movement 

(GO_MOVEMENT_OF_CELL_OR_SUBCELLULAR_COMPONENT; OR=1.63, 

PFDR=4.66e-09) and neuron projection (GO_NEURON_PROJECTION_DEVELOPMENT; 

OR=1.90; PFDR=5.34e-08). Furthermore, the positively correlated genes were enriched for 

genes related to mature astrocytes (OR=4.66, P=1.43e-90), microglia (OR=1.88, P=2.63e-16) 

and for neurons (OR=1.48, P=1.66e-10; Dataset S3).  

 

Cell-type analysis 

From the gene lists obtained for each of the FTD gene atrophy maps we created two 

consensus lists: one comprising 405 genes that were significantly positively correlated with 

atrophy in all three FTD genes and one list comprising the 250 genes that were significantly 

negatively correlated in all three maps (Figure 1). Using these lists, we aimed to identify a 

common theme underlying the atrophy in the three causative genes. In particular, we used 

EWCE paired with high resolution cell specific murine gene expression profiles to identify 

specific cell-types that are enriched in genes that showed significant correlations with atrophy 

in all three FTD maps. EWCE was executed twice, once using 189 cell-type annotations and 

once using high-level annotations. The high-level analysis EWCE showed a strong 

enrichment for astrocyte marker genes (Figure 3; Z-score=5.75; P<0.00001) and a borderline 

enrichment for ependymal marker genes (Z-score=2.76; P=0.004) among genes with positive 

correlation to atrophy severity. Genes negatively correlated with atrophy were enriched for 

neuronal marker genes (Z-score=6.58; P<0.00001). These results were confirmed using cell-

type marker genes derived from RNA sequencing of purified human cells (Zhang et al., 

2016) (Figure 3; right column).  

 

 

 

Discussion 

We investigated the gene expression correlates of the cortical regions specifically atrophic in 

the three main genetic causes of FTD (MAPT, C9orf72, GRN). Overall, the analysis showed 

that the most atrophic cortical regions in symptomatic mutation carriers have a markedly 

different gene expression profile in the six cognitively normal subjects from the AIBS gene 

expression dataset. The type of gene expression profiling used in AIBS is based on measuring 
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bulk expression of tissue samples, i.e., a group of diverse cell types is sampled at once and 

the resulting expression profile represents the group average of this set of cells and their 

states. Thus, in this type of analysis, genes positively correlated with atrophy indicate 

potential cellular processes and cell types that promote atrophy in genetic FTD. Conversely, 

genes that are negatively correlated with atrophy indicate potential cellular processes and cell 

types that confer resilience to disease-related neurodegeneration. Whilst there is no 

association with expression of the gene itself (i.e., GRN, MAPT and C9orf72) in each form of 

genetic FTD, our analysis revealed that groups of genes commonly associated with astrocytes 

showed higher expression levels in regions with more atrophy and genes commonly 

associated with neurons showed higher expression levels in the relatively spared regions.  

 

Astrocytes are the most abundant cell-type in the human CNS and they carry out a plethora of 

functions including biochemical support for the blood-brain barrier-forming endothelial cells, 

trophic support for neurons, regulation of extracellular ion balance and participation in repair 

and scarring processes of the brain following injuries. Astrocytes reacting to injuries in the 

central nervous system, reactive astrocytes, are characterized by expression of glial fibrillary 

acidic protein (GFAP). Depending on the context, such reactive GFAP+-astrocytes can be 

neurotoxic (Liddelow and Barres, 2015; Liddelow et al., 2017) or neuroprotective (Anderson 

et al., 2016). There are already multiple lines of evidence linking astrocyte (dys-)function to 

neurodegeneration (Rodríguez et al., 2009; Phatnani and Maniatis, 2015; Sofroniew, 2015) 

and to FTD in particular. For instance, histopathological studies in FTD have shown that 

severity of astrocytosis and astrocytic apoptosis correlated with the degree of neuronal loss as 

well as with the stage of the disease, while at the same time neuronal apoptosis was rare 

(Broe et al., 2004). In addition, astrocyte reactivity appears to be region specific in that 

higher numbers of reactive (GFAP+) astrocytes were found in the frontal and temporal 

cortices of FTD patients compared to controls (Martinac et al., 2001). These observations 

extend to the CSF where levels of GFAP were increased in various neurodegenerative 

disorders compared to cognitively normal adults with the highest levels in FTD patients 

(Ishiki et al., 2016). Martinac et al. (2001) found that degrading astrocytes were inversely 

correlated with cerebral blood flow in FTD. However, more importantly, astrocytes derived 

from induced pluripotent stem cells of patients with mutations in MAPT were found to 

demonstrate increased vulnerability to oxidative stress and exhibit disease-associated gene-

expression changes (Hallmann et al., 2017). Co-culture experiments of such modified FTD 
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astrocytes with previously healthy neurons led, among other things, to increased oxidative 

stress in these neurons.  

 

Hence, taken together astrocyte reactivity and activation of GFAP co-occur with disease 

onset and disease progression in FTD, but could astrocytes dysfunction alone be the initiator 

for neurodegeneration in FTD? The answer may lie partially in the lysosomes of astrocytes: 

studies have demonstrated that neuronal cell-derived proteins such as α-synuclein can be 

transferred to close-by astrocytes via endocytosis and that these proteins are destined for 

degradation in the astrocytes’ lysosome (Lee et al., 2010). Likewise, astrocytes are known to 

bind and degrade extracellular amyloid-β, a key player in Alzheimer’s disease (Wyss-Coray 

et al., 2003; Koistinaho et al., 2004). Recent work established a strong link of both 

Parkinson’s disease and FTD with lysosomal storage disorders (LSDs) (Deng et al., 2015; 

Burbulla et al., 2017; Evers et al., 2017). LSDs are a large group of rare inherited metabolic 

disorders with defective lysosome function resulting in faulty degradation and recycling of 

cellular constituents. Intriguingly, mutations in the familial Parkinson’s disease gene GBA 

and the familial FTD gene GRN cause the LSDs Gaucher Disease and neuronal ceroid 

lipofuscinosis (NCL), respectively (Ward et al., 2017). Mounting evidence suggests that 

astrocyte dysfunction alone is sufficient to trigger neurodegeneration in LSDs (Rama Rao 

and Kielian, 2016). For instance, in a mouse model astrocyte-specific deletion of Sumf1 in 

vivo induced severe lysosomal storage dysfunction in these astrocytes, which in turn was 

sufficient to induce degeneration of cortical neurons in vivo (Di Malta et al., 2012). More 

importantly, though, one of the three FTD genes, GRN, is also known to cause NCL (Ward et 

al., 2017) and recent work posits that lysosomal dysfunction is a central disease process in 

GRN-associated FTD (Ward et al., 2017). Indeed, GRN is increasingly associated with 

regulating the formation and function of the lysosome (Kao et al., 2017). In addition, the 

transcription of GRN is co-regulated with other lysosomal genes (Belcastro et al., 2011).  

 

In addition to detecting higher levels of astrocyte-related genes in regions with 

neurodegeneration in FTD, we found that genes associated with neurons are more enriched in 

brain regions that are spared in FTD. Moreover, for the MAPT and C9orf72 atrophy maps we 

additionally noted enrichment for genes that are associated with mitochondria, particularly 

cellular respiration, in regions that are not affected by atrophy. These results confirm earlier 

results from an unbiased proteomic screen of tissue samples where the modules related to 

synapse (M1), mitochondrion (M3) and neuron differentiation (M8) showed negative 
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correlations with clinicopathological traits in FTD, i.e., these three modules were consistently 

negatively correlated with FTD pathology (Umoh et al., 2018). Consistent with our results, 

there was a positive correlation of astrocyte specific modules (M5: Extracellular matrix and 

M6: Response to biotic stimulus) with clinicopathological traits. While Umoh et al. (2018) 

interpreted the negative (and positive) correlations in part with a disease-related shift in cell 

population in the sampled ROIs, our results extend this observation to regional cell type 

densities since the gene expression samples were obtained from six cognitively normal 

subjects. 

 

Lastly, in the GRN group only, there was a positive correlation with a number of genes 

involved in the immune response (CD6, WFDC1, SPON2), i.e., these were associated with 

the GRN-associated FTD pattern of atrophy. This is consistent with previous work showing 

that inflammation and microglial activation have an aetiological role in GRN-associated FTD 

(Bossù et al., 2011; Martens et al., 2012). 

 

In summary, our analysis indicates that cortical regions showing the most severe atrophy in 

genetic FTD are those with the highest astrocyte density in healthy subjects. Therefore, 

astrocytes may have a more active role in the onset of neurodegeneration in FTD than 

previously assumed. This fits with recent findings of neurotoxic potential of astrocytes 

(Liddelow et al., 2017). We hypothesize that the distinct regional atrophy pattern in genetic 

FTD may be driven by regions with naturally increased astrocyte density where these 

universal astrocyte neurotoxic effects come to bear with higher frequency. Thus, 

neurodegeneration may be the result of the toxic combination of increased potential for 

lysosomal storage in astrocytes caused by FTD mutations and age-related increase in 

neurotoxic (A1) and senescent astrocytes, which lost many normal astrocytic functions.  
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Figures 

Figure 1: Analysis overview. Starting point of the analysis are the statistical maps from 

voxel-based morphometry analyses (VBM) comparing healthy controls and symptomatic 

FTD mutation carriers in C9orf72, GRN and MAPT from Cash et al. (2017). For each 

statistical map the spatial correlation with the expression levels 16,912 genes (represented by 

37,031 gene expression probes) is computed using data from the Allen Institute for Brain 

Science (AIBS) gene expression atlas. The resulting gene ranking provides lists of genes that 

are either significantly (PHolm<0.05) positively or negatively correlated with the atrophy 
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pattern. Two consensus lists are generated from the three lists of positively correlated and 

negatively correlated genes, respectively. Resulting gene lists are analyzed for enrichment of 

signature genes for brain cell types, such as neurons, microglia or astrocytes, and biological 

pathways.  
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Figure 2: Selected scatterplots between t-scores and gene expression levels. Rows 

correspond to the three different FTD genes (C9orf72, GRN and MAPT). X-axes show to the 

t-value in the corresponding statistical VBM maps (Figure 1) from Cash et al. (2017) at 

positions where microarray samples were obtained in the AIBS atlas; the y-axes represent the 

expression levels in the AIBS atlas for the gene named at the top of the scatter plot. Each 

point represents one microarray sample and the color indicates the donor ID. In the first 

column expression of the corresponding FTD genes is studied: C9orf72 (A_23_P405873), 

GRN (A_23_P49708) and MAPT (CUST_449_PI416408490). The second column shows the 

most strongly negatively correlated genes, i.e., genes with high expression in brain regions 
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showing little atrophy: NEFH (CUST_463_PI416408490), MET (A_23_P359245) and 

KCNS1 (A_23_P321846). The third column shows the genes where expression level and 

atrophy positively correlate the strongest: RSPH9 (CUST_12355_PI416261804), CBLN2 

(A_23_P15889), KCTD4 (A_23_P48325).  
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Figure 3: Cell-type enrichment in consensus gene lists. Two different methods are used to 

investigate cell type signatures in the two consensus lists. The left panels use the Expression 

Weighted Cell-type Enrichment (EWCE) method together with single-cell RNA sequencing 

data from mouse brains (Zeisel et al., 2018); the enrichment is provided as a z-score (i.e., 

standard deviations (SD) from the mean). The right panels use a classic over-representation 

analysis based on Fisher’s exact test with cell-type signature genes obtained from bulk RNA 

sequencing of purified human cells (Zhang et al., 2016). Both approaches demonstrate a 

strong neuronal signal in negatively correlated genes (upper panels) and a strong astrocyte 

signature in positively correlated genes (lower panels). 
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Tables 

 

Table 1: Numbers of significant probes and genes and their direction of association after 

holm correction. Rows correspond to the three genes and an overlap between all three lists. 

 

 Probes Genes 

 positive negative positive negative 

C9orf72 2,708 2,861 1,712 1,797 

GRN 1,740 1,081 1,141 729 

MAPT 6,210 7,528 3,792 4,469 

Overlap 607 310 405 250 
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Table 2: Top ten most positively and negatively correlated genes with atrophy patterns in 

genetic FTD.  

 

Rank C9orf72 GRN MAPT 

Negative Positive Negative Positive Negative Positive 

1 NEFH RSPH9 MET CBLN2 KCNS1 KCTD4 

2 EPN3 ANKRD6 KIAA1875 GAL NEFH IL13RA2 

3 SV2C LPPR4 SLC17A6 ASB2 HAPLN4 CPNE6 

4 SYT2 KCNG1 LXN RTP1 EPN3 LPPR4 

5 KCNA1 KCTD4 ARL9 RPH3AL RAB37 RSPH9 

6 KCNS1 BAIAP3 CPLX2 CD6 SCN1B ZCCHC12 

7 ARHGAP9 CPNE6 TMEM249 CTXN3 SCN1A LY6H 

8 PVALB SCN9A MBP PRRX1 ESRRG PNMT 

9 VAMP1 TENM3 BCL11A TGFBI EIF5A2 KCNG1 

10 CCDC64B PNMT TENM2 WFDC1 PVALB NECAB2 
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Supplementary information 

 

Dataset S1: Results from the spatial correlation analysis. This table shows for every 

eligible probe, the mapped gene name, the Spearman (or rank) correlation with the three 

separate t-maps, P+ values for positive correlation and P- values for negative correlation. 

 

Dataset S2: Enrichments for pathways. Each sheet in this table shows the results of the 

enrichment analysis for the six gene lists (genes positively and negatively correlated with 

atrophy, respectively). Columns represent the pathway name, the number of overlapping 

genes between list and pathway, the expected number of overlapping genes, the odds ratio 

(OR) and the overrepresentation p-value (including FDR-correction). 

 

Dataset S3: Enrichments for brain six cell-types. Enrichment analysis testing gene lists with 

significant positive or negative correlation for cell-type marker genes. Human cell-type gene 

lists for neurons (N), microglia (MG), mature astrocytes (MA), endothelial cells (EC), 

oligodendrocytes (OLG) and oligodendrocyte precursor cells (OPC) were obtained from 

Zhang et al. (2016). 
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Appendix:  

 

List of GENFI consortium authors: 

Caroline Greaves BSc1, Georgia Peakman MSc1, Rachelle Shafei MRCP1, Emily Todd 

Mres1, Martin N. Rossor MD FRCP1, Jason D. Warren PhD FRACP1, Nick C. Fox MD 

FRCP1,2, Henrik Zetterberg2, Rita Guerreiro PhD3, Jose Bras PhD3, Jennifer Nicholas PhD4, 

Simon Mead PhD5, Lize Jiskoot PhD6, Lieke Meeter MD6, Jessica Panman MSc6, Janne 

Papma PhD6, Rick van Minkelen PhD7, Yolanda Pijnenburg PhD8, Myriam Barandiaran 

PhD9,10, Begoña Indakoetxea MD9,10, Alazne Gabilondo MD10, Mikel Tainta MD10, Maria de 

Arriba BSc10, Ana Gorostidi PhD10, Miren Zulaica BSc10, Jorge Villanua MD PhD11 Zigor 

Diaz12, Sergi Borrego-Ecija MD13, Jaume Olives MSc13, Albert Lladó PhD13, Mircea Balasa 

PhD13, Anna Antonell PhD13, Nuria Bargallo PhD14, Enrico Premi MD15, Maura Cosseddu 

MPsych15, Stefano Gazzina MD15, Alessandro Padovani MD PhD15, Roberto Gasparotti 

MD16, Silvana Archetti MBiolSci17, Sandra Black MD19, Sara Mitchell MD19, Ekaterina 

Rogaeva PhD20, Morris Freedman MD21, Ron Keren MD22, David Tang-Wai MD23, Linn 

Öijerstedt MD24, Christin Andersson PhD25, Vesna Jelic MD26, Hakan Thonberg MD27, 

Andrea Arighi MD28,29, Chiara Fenoglio PhD28,29, Elio Scarpini MD28,29, Giorgio Fumagalli 

MD28,29,30, Thomas Cope MRCP31, Carolyn Timberlake BSc31, Timothy Rittman MRCP31, 

Christen Shoesmith MD32, Robart Bartha PhD33,34, Rosa Rademakers PhD35, Carlo Wilke 

MD36,37, Hans-Otto Karnarth MD38, Benjamin Bender MD39, Rose Bruffaerts MD PhD40, 

Philip Vandamme MD PhD41, Mathieu Vandenbulcke MD PhD42,43, Catarina B. Ferreira 

MSc44, Gabriel Miltenberger PhD45, Carolina Maruta MPsych PhD46, Ana Verdelho MD 

PhD47, Sónia Afonso BSc48, Ricardo Taipa MD PhD49, Paola Caroppo MD PhD50, Giuseppe 

Di Fede MD PhD50, Giorgio Giaccone MD50, Sara Prioni PsyD50, Veronica Redaelli MD50, 

Giacomina Rossi MSc50, Pietro Tiraboschi MD50, Diana Duro NPsych51, Maria Rosario 

Almeida PhD51, Miguel Castelo-Branco MD PhD51, Maria João Leitão BSc52, Miguel 

Tabuas-Pereira MD53, Beatriz Santiago MD53, Serge Gauthier MD56, Pedro Rosa-Neto MD 

PhD57, Michele Veldsman PhD58, Toby Flanagan BSc60, Catharina Prix MD61, Tobias 

Hoegen MD61, Elisabeth Wlasich Mag. rer. nat.61, Sandra Loosli MD61, Sonja Schonecker 

MD61, Elisa Semler Dr.hum.biol Dipl. Psych62, Sarah Anderl-Straub Dr.hum.biol 

Dipl.Psych62, Luisa Benussi PhD63, Giuliano Binetti MD63, Michela Pievani PhD63, Gemma 

Lombardi MD64, Benedetta Nacmias PhD64, Camilla Ferrari64, Valentina Bessi64, Cristina 

Polito65. 
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