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Abstract 8 

Summary: AlphaFamImpute is an imputation package for calling, phasing, and imputing genome-9 

wide genotypes in outbred full-sib families from single nucleotide polymorphism (SNP) array and 10 

genotype-by-sequencing (GBS) data. GBS data is increasingly being used to genotype individuals, 11 

especially when SNP arrays do not exist for a population of interest. Low-coverage GBS produces 12 

data with a large number of missing or incorrect naïve genotype calls, which can be improved by 13 

identifying shared haplotype segments between full-sib individuals. Here we present 14 

AlphaFamImpute, an algorithm specifically designed to exploit the genetic structure of full-sib 15 

families. It performs imputation using a two-step approach. In the first step it phases and imputes 16 

parental genotypes based on the segregation states of their offspring (that is, which pair of parental 17 

haplotypes the offspring inherited). In the second step it phases and imputes the offspring 18 

genotypes by detecting which haplotype segments the offspring inherited from their parents. With 19 

a series of simulations we find that AlphaFamImpute obtains high accuracy genotypes, even when 20 

the parents are not genotyped and individuals are sequenced at less than 1x coverage. 21 

Availability and implementation: AlphaFamImpute is available as a Python package from the 22 

AlphaGenes website, http://www.AlphaGenes.roslin.ed.ac.uk/AlphaFamImpute. 23 

Contact: awhalen@roslin.ed.ac.uk 24 

Supplementary information: A complete description of the methods is available in the 25 

supplementary information. 26 
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Introduction 28 

AlphaFamImpute is a software package for calling, phasing, and imputing genome-wide 29 

genotypes in full-sib families when individuals are genotyped with single nucleotide 30 

polymorphism (SNP) array or genotyping-by-sequencing (GBS) data. Many applications in 31 

genetics and breeding rely on the availability of low-cost high-accuracy genotypes. GBS is an 32 

alternative to SNP arrays (Baird et al., 2008; Davey et al., 2011; Elshire et al., 2011), where specific 33 

restriction enzymes are used to focus sequencing resources on a limited number of cut sites. GBS 34 

is particularly attractive for species without an existing SNP array or as a low-cost alternative to 35 

SNP arrays (e.g., Gorjanc et al., 2015, 2017). 36 

GBS data, and in particular low-coverage GBS data, suffers from a large proportion of 37 

missing or, when naively called, incorrect genotypes. Unlike SNP array data, where genotypes are 38 

called directly from the genotyping platform, with GBS data genotypes must be called from 39 

observed sequence reads. It is challenging to accurately call an individual’s genotype when no 40 

reads or a small number of reads are generated at a particular locus. Genotype calling accuracy can 41 

be increased by considering the haplotypes of other individuals in the population and detecting 42 

shared haplotype segments between individuals (Davies et al., 2016; Gorjanc et al., 2017). 43 

Some existing software packages can be used for genotype calling and imputation from 44 

GBS data, for example, Beagle (Browning and Browning, 2009), STITCH (Davies et al., 2016), 45 

AlphaPeel (Whalen et al., 2018) or magicimpute (Zheng et al., 2018). However, these software 46 

packages are not designed to exploit the pattern of haplotype sharing observed in large full-sib 47 

families. As with traditional imputation methods (e.g., Antolín et al., 2017; O’Connell et al., 2014), 48 

we expect that the accuracy of genotype calling, phasing, and imputation from GBS data is highest 49 

when population structure is taken into account. In the context of an outbred full-sib family, 50 
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imputation can be simplified by recognizing that we only need to consider the four parental 51 

haplotypes and identify of which pair of haplotypes the offspring inherited at each locus. Here we 52 

describe our software package AlphaFamImpute that leverages this particular population structure 53 

to improve the accuracy of calling, phasing and imputing genome-wide genotypes and which 54 

decreases run-time compared to existing methods. We focus on outbred full-sib families because 55 

this represents a population structure commonly found in research populations, and in animal and 56 

plant breeding programs. 57 

Method 58 

AlphaFamImpute performs imputation using a two-step approach. In the first step we call, 59 

phase and impute parental genotypes based on the segregation states of their offspring. Segregation 60 

states indicate which pair of parental haplotypes an individual inherits at each locus (Ferdosi et al., 61 

2014). We carry out this step iteratively. At each locus, we use the segregation states to project the 62 

offspring data to the corresponding parental haplotypes. We combine these parental haplotype 63 

estimates with the parents’ data to call parental genotypes at the locus. We then update the 64 

offspring segregation states based on the called parental genotypes. Unlike magicimpute (Zheng 65 

et al., 2018) or hsphase (Ferdosi et al., 2014), we treat the offspring genotype and segregation 66 

states probabilistically to account for uncertainty in the genetic data and the called parental 67 

haplotypes. In the second step we call, phase, and impute the offspring genotypes by detecting 68 

which haplotype segments the offspring inherit from their parents. This process is carried out using 69 

multi-locus iterative peeling (Whalen et al., 2018). For a detailed description of the approach, see 70 

the Supplementary Information. 71 

Our two-step approach builds closely on previous research. It can be interpreted as: (i) a 72 

sampling scheme for the multi-locus iterative peeling (Meuwissen and Goddard, 2010; Whalen et 73 
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al., 2018); (ii) a probabilistic extension of hsphase for full-sib GBS data (Ferdosi et al., 2014); or 74 

(iii) an adaptation of magicimpute to specifically handle low-coverage GBS data with outbred full-75 

sib individuals (Zheng et al., 2018). 76 

Software 77 

 AlphaFamImpute is written in Python 3 using the numpy (Walt et al., 2011) and numba 78 

(Lam et al., 2015) libraries. It runs on Windows, Linux, and Mac. As inputs, AlphaFamImpute 79 

takes in: (i) a genotype file or a sequence read count file, which respectively give the ordered 80 

genotypes or sequence read counts for each individual; (ii) a pedigree file which splits the 81 

population into full-sib families; and (iii) an optional map file which allows AlphaFamImpute to 82 

be run on multiple chromosomes simultaneously. AlphaFamImpute outputs either called 83 

genotypes or genotype dosages. 84 

Example 85 

We demonstrate the performance of AlphaFamImpute on a series of simulated datasets. 86 

Each dataset consisted of 100 full-sib families with outbred parents and either 4, 8, 20, 30, 50, or 87 

100 offspring per family. We generated parental haplotypes for 200 parents on a single 100 cM 88 

chromosome with 1,000 loci using MaCS (Chen et al., 2009) with an ancestral genetic history set 89 

to mimic cattle (Villa-Angulo et al., 2009). We then dropped the haplotypes through the pedigree 90 

of full-sib families using AlphaSimR (Gaynor et al., 2019). We generated GBS data by assuming 91 

the number of reads at each locus of an individual followed a Poisson distribution with mean equal 92 

to a coverage level of 0.5x, 1x, 2x, and 5x and that there was an 0.1% sequencing error rate. The 93 

parents either had no GBS data, had low-coverage GBS data at the same coverage as offspring, or 94 

had high-coverage (25x) GBS data. We measured imputation accuracy as the correlation between 95 
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an individual’s true genotype and their imputed genotype dosage averaged across 10 replicates of 96 

100 full-sib families. 97 

Figure 1 presents imputation accuracy across all of the simulations. Imputation accuracy 98 

increased with higher GBS coverage, a larger number of genotyped offspring, and more 99 

information on the parents. Imputation accuracy was high in a range of cases: if the parents were 100 

sequenced at high-coverage imputation accuracy was 0.995 with 15 offspring sequenced at 1x; if 101 

the parents were sequenced at the same coverage as the offspring, imputation accuracy was 0.990 102 

with 10 offspring sequenced at 2x; and if the parents had no data, imputation accuracy was 0.997 103 

with 20 offspring sequenced at 2x. 104 

The primary factor determining imputation accuracy was the total sequencing resources 105 

spent on a family. Low sequencing coverage on the parents could be compensated by sequencing 106 

additional offspring or sequencing those offspring at higher coverage. When only a few offspring 107 

were available this could be compensated by sequencing those offspring at higher coverage. 108 

The computational requirements of AlphaFamImpute were low. When imputing 100 full-109 

sib families with 100 offspring each (total 200 parents and 10,000 offspring) imputation took 106 110 

seconds and used 308 megabytes of memory for 1,000 loci on one chromosome. 111 

Conclusion 112 

In this paper, we have described the AlphaFamImpute software package for performing 113 

fast, high-accuracy calling, phasing and imputing genome-wide genotypes in full-sib families from 114 

GBS data. This program will improve the quality of genome-wide genotypes from low-coverage 115 

GBS in a range of research and breeding applications. 116 
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 176 

Figure 1. Imputation accuracy for full-sib offspring as a function of sequencing coverage, 177 

number of offspring, and parent sequencing coverage. 178 
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