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Abstract

Despite  the  importance  of  climate-adjusted  provenancing  to  mitigate  the  effects  of

environmental change, climatic considerations alone are insufficient when restoring highly

degraded sites. Here we propose a comprehensive landscape genomic approach to assist the

restoration  of  moderately  disturbed and highly  degraded sites.  To illustrate  it  we employ

genomic datasets comprising thousands of single nucleotide polymorphisms from two plant

species suitable for the restoration of iron-rich Amazonian Savannas. We first use a subset of

neutral loci to assess genetic structure and determine the genetic neighborhood size. We then

identify genotype-phenotype-environment associations, map adaptive genetic variation, and

predict  adaptive  genotypes  for  restoration  sites.  Whereas  local  provenances  were  found

optimal  to  restore  a  moderately  disturbed  site,  a  mixture  of  genotypes  seemed  the  most

promising strategy to recover a highly degraded mining site. We discuss how our results can

help define site-adjusted provenancing strategies, and argue that our methods can be more

broadly applied to assist other restoration initiatives.

Keywords: Genotype-environment  associations  (GEA),  genotype-phenotype  associations

(GPA), landscape genomics, local adaptation, RAD sequencing, restoration genomics, single

nucleotide polymorphisms (SNP).
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Introduction

In spite of the broadly recognized importance of genetic provenance for restoration initiatives,

the  use  of  genomic  tools  to  define  provenance  strategies  is  still  uncommon.  Choosing

provenances based on genetic knowledge can help increase genetic diversity and adaptability,

thereby contributing to the success of restoration initiatives (Broadhurst et al., 2008; Mijangos

et al., 2015; Weeks et al., 2011). Fortunately, the use of genetic provenancing is increasing, as

advances  in  Next-Generation-Sequencing  technologies  have  made  possible  large-scale

assessments of neutral and adaptive genetic variation  (Breed et al.,  2019; Mijangos et al.,

2015; Williams et al., 2014). For instance, neutral loci (i.e., those which are not subject to

natural selection) can be used to identify independent demographic units, assess fine-scale

spatial genetic structure, and quantify genetic diversity (Allendorf et al., 2013; Balkenhol et

al., 2017); whereas adaptive loci (under natural selection) are relevant to detect adaptations to

local environmental conditions and delineate adaptive units (Funk et al., 2012; Rellstab et al.,

2015).

Restoration  genomic  studies  published so  far  have  assessed  the  effect  of  multiple

environmental  variables  on  genetic  composition  in  order  to  identify  which  individuals  or

populations are “pre-adapted” to future climates (Gugger et al., 2018; Lu et al., 2019; Martins

et al., 2018; Rossetto et al., 2019; Shryock et al., 2017, 2015; Steane et al., 2014; Supple et al.,

2018).  Although  this  information  is  essential  to  inform  predictive  and  climate-adjusted

provenancing schemes (Prober et al., 2015), the  emphasis on climate has  overshadowed the

application of genomic methods to restore extremely degraded sites (Bucharova et al., 2019;

Lesica and Allendorf,  1999).  Such site-adjusted provenancing (targeting the restoration of
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specific sites considering their current environmental conditions) may not even incorporate

climate change considerations, as highly degraded sites have unique characteristics that make

them extremely challenging to restore. First, highly degraded sites usually require immediate

restoration  or  rehabilitation,  so  adaptations  to  current  environmental  conditions  are  more

suitable to guide provenance strategies than those based on future climate  (Gastauer et al.,

2019).  Second,  environmental  protection  agencies  usually  require  the  restitution  of

ecosystems to conditions as close to a pre-disturbance baseline as possible, as well as regular

(and costly) monitoring until rehabilitation goals have been achieved (Gastauer et al., 2019).

The main efforts thus lay in the quick establishment of viable populations that will restore

ecosystem functions  and  processes,  prevent  soil  erosion,  and  protect  biological  diversity.

Third,  highly  degraded  sites  such  as  exhausted  open-pit  mines  have  radically  different

environmental  characteristics  than natural  habitats  (Gastauer  et  al.,  2019),  so site-specific

characteristics are of primary importance to define provenance strategies. Such site-specific

variables generally need to be measured in situ and at fine spatial resolution, since they may

not be available as spatial  layers in open-access repositories (and if  they are,  their  spatial

resolution may be too coarse to reflect the reality of environmental conditions on the ground).

Finally, site-adjusted provenancing strategies need to consider local adaptations to climate,

soil,  terrain,  and  even  biological  interactions,  whereas  climate-centered  provenancing

strategies focus exclusively on climate.

The degree  of  disturbance can play an  important  role  in  determining site-adjusted

provenancing  strategies  (Breed  et  al.,  2013;  Lesica  and  Allendorf,  1999).  Whereas  local

genotypes are generally the best suited to restore sites where the degree of disturbance is low,

adaptations found in distant populations may facilitate establishment in highly degraded sites
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to which local genotypes may not be adapted  (Breed et al., 2013; Broadhurst et al., 2008;

Lesica and Allendorf, 1999)). Mixtures of genotypes from different populations have been

suggested as the best strategy to recover highly degraded sites, given that enhanced genetic

variation is more likely to rapidly generate local adaptations to novel ecological challenges

(Lesica and Allendorf,  1999).  In any case,  determining the most  appropriate  site-adjusted

provenancing  strategy  will  require  the  delineation  of  local  provenances  and  the  spatial

distribution of local adaptations (Breed et al., 2019).

Although the use of neutral genetic markers to identify independent demographic units

is now common practice  (Coates et al., 2018), few restoration studies have delineated seed

sourcing strategies based on population genetic structure (Durka et al., 2017) or the genetic

neighborhood  size  (the  distance  at  which  genetic  composition  stops  being  spatially

autocorrelated)  (Krauss et al., 2013; Krauss and Koch, 2004; Rossetto et al., 2019). On the

other hand, only three restoration genomic studies so far have identified putative adaptive loci

and then mapped adaptive genetic variation (Martins et al., 2018; Shryock et al., 2015; Steane

et  al.,  2014).  While  the  assessment  of  phenotype through common garden and reciprocal

transplant experiments to identify local adaptations has a long history (Aitken and Bemmels,

2016), no study has yet combined genotype-environment associations (GEA) with genotype-

phenotype associations (GPA) to delineate seed sourcing areas. This approach could improve

the  inference  of  potential  candidate  genes  and  provide  important  insights  into  genes

underlying fitness-related traits  (Mahony et al.,  2019; Talbot et al.,  2016; Vangestel et al.,

2018).

Here  we  propose  a  comprehensive  landscape  genomic  approach  to  assist  the

restoration of  moderately disturbed and highly degraded sites.  Relying on genotyping-by-
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sequencing we identified thousands of single nucleotide polymorphisms in two plant species

of  special  interest  for  the restoration of  exhausted mining sites from the Carajás Mineral

Province, located in the Eastern Amazon (Skirycz et al., 2014; Souza-Filho et al., 2019). We

first  used  a  subset  of  neutral  loci  to  assess  broad  and  fine-scale  genetic  structure  and

determine  the  genetic  neighborhood  size.  Subsequently,  we  combined  univariate  and

multivariate methods to identify GEA and GPA and employed spatial principal components

analyses  (sPCA)  to  map  adaptive  genetic  variation  while  accounting  for  spatial

autocorrelation  in  genetic  composition.  Finally,  we  predicted  the  adaptive  genotypes

associated with the environmental conditions of restoration sites (Fig. 1).

We focus on the Carajás Mineral Province, which harbors one of the world’s largest

deposits of iron ore and  huge  iron ore mining projects, with operations dating back to the

1980s (Poveromo, 1999; Souza-Filho et al., 2019).  The banded ironstone formations known

as  Cangas (where iron-ore deposits are concentrated) are characterized by shallow, acidic,

nutrient-depleted and metal-rich soils and marked by high solar radiation, hot temperatures,

and a severe drought period  (Skirycz et  al.,  2014),  which pose severe challenges to plant

growth. Environmental legislation in Brazil requires the rehabilitation of disabled iron ore

mining sites  (Gastauer  et  al.,  2019),  which constitute  extremely degraded and difficult  to

restore environments. These mining sites are characterized by extensive vegetation and soil

removal, compacted, nutrient-poor soils and steep slopes (Boyer and Wratten, 2010; Garris et

al., 2016; Whiting et al., 2004). The successful restoration and rehabilitation of these highly

degraded  sites  thus  requires  an  appropriate  selection  of  plant  species  (Giannini  et  al.,

2017) and seed sourcing zones to ensure that the introduced plants can effectively colonize

and establish viable populations. However, mine rehabilitation programs in the region employ
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seed mixtures of exotic plants, due to the scarcity of native seeds and their lower germination

and growth rates (Silva et al., 2018). Additionally, some natural Canga environments from the

region have been repeatedly disturbed by fires, illegal cattle ranching and the introduction of

alien plant species, such as grasses and ferns. This is the case in Serra da Bocaina, which

became  a  National  Park  in  2017  and  has  since  been  protected  (Mota  et  al.,  2018).  No

restoration initiatives have yet been implemented to recover the original ecosystems found in

Serra da Bocaina, but provenance strategies are expected to differ substantially from those

required to rehabilitate disabled mines.

Being native species, dominant in Canga environments, and once found at the sites

being restored,  Mimosa acutistipula var. ferrea Barneby and Dioclea apurensis  Kunth (both

legumes) are among the most promising plants for use in Canga restoration and mineland

rehabilitation programs (Giannini et al., 2017). Considered metallophyte species, both exhibit

biological mechanisms to tolerate and thrive in metalliferous soils (Preite et al., 2019; Whiting

et  al.,  2004).  Moreover,  they  are  extremely  abundant  in  pristine  Cangas  ecosystems  and

interact symbiotically with nitrogen-fixing bacteria, thus contributing to soil enrichment and

acting as pioneer species in restoration sites (Nunes et al., 2015; Ramos et al., 2019a; Silva et

al.,  2018).  Mimosa  acutistipula  is  drought  tolerant  and  well  adapted  to  the  low nutrient

content of Canga soils  (Silva et  al.,  2018). On the other hand,  D. apurensis requires low

nutrient inputs and shows high nutrient use efficiency (Ramos et al., 2019b). Moreover, this

species is a fast-growing liana with a ground-covering growth form, enabling the revegetation

and  stabilization  of  mine  pits  and waste  piles.  Both  species  have  high  germination  rates

(Ramos et al., 2019a), can be observed growing on minelands, and seem to be central in plant-

pollinator  networks  (unpublished  data).  Considering  the  heterogeneous  and  hostile
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environment where both species occur (Mitre et al., 2018), and their life-history similarities,

we expected to find similar patterns of neutral and adaptive genetic structure in both species

across our study area. We also expected that local populations would not be adapted to the

environmental conditions found in exhausted mining sites given they drastically differ from

pre-mining conditions, whereas populations from Serra da Bocaina would show adaptations to

local environmental conditions. Based on our results, we propose two different site-adjusted

provenance strategies for the restoration of a degraded mine site and a disturbed but unmined

Canga environment. We discuss the merits of our approach and argue that it  can be more

broadly applied to define site-adjusted provenancing strategies.

Material and Methods

Sampling

We followed a stratified sampling design, seeking to ensure high statistical power in GEA and

GPA analyses by maximizing environmental variability within different genetic clusters. We

collected samples of 180 individuals of M. acutistipula var. ferrea and 167 individuals of D.

apurensis between February and May of 2018 (SISBIO collection permit N. 48272-6), across

the three major Canga highlands of the Carajás Mineral Province (Fig. 2). For each individual

plant, we collected a sample of root-proximal soil (0-5 cm) for chemical characterization and

leaflet samples for phenotype and genotype analyses. These Canga ecosystems are composed

of several physiognomies, comprising grasslands, scrublands, wetlands and forest formations

(Mota et al., 2015), which differ in terms of the plant communities they support as well as in

their soil chemistry (Mitre et al., 2018). To ensure sampling across environmental gradients,
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individuals were collected in each one of these physiognomies within each highland. We also

scattered samples to cover the full extent of each highland (Fig. 2). A minimum distance of 20

meters between samples was used to minimize sampling related individuals. In addition to the

soil samples gathered along with plant tissue, we collected 50 extra soil samples from a highly

degraded mine site (the mine pit from an exhausted mine) and seven soil samples from a

never mined, but moderately disturbed site (scattered across Serra da Bocaina, Fig. 2). These

soil  samples  were  used  to predict  adaptive  genotypes  associated  with  the  environmental

conditions of both restoration sites (see details below).

Environmental data

Soil samples were air-dried and sieved using 2 mm mesh, and once dry they were sent to

LABRAS (http://labrasambientaiseagricolas.com.br/) for chemical analyses. These included

pH, organic matter, available P, K, and Na, exchangeable Ca, Mg, and Al, exchangeable S and

available  B, Cu,  Fe,  Mn and Zn (see details  in  Supporting Information Methods S1).  To

reduce the number of chemical parameters describing soil  composition,  we selected those

known to most affect plant physiology in metalliferous ecosystems (organic matter, Fe, Mn, P,

pH, S, and B  (Bothe, 2011; Mitre et al.,  2018; Whiting et al.,  2004)), along with a set of

orthogonal variables explaining most variation in soil composition across our study area. To

identify  this  set  of  orthogonal  variables  we  first  used  the  function  imputePCA from the

missMDA R package (Josse and Husson, 2016) to impute missing data (20 samples contained

missing  data  for  at  least  one  parameter)  using  the  regularized  iterative  PCA algorithm

recommended to avoid overfitting (Josse and Husson, 2016). We then ran separate principal

component  analyses  (PCA)  for  each  species  using  all  the  centered  and  scaled  chemical
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parameters and selected the three variables showing the strongest correlation with the first,

second  and  third  PC  axes  (each  showing  eigenvalues  >  1  and  >  10% of  total  variance

explained,  and all  three  explaining > 50% of  total  variance;  Table S1).  The selected  soil

variables were organic matter, Zn and Na in both species). 

We also retrieved climatic data from WorldClim version 1 [1950-2000;  (Hijmans et

al., 2005)], using the sample coordinates to extract all bioclimatic variables. We followed a

similar protocol to obtain the set of orthogonal variables explaining most climatic variance

across our study region (Table S1). The first three PCA axes explained 80% of total climatic

variance in both species, and the bioclimatic variables most strongly correlated with those

axes  were  isothermality  (bio03),  minimum  temperature  of  coldest  month  (bio06)  and

precipitation of driest quarter (bio17) for M. acutistipula; and isothermality (bio03), minimum

temperature of coldest month (bio06) and maximum temperature of warmest month (bio05)

for  D.  apurensis  (see  Fig.  S1  for  maps  of  these  layers).  Correlations  between  these

environmental variables were all below |r| < 0.6 (Fig. S2).

Phenotypic data

For each leaf sample we determined macro- and micro-nutrient content and the specific leaf

area  (SLA),  using  standard  methods  (see  details  in  Methods  S1).  We  selected  those

phenotypic variables known to affect plant physiology in metalliferous ecosystems (SLA, N,

B, Fe, Mn, P, N/P,  (Bothe, 2011; Mitre et al., 2018; Pérez-Harguindeguy et al.,  2013). As

described above, we also selected the three orthogonal phenotypic variables explaining most

of phenotypic variance (the first three PCA axes explained more than 50% of total variance in

both species, Table S1) after imputing missing data (11 samples contained missing data in at
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least one parameter). Selected phenotypic variables were Zn, N and B for M. acutistipula and

P, Mn and K for D. apurensis (correlations between these phenotypic variables were all below

|r| < 0.6; Fig. S2). 

Genome  size  estimation,  DNA  extraction,  genotype-by-sequencing  and  bioinformatic

processing

We used flow cytometry to estimate haploid genome size in both species (1C DNA content

was 712 Mbp in  M. acutistipula  and 642 Mbp in  D. apurensis, see details in Methods S1).

Total  DNA was extracted using Qiagen’s DNeasy Plant Mini Kit.  DNA concentration was

quantified using Qubit High Sensitivity Assay kit (Invitrogen), and DNA integrity assessed

through 1.2% agarose gel electrophoresis.  Samples with concentrations below 5 ng/µL or

showing  no  clean  bands  were  excluded  from  all  analyses,  and  selected  samples  were

normalized to  a concentration of 5 ng/µL and a total  volume of 30 µL. These were then

shipped  to  SNPSaurus  (http://snpsaurus.com/)  for  sequencing  and  raw data  bioinformatic

processing (see details in Methods S1). Briefly, genomic DNA was converted into nextRAD

genotyping-by-sequencing  libraries  (SNPsaurus,  LLC)  as  in  (Russello  et  al.,  2015),

considering the estimated genome size of each species. Genomic DNA was first fragmented

with the Nextera DNA Flex reagent (Illumina, Inc), which also ligates short adapter sequences

to the ends of the fragments. The Nextera reaction was scaled for fragmenting 14 ng and 20

ng of genomic DNA for M. acutistipula and D. apurensis, respectively. Fragmented DNA was

then amplified for 25 cycles at 75 degrees, with one of the primers matching the adapter and

extending 8 nucleotides into the genomic DNA with the selective sequence TGCAGGAG.

Thus,  only  fragments  starting  with  a  sequence  that  can  be  hybridized  by  the  selective
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sequence  of  the  primer  were  efficiently  amplified.  The  nextRAD  libraries  were  then

sequenced on a HiSeq 4000 with six and five lanes of 150 bp reads for M. acutistipula and D.

apurensis,  respectively  (University  of  Oregon).  Reads  were  trimmed using  BBMap tools

(http://sourceforge.net/projects/bbmap/) to exclude Nextera adapters and a reference contig

was created by collecting 10 million reads in total, evenly distributed from the samples, and

excluding reads that had counts fewer than 6 or more than 800. The remaining loci were then

aligned  to  each  other  to  identify  allele  loci  and  collapse  allelic  haplotypes  to  a  single

representative.  All  reads  were mapped to  the  reference contig  with  an alignment  identity

threshold of 95% using BBMap tools. Genotype calling was done using callvariants (BBMap

tools),  and the  resulting  set  of  genotypes  were filtered  to  remove alleles with  population

frequency of less than 3%. Loci that were heterozygous in all samples and loci that contained

more than 2 alleles in a sample (suggesting collapsed paralogs) were removed.  A total of

7,165 RAD-tag sequences  were  obtained for  M. acutistipula and 4,325 for  D. apurensis.

Considering the genome size of each species and a linkage block size of 378 Kbp (mean value

for  the  Fabaceae  family,  (Lowry  et  al.,  2017)), we  estimated  a  maximum proportion  of

genome coverage (assuming one RAD-tag per block) of 100% (McKinney et al., 2017). From

those RAD-tags,  17,403 SNPs were generated for  M. acutistipula and 9,857 SNPs for  D.

apurensis (minimum sequencing depth of 14 and 9, respectively). 

Genetic diversity and neutral genetic structure

The R package  r2vcftools  (https://github.com/nspope/r2vcftools) - a wrapper for VCFtools

(Danecek et al., 2011) - was used to perform final quality control on the genotype data. To

assess neutral genetic structure and genetic diversity, we used a series of filters to obtain a set
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of neutral and independent loci. Filtering criteria included quality (Phred score > 30), read

depth (20 – 800), minor allele frequency (MAF > 0.05), linkage disequilibrium (r2 < 0.8,

(Xuereb  et  al.,  2018)),  Hardy-Weinberg  Equilibrium  (HWE,  p >  0.0001),  and  loci  and

individuals with less than 20% missing data (an example filtering script can be seen in https://

github.com/rojaff/r2vcftools_basics).  Additionally,  we  removed  loci  potentially  under

selection using genome scans. These  accounted for population structure (assessed using  the

snmf function from the LEA package, as described below), and controlled for false discovery

rates by  adjusting  p-values with the genomic inflation factor (λ) and setting false discovery) and setting false discovery

rates to q=0.05, using the Benjamini-Hochberg algorithm (François et al., 2016) (see details

below).

We  used  two  complementary  genetic  clustering  approaches  to  assess  neutral

population structure: the snmf function from the LEA package (Frichot and François, 2015),

and  Discriminant  Analysis  of  Principal  Components  -  DAPC from the  adegenet package

(Jombart  and  Ahmed,  2011). The  snmf model  implements  a  fast  yet  accurate  likelihood

algorithm (Frichot et al., 2014), while DAPC is a robust genetic clustering method with no

assumption  about  the  underlying  population  genetic  model  (Jombart  and  Ahmed,  2011).

Based on previous population genomic studies for other co-occurring plant species (Carvalho

et  al.,  2019;  Lanes  et  al.,  2018;  Silva  et  al.,  2020),  we tested  from one to  ten  ancestral

populations (k).  In the case of  snmf we performed ten replicate runs for each value of  k,

choosing the most likely k based on minimized cross-entropy. For DAPC, we inferred optimal

k using k-means clustering and the Bayesian Information Criterion (BIC). Considering the

ancestry  coefficients  assigned  by  snmf,  we  then  estimated  expected  heterozygosity  (HE),

inbreeding coefficients  (F),  and  nucleotide  diversity  (π)  for  each  genetic  cluster. We also
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estimated pairwise FST using dartR R package (Gruber et al., 2018), and effective population

sizes (Ne) employing the linkage disequilibrium method implemented in NeEstimator 2.1 and

a lowest  allele  frequency value of 0.05  (Do et  al.,  2014).  Finally,  we  assessed fine-scale

spatial genetic structure in each species within each genetic cluster through local polynomial

fitting  (LOESS)  of Yang’s  genetic  relatedness  between  pairs  of  individuals  (Yang  et  al.,

2010) and pairwise geographic distance, as in (Carvalho et al., 2019). 

Assessing genotype-environment associations (GEA) and genotype-phenotype associations 

(GPA)

To assess GEA and GPA (Fig. 1) we first filtered loci for quality (Phred score > 30), read

depth (20-800), minor allele frequency (MAF > 0.05), linkage disequilibrium (r² < 0.8), and

loci and individuals with less than 20% of missing data. We then combined univariate and

multivariate  methods,  namely  Latent  Factor  Mixed  Models  (LFMM)  and  Redundancy

Analysis  (RDA).  While  LFMM  identifies  associations  between  single  loci  and  single

predictors, RDA can detect multilocus signatures of selection as a function of a multivariate

set of predictors  (Caye et  al.,  2019; Forester et  al.,  2018).  Both methods assume a linear

relationship  between  allele  frequency  and  environmental  variables,  have  been  used

extensively (Ahrens et al., 2018), provide a good compromise between detection power and

error  rates,  and are  robust  to  a  variety  of  sampling  designs  and  underlying  demographic

models (Forester et al., 2018; Rellstab et al., 2015). Since both methods require complete data

sets (without missing values), we performed an  imputation of missing genotypes (7.6% and

7% missing genotypes for M. acutistipula and D. apurensis respectively) based on the snmf

population  assignments  from the  previous  step,  using  the  impute function  and  the  mode
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method from the LEA package  (Frichot and François, 2015). This function imputes missing

genotypes using ancestry and genotype frequency estimates from the snmf run.

LFMM analysis were performed using the lfmm package (Caye et al., 2019) and ridge

estimates, which minimize regularized least-squares with a  L2 penalty (see example script

here: https://bcm-uga.github.io/lfmm/articles/lfmm). Instead of using raw predictor variables,

we employed the first four axes resulting from a Principal Components Analysis (PCA) on all

predictor variables in order to minimize the number of tests. These four axes explained more

than 60% of total environmental and phenotypic variance in both species, and were strongly

correlated (|r| > 0.7) with organic material, B, Fe, Bio06, Bio17, Zn, S and Na (environmental

variables), and N/P, P, Fe (phenotypic variables) in both species.  We ran LFMM using the

previously identified number of genetic clusters (k=3, see results) as latent factors, to account

for the underlying neutral genetic structure.  We then calculated the genomic inflation factor

(λ) and setting false discovery) and modified it until a calibrated distribution of adjusted p-values was found, and set false

discovery rates at a rate of q=0.05 using the Benjamini–Hochberg algorithm (François et al.,

2016).

We performed RDA using the rda function from the  vegan package (Oksanen et al.,

2019) as implemented in Forester et al. (2018), modeling genotypes as a function of predictor

variables, and producing as many constrained axes as predictors (see example script here:

https://popgen.nescent.org/2018-03-27_RDA_GEA.html).  Multicollinearity  between

predictors  was  assessed  using  the  variance  inflation  factor  (VIF)  and  since  all  predictor

variables  showed VIF < 3 none were excluded.  Raw predictor  variables  were scaled and

centered prior to analyses and  the population assignments from  snmf (population ID) were

used  to  control  for  population  structure  by running a  partial  RDA.  Significance  of  RDA
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constrained axes was assessed using the  anova.cca function and significant axes were then

used  to  identify  candidate  loci  in  both  species.  Candidate  loci  were  identified  using  a

Mahalanobis  distance-based  approach  (Capblancq  et  al.,  2018),  which  made  RDA result

comparable with those obtained with LFMM, since it allowed adjusting  p-values using the

genomic inflation factor (λ) and setting false discovery) and setting false discovery rates to  q=0.05, as described above

(calculated and modified genomic inflation factors and p-value distributions for LFMM and

RDA tests are provided in Figs. S3-S8). To assess the impact of population genetic structure

on our number of detections we ran additional cluster-level GEA analyses (LFMM and RDA),

using  only  individuals  belonging to  the  same genetic  cluster  (setting  k=1 in  LFMM and

omitting population ID in RDA).  Finally,  to  visualize patterns  of GEA and GPA, we ran

additional RDA models excluding neutral loci, using the combined candidate adaptive loci

detected using the general RDA and LFMM analyses. 

In order to search for the proteins coded by the genes contained in the flanking regions

of  our  candidate  SNPs  (found  in  GEA and  GPA analyses),  contig  sequences  containing

candidate  loci  were  first  submitted  to  the  EMBOSS  Transeq

(http://www.ebi.ac.uk/Tools/st/emboss_transeq/)  to  obtain corresponding protein sequences.

We used all six frames with standard code (codon table), regions (start-end), trimming (yes),

and  reverse  (no).  We  then  ran  a  functional  analysis  using  InterPro

(https://www.ebi.ac.uk/interpro/;  interproscan.sh  -dp  –appl  PfamA,  TIGRFAM,  PRINTS,

PrositePatterns, Gene3d –goterms –pathways -f tsv -o MySequences.tsv -i MySequences.faa),

searching for gene ontology terms and pathways along a variety of annotation databases (i.e.,

Interpro, Pfam, Tigrfam, Prints, PrositePattern and Gene3d). 
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Mapping adaptive genetic variation

To map adaptive genetic variation, we used the adegenet package (Jombart and Ahmed, 2011)

to run a Spatial Principal Component Analysis (sPCA) on the combined candidate adaptive

loci detected in GEA and GPA analyses using general LFMM and RDA (results for intersected

loci are presented in Fig. S15).  sPCA is a spatially explicit multivariate method that yields

scores summarizing genetic variability and spatial structure among individuals (Jombart et al.,

2008). Spatial structure is estimated using a Moran’s Index that relies on the comparison of

allelic  frequencies  observed  in  one  individual  to  the  values  observed  in  neighboring

individuals. These neighboring individuals can be defined by distinct connection networks,

which  in  our  case was set  to  a  distance-based neighborhood,  as  indicated for  aggregated

distributions  (Jombart  et  al.,  2008).  The  Moran’s  Index  generates  two  types  of  spatial

structuring:  global  structure,  which  reflects  positive  spatial  autocorrelation,  and  local

structure,  that reflects  negative spatial  autocorrelation  (Jombart  et  al.,  2008).  To decide if

global and/or local structures should be interpreted and thus retained in sPCA analyses, we

used the global and local tests proposed by Jombart & Ahmed (2011). The first three retained

axes were then interpolated on 10 meter resolution grids covering our study area, and the

resulting rasters used to create an RGB composite, using the Merge function in QGIS 3.4 (see

example scripts here: https://github.com/rojaff/LanGen_pipeline). The resulting color patterns

represent the similarity in adaptive genetic composition.

To predict the adaptive genotypes associated with environmental data collected from

restoration sites (the highly degraded exhausted mine and the moderately disturbed Serra da

Bocaina,  Fig.  2), we  employed  the  GEA-RDA models  fitted  on the  combined  candidate

adaptive  loci  detected  by  global  LFMM  and  RDA (see  previous  section), and  ran  the
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predict.cca function from the vegan package. Environmental samples (soil and climate) from

these sites were thus used to predict RDA scores, based on the fitted GEA-RDA models. We

then performed a  k-means clustering analysis (using Euclidean distances) on observed and

predicted RDA scores for individuals from each species, using all significant constrained axes

and allowing the number of clusters to vary between two and five (three Canga highlands and

two restoration  sites).  We used the  NbClust package  (Charrad  et  al.,  2014) to  obtain  the

optimal number of clusters chosen by 30 different algorithms. Observed and predicted RDA

scores  groupping  together,  suggest  that  our  sampled  individuals  possess  adaptations

associated  with  the  environmental  conditions  of  restoration  sites.  Observed and predicted

RDA scores placed in different clusters, on the other hand, indicate that none of our sampled

individuals seems adapted to the environmental conditions of restoration sites. 

Results

Genetic diversity and neutral genetic structure

After  filtering  for  quality,  read  depth,  minor  allele  frequencies,  missing  data,  linkage

disequilibrium, Hardy-Weinberg Equilibrium, and outlier loci, we retained  7,376 and 3,496

neutral  and  independent  SNPs  and  177  and  163  individuals  for  M.  acutistipula and  D.

apurensis, respectively,  which  were  then  used  to  assess  genetic  diversity  and  population

structure. Both  genetic  clustering approaches  (snmf and DAPC)  indicated the presence of

three clusters in the two study species (Fig. S9). Admixture levels were low, all individuals

were  correctly  assigned  to  their  source  Canga  highland  (Fig.  2),  and  there  was  genetic

differentiation  between  genetic  clusters  (pairwise  FST values  were  significant  and  ranged
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between  0.11  and  0.13  in  M.  acutistipula and  between  0.16  and  0.27  in  D.  apurensis).

Expected heterozygosity and nucleotide diversity were similar in both species, but inbreeding

coefficients were lower and effective population sizes larger in M. acutistipula (Table 1). Both

species showed significant inbreeding coefficients in all  genetic clusters and exhibited the

largest effective population sizes in Serra Sul (Table 1). We detected spatial autocorrelation in

genetic relatedness within genetic clusters in each species (Fig. S10-S11). In both, the strength

of  spatial  autocorrelation  was highest  in  Serra  Sul,  where  genetic  neighborhood size was

larger (~5km, Fig. S10-S11). 

Genotype-environment and genotype-phenotype associations

After  filtering for  quality,  read depth,  minor  allele  frequencies,  missing data,  and linkage

disequilibrium  we  retained  9,480  and  4,720  SNPs  and  177  and  163  individuals  for  M.

acutistipula and D. apurensis, respectively. Using LFMM we identified a total of 198 and 154

contigs  (RAD-tags)  containing  GEA,  and  94  and  185  contigs  containing  GPA  in  M.

acutistipula and D. apurensis, respectively (Tables S2 and S3). Only the first two constrained

axes from RDA analyses were significant (ANOVA’s p < 0.05) in GEA and GPA analyses for

both species.  RDA revealed a total of 403 and 225 contigs containing significant GEA and

281 and  119  contigs  containing  significant  GPA  in  M.  acutistipula and  D.  apurensis

respectively (Fig. 3, Fig. S12 and Tables S2 and S3). In M. acutistipula 344 contigs were most

correlated to climatic variables and 69 to soil variables, while in  D. apurensis 203 contings

were most correlated to climatic and 23 to soil variables. Combining both methods (LFMM

and RDA), we found a total of 588 contigs showing GEA in M. acutistipula and 360 in D.

apurensis, and 368 contigs showing GPA in  M. acutistipula  and 288 in  D. apurensis. Only
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108 contigs contained both GEA and GPA in M. acutistipula and 65 in D. apurensis. Finally,

cluster-level GEA analyses revealed  many cluster-exclusive detections in both species (Fig.

S13).

Subsequent RDA models using the combined candidate adaptive loci detected using

general LFMM and RDA analyses revealed population-level patterns of GEA and GPA (Fig.

4).  In  M.  acutistipula  GEA and  GPA models  explained  17%  and  5%  of  total  variance

respectively, while in  D. apurensis GEA and GPA models explained 31% and 9% of total

variance. In both species, axes loadings were higher for climatic variables (0.01-0.89 for M.

acutistipula and  0.01-0.83  for  D.  apurensis)  than  for  soil  variables  (0.005-0.47  for  M.

acutistipula and 0.003-0.59 for  D. apurensis). In  M. acutistipula, the first and second axes

split individuals into three large GEA groups corresponding to their sampling location. While

individuals  from  Serra  Norte  showed  associations  with  higher  isothermality  (bio03)  and

higher  winter  temperatures  (bio06),  individuals  from Serra  Sul  showed  associations  with

warmer winter  temperatures and wetter dry season precipitation (bio17).  Individuals from

Serra da Bocaina exhibited associations with higher pH (less acidic soils) and drier dry season

precipitation (Fig. 4a). Interestingly, Dioclea apurensis showed similar GEA patterns based on

isothermality (bio03), winter temperatures (bio06), and pH, despite using a slightly different

set of predictors (Fig. 4b). On the other hand, the first and second constrained axes divided

individuals into two large GPA groups in M. acutistipula (Fig. 4c), the first one encompassing

individuals from Serra Norte (which showed associations with higher SLA and Mn, and lower

P), and the second individuals from Serra Sul and Serra da Bocaina (showing associations

with lower SLA and Mn). In D. apurensis, the first and second axes split individuals into three

GPA groups,  with  individuals  from Serra  Norte  showing  associations  with  a  higher  leaf
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content  of  Fe  and  Mn  and  a  lower  content  of  P,  while  those  from  Serra  Sul  showed

associations with higher N and those from Serra da Bocaina with lower SLA and N/P (Fig.

4d).  Leaf-level  nutrients  were  weakly  correlated  with  soil-level  nutrients  (Pearson’s

correlation coefficients ranged between -0.07 and 0.39 for M. acutistipula and between -0.04

to 0.24 for D. apurensis).

A subset of the contigs containing candidate SNPs showed InterPro annotations (105

contigs in M. acutistipula and 59 in D. apurensis). Candidate adaptive genes were associated

to  different  functions,  including  intracellular  transport,  catalytic  activity,  synthesis  of

hormones, metabolic and oxidation-reduction processes, and plant defense response (a full list

of  candidate genes  with InterPro  annotations  is  presented  in  Table S4).  Only  17 putative

adaptive genes containing InterPro annotations were shared between both species (Table S5).

Mapping adaptive genetic variation

The combination (union) of candidate adaptive loci detected through GEA and GPA resulted

in 914 loci for  M. acutistipula and 614 loci for  D. apurensis. Since none of the sPCA local

structure  tests  were  significant,  we  retained  the  first  three  positive  global  axes,  which

explained most variance in both species (51% and 81% of total variance for M. acutistipula

and D. apurensis respectively, Fig. S14). These revealed a similar adaptive genetic structure in

both species (Fig. 5), with  two adaptive units in Serra Norte and one in Serra da Bocaina.

Mimosa acutistipula nevertheless exhibited a clinal adaptive pattern in Serra Sul, whereas D.

apurensis did not. Similar spatial patterns were found when using the intersected loci (i.e.

those  shared  by  GEA and  GPA;  Fig.  S15).  Finally,  predicted  genotypes  associated  with

climatic and soil characteristics from a highly degraded mining site did not cluster together
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with  any  of  our  study  populations  in  either  species  (Fig.  6a  and  6b).  In  contrast,  most

predicted genotypes for the environmental conditions from the moderately disturbed Serra da

Bocaina clustered  together with individuals collected in the same location, revealing local

provenances are putatively adapted to local environmental conditions (Fig. 6c and 6d).

Discussion

The delineation of seed sourcing areas requires accounting for evolutionary history, genetic

diversity, and how likely individuals will adapt to the environmental conditions of the targeted

restoration sites  (Breed et al., 2019).  Here we employ a comprehensive landscape genomic

approach to characterize neutral and adaptive genetic variation and provide insights to assist

the restoration of a highly degraded mining site and a moderately disturbed Canga highland

from the Carajás Mineral Province. We discuss how our results can help define site-adjusted

provenancing strategies  and argue that our methods can be more broadly applied to assist

other restoration and rehabilitation initiatives.

Several  studies  have  stressed  the  importance  of  avoiding  inbreeding,  increasing

genetic diversity to maintain evolutionary potential, and minimizing outbreeding depression

in restored populations (Broadhurst et al., 2008; Hufbauer et al., 2015; Mijangos et al., 2015;

Weeks et al., 2011). The assessment of neutral genetic structure provides information on how

to  minimize  outbreeding  depression  by  avoiding  mixing  individuals  from  different

evolutionary lineages (Mijangos et al., 2015). Estimates of the genetic neighborhood size, on

the other hand, provide clues on how to sample unrelated individuals within seed sourcing

areas to increase genetic diversity and  reduce the risk of inbreeding depression in restored
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populations (Breed et al., 2019; Krauss and Koch, 2004). Our initial assessment of neutral

genetic structure identified three demographically independent units (or Management Units

sensu (Funk et al., 2012)), which could be considered distinct provenances to minimize the

risk of outbreeding depression (Frankham et al., 2017). Within these zones, our estimates of

genetic neighborhood size provide information on within-cluster seed sourcing strategies to

maximize genetic diversity. In Serra Sul, for example, seed sources located 5 Km apart are not

expected to be related (Fig. S10-S11), and would comprise a better representation of standing

genetic variation than individuals collected across smaller spatial scales. Effective population

size estimates (Table 1) nevertheless indicate that none of our observed genetic clusters is

likely  to  experience  inbreeding  depression  in  the  near  future  based  on  the  50/500  rule

(Jamieson and Allendorf, 2012). Inbreeding levels observed in both species were nonetheless

significantly different from zero, suggesting some level of selfing or mating between related

individuals is taking place.

Patterns  of  local  adaptation  will  ultimately  determine  the  ability  of  plants  to

effectively colonize and quickly recover disturbed sites (Mijangos et al., 2015). By using the

combined candidate loci detected in GEA and GPA, using both univariate and multivariate

methods,  we  improved  the  detection  of  single-locus  and  multi-locus  adaptive  signals.

(Mahony  et  al.,  2019;  Talbot  et  al.,  2016;  Vangestel  et  al.,  2018). Interestingly,  more

intersections between GEA and GPA were found when using RDA than when using LFMM

(Fig.  3),  indicating  that  most  adaptations  to  local  environmental  conditions  expressing

differential phenotypes are polygenic (Forester et al., 2018). Indeed most fitness-related traits

in  plants  have  a  polygenic  basis  (Falke  et  al.,  2013),  including  tolerance  to  soil  with

phytotoxic levels of heavy metals (Arnold et al., 2016). We nevertheless note that other genes
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occurring in the flanking regions of our candidate SNPs could be responsible for the detected

adaptive signals, and that many sequences did not match translated proteins, or found matches

with  uncharacterized  proteins.  Still,  the  most  frequent  amongst  our  identified  candidate

proteins are involved in plant defense and stress responses (including reverse transcriptase,

ribonuclease H-like domain, P-loop NTPase fold, leucine-rich repeat, and thaumatin) or basic

metabolic processes (pentatricopeptide repeat, protein kinase domain, Nitrite/Sulfite reductase

ferredoxin-like domain,  major  intrinsic  protein,  and kinesin  motor  domain),  suggestive  of

adaptations to harsh environments (Tables S4 and S5). Some of these putative adaptive genes

were shared between the two species as well as with other co-occurring species (Table S5),

indicating  convergent  evolution  to  similar  environmental  pressures  (Arnold  et  al.,  2016;

Yeaman et al., 2016). These shared genes thus constitute primary targets for functional studies

investigating the molecular basis of adaptation to Canga environments and minelands. 

Cluster-level GEA analyses revealed many cluster-exclusive detections in both species

(Fig. S13), suggesting that microgeographic adaptation may play a role in driving genetic

patterns within highlands  (Richardson et al., 2014).  To visualize and better understand the

mechanisms behind the observed GEA and GPA we ran additional RDAs using the combined

candidate adaptive loci detected in our general LFMM and RDA analyses. As expected, we

found similar patterns of GEA in both species (Figs. 4a and 4b).  Interestingly, the strongest

GEA were found with climatic variables in both species, in spite of the coarse resolution of

WorldClim data and the narrow climatic variation found across our study area (Fig. S1). Our

results thus suggest that local climate constitutes an important environmental filter driving

local adaptation, as found in other species from Canga environments (Lanes et al., 2018) and

temperate climates  (Pais et  al.,  2017; Pluess et  al.,  2016). In  M. acutistipula,  Serra Norte
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populations showed associations with higher SLA, suggesting climatic or soil conditions in

Serra Norte are more favorable to plant growth (He et al., 2018). Individuals from Serra da

Bocaina  and  Serra  Sul  showed  associations  with  lower  SLA and  lower  concentration  of

several  micro-  and  macro-nutrients,  suggesting  that  increasing  leaf  thickness  in  these

individuals avoids dissection or better preserves scarce nutrients (Costa-Saura et al., 2016). In

contrast, SLA-associations in D. apurensis did not separate Canga highlands, showing that the

influence of climatic variation on SLA is different across species (Gong and Gao, 2019; Liu et

al., 2017). In D. apurensis, different genotype associations with leaf micro and macronutrients

separated  highlands  (Fig.  4d),  suggesting  different  physiological  requirements  or  nutrient

availability at each site. Low correlations between leaf and soil Fe and Mn concentrations,

suggest our study species are controlling nutrient absorption, which makes them suitable for

the restoration of areas with a high concentration of these metals. Controlled common-garden

or  reciprocal  transplant  experiments  are  nevertheless  needed to assess  growth and overall

performance  of  different  genotypes  (sources)  in  different  soils  and  climates  (Aitken  and

Bemmels, 2016; Rellstab et al., 2015).

Our local adaptation maps reveal areas containing similar local adaptations (colors) in

each species (Fig. 5, Fig. S15), which could be used to delineate seed sourcing strategies. In

contrast to the commonly employed Generalized Dissimilarity Models (GDM) (Gugger et al.,

2018; Rossetto et al., 2019; Shryock et al., 2015; Supple et al., 2018), our mapping approach

based on sPCA allows incorporating GPA and predicting adaptive genetic variation from site-

level data, which is particularly useful for areas lacking high-resolution environmental layers.

Moreover, sPCA explicitly account for spatial autocorrelation in genetic composition, which

is  likely  to  play  an  important  role  explaining  patterns  of  local  adaptation  (Lesica  and
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Allendorf,  1999;  Richardson  et  al.,  2014) (see  Fig.  S16  for  alternative  adaptation  maps

generated  using  GDM).  Our  adaptation  maps  showed similar  adaptations  across  Serra  da

Bocaina  (i.e.  a  single  adaptive  unit),  and most predicted  genotypes  associated  with  local

environmental samples (climate and soil) clustered together with individuals sampled in Serra

da Bocaina. This result  indicates that local provenances are probably best adapted to local

environmental  conditions  at  this  site  under  contemporary  climates  (Fig.  6c  and  6d),  and

supports  the  recommendations  made by Lesica  & Allendorf  (1999) for  the  restoration  of

moderately disturbed sites. Since genetic neighborhood size in Serra da Bocaina was roughly

3 Km for both species, our results suggest that local seeds collected in areas separated by at

least 3 Km would maximize genetic diversity at this location.

In contrast,  predicted genotypes for  the environmental data collected at the degraded

mine site did not cluster with any of our study populations in either species (Fig. 6a and 6b).

This indicates that none of the genotypes we sampled from natural habitats overlap with the

multivariate environmental conditions present at the mine site. In this case, mixing genotypes

containing  different  local  adaptations  could  be  regarded  as  the  best  option  to  maximize

evolutionary potential and facilitate adaptation to novel environments (Lesica and Allendorf,

1999). Seeds could be sourced from all the identified adaptive units (colors in sPCA maps);

and within these units they could be sampled in areas separated by the genetic neighborhood

size  to  further  enhance  genetic  diversity.  Although  mixing  individuals  from  different

management units could result in outbreeding depression (Hufford and Mazer, 2003; Weeks et

al.,  2011), the risk is likely marginal for these study species, which  are widely distributed

across  the  continent  (Dutra  and  Morim,  2015;  Queiroz,  2015).  Moreover,  environmental

conditions and plant communities show remarkable similarities across the Carajás Mineral

26

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2019.12.11.872747doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.872747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Province when compared to other  campo rupestre formations  (Zappi et al.,  2019). Such a

regional  admixture  provenancing  approach  (Bucharova  et  al.,  2019) would  represent  a

significant improvement over introducing exotic species,  which are currently being used in

mine reclamation programs due to the availability of seeds in large quantities and their ability

to quickly colonize mine environments to prevent soil  erosion  (D’Antonio and Meyerson,

2002; Gastauer et al., 2019; Silva et al., 2018). Our results could guide the establishment of

seed  production  areas  for  both  native  species,  aiming  to  overcome  shortfalls  in  seed

availability  while  capturing  standing neutral  and adaptive  genetic  variation  (Nevill  et  al.,

2016).

Our work illustrates how neutral and adaptive genetic variation can be used to provide

evidence-based recommendations for provenance schemes aimed to effectively restore sites

ranging between  moderately disturbed and highly degraded. In our two study species, local

provenances were found optimal to restore a moderately disturbed site, whereas a mixture of

genotypes was suggested as the most promising strategy to recover a highly degraded mining

site, to which local provenances were not adapted. Our proposed methodological approach

(Fig. 1) can be more broadly applied to define site-adjusted provenance strategies  in other

locations and for other disturbance regimes. We recognize that the high costs associated with

genomic  analyses  and  the  complexity  of  bioinformatic  and  statistical  analyses  represent

important barriers for practitioners (Breed et al., 2019; Shafer et al., 2015). Still, as genomic

data  becomes  available  for  more  species  exhibiting  different  life-history  characteristics,

restoration genomic initiatives using similar methods coupled with visually  appealing and

user-friendly interfaces (Rossetto et al., 2019), are likely to substantially improve restoration

outcomes.
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Tables

Table  1: Genetic  diversity  measures  for  Mimosa  acutistipula var.  ferrea and  Dioclea
apurensis within  genetic  clusters  (highlands).  Sample  sizes  (N)  are  followed  by  mean
expected heterozygosity (HE), mean inbreeding coefficient (F), nucleotide diversity (π) and
effective population size (Ne). Values represent 95% confidence intervals.

Species Highland N HE F π Ne

M. acutistipula

Serra Sul 80 [0.28/0.28] [0.12/0.15] [0.26/0.26] [1601.0/1778.0]

Serra Norte 61 [0.28/0.28] [0.10/0.14] [0.23/0.24] [554.7/581.2]

Serra da Bocaina 36 [0.28/0.28] [0.12/0.17] [0.25/0.26] [1008.0/1243.5]

Total 177 [0.28/0.28] [0.10/0.17] [0.23/0.26] [554.7/1778.0]

D. apurensis

Serra Sul 81 [0.25/0.25] [0.10/0.14] [0.22/0.23] [1070.1/1278.5]

Serra Norte 45 [0.29/0.29] [0.14/0.20] [0.24/0.25] [193.2/204.6]

Serra da Bocaina 37 [0.27/0.27] [0.22/0.31] [0.21/0.22] [193.7/212.2]

Total 163 [0.25/0.29] [0.10/0.31] [0.21/0.25] [193.2/1278.5]
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Figures

Figure 1:  Diagram summarizing our methodological approach.  We used a subset of neutral
and  independent  loci  to  assess  broad  and  fine-scale  genetic  structure  and  determine  the
genetic  neighborhood  size.  Subsequently,  we  combined  genotype,  phenotype,  and
environmental data to identify loci under selection and then employed all candidate  loci to
map patterns of adaptive genetic variability and predict adaptive genotypes for restoration
sites. The graphs show results for Mimosa acutistipula.
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Figure 2: Maps of our study region depicting restoration sites and neutral genetic structure
for Mimosa acutistipula var. ferrea and Dioclea apurensis. a: Location of the Carajás Mineral
Province within the Amazon biome.  b:  Location of the major  Canga highlands (Montane
Savanna)  where  samples  were  collected.  White  continuous  lines  represent  the  Carajás
National Forest (FLONA Carajás), white dashed lines the Campos Ferruginosos National Park
(PNCF),  and stars  depict  restoration  sites.  Ancestry  coefficients  for  all  samples  from  M.
acutistipula var. ferrea (c) and D. apurensis (d), determined using the snmf function from the
LEA package.
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Figure 3: Venn diagram showing the intersection of contigs (RAD-tags) containing candidate
SNPs  for  Mimosa  acutistipula  var. ferrea (a)  and  Dioclea  apurensis (b).  Genotype-
environment associations (GEA) and genotype-phenotype association (GPA) were assessed
using Redundant Analysis (RDA) and Latent Factor Mixed Model (LFMM). The number of
detections by method for each species are presented in Tables S2 and S3. 
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Figure 4: Redundancy analysis (RDA) using only the candidate loci identified in genotype-environment
(upper panels) and genotype-phenotype association analyses (lower panels) in  Mimosa acutistipula var.
ferrea  (a,  c) and  Dioclea apurensis  (b,  d).  The plots show the first and second constrained axes from
RDA, with SNPs represented as gray filled circles, environment and phenotype variables as blue arrows,
and individuals from different Canga highlands in color circles (bio03: isothermality; bio05: maximum
temperature of warmest month; bio06: minimum temperature of coldest month; bio17: precipitation of
driest quarter; MO: organic material; and SLA: specific leaf area).
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Figure 5:  Spatial distribution of adaptive genetic variation in  Mimosa acutistipula  var.  ferrea  (a) and Dioclea apurensis  (b).  The maps
represent an RGB composite made using interpolated principal components from a sPCA, ran on the combined candidate loci found in GEA
and GPA. Regions with similar colors within each panel represent analogous genetic composition and areas with diagonal lines were not
sampled (i.e., adaptive genetic composition was extrapolated from neighboring areas).
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Figure  6:  Clustering  of  predicted  and  observed  adaptive  genetic  variation  in  Mimosa
acutistipula var. ferrea (a, c) and Dioclea apurensis (b, d). A k-means clustering approach was
employed  to  examine  the  similarity  between  observed  (filled  symbols)  and  predicted
genotypes (open symbols) associated with the environmental conditions of highly degraded
(upper panels) and moderately disturbed (lower panels) sites. Colors indicate different clusters
and symbols the locations where samples were collected. 
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