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Abstract 

Transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated 

amino acid sequences, making it difficult to recognize features that permit their dynamic 

behavior, fuzzy interactions and target specificity. We screened a large set of random 30-mer 

peptides for AD function and trained a deep neural network (ADpred) on the AD-positive and 

negative sequences. ADpred correctly identifies known ADs within protein sequences and 

accurately predicts the consequences of mutations. We show that functional ADs are (1) 

located within intrinsically disordered regions with biased amino acid composition, (2) contain 

clusters of hydrophobic residues near acidic side chains, (3) are enriched or depleted for 

particular dipeptide sequences, and (4) have higher helical propensity than surrounding 

regions. Taken together, our findings fit the model of “fuzzy” binding through hydrophobic 

protein-protein interfaces, where activator-coactivator binding takes place in a dynamic 

hydrophobic environment rather than through combinations of sequence-specific interactions.   
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Introduction 

Transcription activators are regulatory factors that stimulate transcription in response to 

signaling pathways controlling processes such as development, growth and stress response 

(Levine et al., 2014; Spitz and Furlong, 2012). Misregulation of activators or mutations within 

them can lead to many human diseases and syndromes (Bradner et al., 2017). Each activator 

contains one or more transcription activation domains (ADs) that usually target coactivators – 

complexes that contact the basal transcription machinery and/or have chromatin modifying 

activity (Erkina et al., 2016; Hahn and Young, 2011). AD-coactivator binding initiates a series of 

events leading to productive transcription initiation, elongation and reinitiation. There are 

hundreds of cellular activators with distinct ADs, but most target only a small number of 

coactivators such as Mediator, TFIID, Swi/Snf, SAGA, NuA4 and p300. Broadly acting ADs can 

target several of these coactivators, allowing them to act on a large set of genes with different 

coactivator requirements. ADs have also been implicated in promoting the formation of 

intracellular condensates at enhancers, triggering the recruitment of a large dynamic network 

of coactivators and other factors responsible for gene activation (Boija et al., 2018; Cho et al., 

2018; Chong et al., 2018; Shrinivas et al., 2019). 

 

Nearly all characterized eukaryotic ADs are contained within intrinsically disordered protein 

regions (IDRs) that lack a stable 3D structure in the absence of a binding partner (Brzovic et al., 

2011; Currie et al., 2017; Kussie et al., 1996; Sugase et al., 2007; Uesugi et al., 1997). In many 

systems apart from transcription, molecular recognition by IDRs is mediated by short linear 

motifs (SLMs), 3-10 residue sequence motifs found in otherwise unrelated proteins (Das et al., 

2012; Nguyen Ba et al., 2012). In contrast, AD function is encoded by a wide range of seemingly 

unrelated sequences. For example, while AD sequences can be moderately conserved in closely 

related orthologs (Pacheco et al., 2018), no common sequence motif has been found when 

comparing ADs from different transcription factors. In addition, small-scale screens for ADs 

using random sequences of varying length fused to a DNA binding domain found that ~1% of 

these sequences encoded AD function (Abedi et al., 2001; Erkine et al., 2002; Ma and Ptashne, 

1987a; Ravarani et al., 2018; Ruden et al., 1991). Finally, prior work analyzing natural and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.872986doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.872986


 4 

synthetic ADs have found several sequence features that correlate with AD function including 

intrinsic disorder, the presence of acidic, hydrophobic, and aromatic residues, low sequence 

complexity, net negative charge (or lack of positive charge) and, in some cases, alpha helix 

propensity (Brzovic et al., 2011; Dyson and Wright, 2016; Erkina et al., 2016; Ma and Ptashne, 

1987a; Ravarani et al., 2018).  

 

Recent structural work and molecular analysis suggests that a large class of ADs recognize 

coactivators via a dynamic “fuzzy” protein-protein interface. For example, the yeast activator 

Gcn4 contains tandem ADs that bind four structured domains in the Mediator subunit Med15 

(Brzovic et al., 2011; Tuttle et al., 2018; Warfield et al., 2014). Structural analysis showed that 

the individual AD-Med15 interactions are dynamic, and that the two factors appear to interact 

via a cloud of hydrophobicity rather than through sequence-specific interactions. This binding 

mechanism does not require a unique sequence motif for AD function. Because of this, it has 

been difficult to predict sequences with AD function and to understand which features promote 

their dynamic binding properties and specificity. Understanding these fundamental properties 

of ADs is essential toward progress in determining the molecular basis of AD specificity for 

certain coactivators, dissecting mechanisms used in gene activation, and in predicting the 

consequences of naturally occurring mutations on AD function. 

 

In this work, we used a high throughput approach to screen over a million synthetic peptide 

sequences and found large numbers of AD-positive and AD-negative sequences. We analyzed 

the resulting sequence sets using logistic regression and also developed a deep neural network 

(NN) predictor of AD function, termed ADpred. The combination of these two approaches 

allowed us to identify sequence features that specify AD function. ADpred also enables 

identification of peptides having AD function within the yeast proteome and accurately predicts 

the consequences of mutations on AD function. 

 

Results 
 
A high-throughput screen for synthetic activation domains  
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To identify features encoding AD function, we isolated many synthetic ADs using a high 

throughput approach. We reasoned that gathering large sets of polypeptides with and without 

AD function would allow computational identification of physical properties, sequence motifs, 

and other features associated with ADs. Well-characterized natural ADs range from ~5 to > 100 

residues in length, but many are shorter than 30 residues. To generate large numbers of 

synthetic ADs, we designed libraries that encode 30 randomized amino acids attached to the N-

terminal linker region and DNA-binding domain of Gcn4 (residues 132-281) (Fig 1A). Prior work 

showed that this Gcn4 derivative has no inherent AD function and that it can accept a wide 

variety of natural and synthetic ADs, permitting activation of yeast Gcn4-dependent genes 

(Pacheco et al., 2018; Warfield et al., 2014). By varying the ratio of the four DNA bases 

separately at codon positions 1, 2, and 3 (Labean and Kauffman, 1993), we made two libraries 

that either (1) biased the randomized coding sequences for residues normally enriched in IDRs 

(Uversky, 2014) or (2)  that encoded an approximately equal representation of all amino acids. 

The results reported below are derived from analysis of the combined libraries. 

 

The libraries were transformed into a yeast reporter strain lacking wild type (WT) Gcn4 and 

containing an integrated synthetic Gcn4-dependent promoter driving GFP expression. 

Approximately 25 million yeast transformants were obtained, and ~3.6 million contained 

uninterrupted ORFs fused to Gcn4. To enrich for functional ADs, we grew cells overnight in 

synthetic media lacking histidine and containing 3-amino triazole (3-AT), a competitive inhibitor 

of the yeast His3 protein. HIS3 transcription is stimulated by Gcn4, and only cells containing 

functional Gcn4 produce enough His3 to efficiently grow under these conditions (Hope and 

Struhl, 1986). After selection in 3-AT, we sorted cells by their GFP levels using fluorescence-

activated cell sorting (FACS). The distribution of fluorescence intensities shows that a 

subpopulation of cells expressed GFP at levels near those of cells with wild type (WT) Gcn4 (Fig 

1B). FACS was used to split these GFP-expressing cells into four bins of increasing fluorescence. 

We predicted that cells with the highest GFP levels (bin 4) should contain the strongest ADs. 

DNA was extracted from cells in the individual GFP-expressing bins, and the 90 nucleotides 

encoding the random peptides fused to the Gcn4-DBD were sequenced. Only sequences 
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containing a complete 30-residue ORF were analyzed. Single point mutations and other 

sequencing-related artifacts were minimized by clustering similar sequences, allowing for up to 

6 mismatches per sequence to be included in the same cluster (Methods). The most frequent 

sequence in the cluster was used as the cluster representative. The AD-negative set contains all 

random peptide sequences from the background library (before FACS screening) except for 

those peptide sequences identified in any of the bins 1-4. The AD-positive set consists of all 

sequences found in any of the bins 2-4. Sequences that were found only in bin 1 were omitted 

as we later found that these likely contained at least some false positives (Methods). As a 

result, we obtained ~4x104 unique AD-positive sequences and ~1x106 AD-negative sequences 

(Table S1).  

 

Most functional ADs are not found in a single bin but are distributed among several bins, with 

the distribution presumably reflecting AD strength. To check the accuracy of our FACS-based 

screening, we first assigned an AD enrichment score to each AD-positive sequence. This score 

measures the weighted enrichment of a 30-mer sequence in bins 1 to 4 with respect to its 

number of occurrences in the library prior to FACS screening (Methods). Next, we selected 18 

AD-positive sequences from a wide range of enrichment scores and measured GFP expression 

in the reporter strain by fluorescence assay. We found that the calculated AD enrichment score 

correlates well with GFP expression induced by individual AD candidates, validating our 

activator screen (Fig 1C; Pearson correlation R = 0.79).  

 

Amino acid composition and specific dipeptide sequences are important predictors of AD 

function 

We first compared sequences from the AD-positive and negative sets by calculating a log-odds 

score for each sequence based on its amino acid composition. This score measures the 

similarity of the sequence’s amino acid composition to the composition in the AD-positive set 

versus the composition in the AD-negative set (Methods). We found that the AD-positive and 

negative sequences have distinct but overlapping amino acid compositions (Fig 2A). This finding 
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is consistent with earlier results showing that IDPs and ADs are generally composed of low 

complexity sequences that are biased towards certain amino acids.  

 

To quantify the contribution of amino acid composition to AD function, we tested how well 

composition alone predicts function. We fit a logistic regression model for AD prediction that 

used only the relative amino acid frequencies (between 0 and 1) in each positive or negative 

sequence. The model was trained with 90% of the AD-positive and AD-negative data and tested 

with 10% held out data. Surprisingly, composition alone is a very strong predictor of function 

with an area under the precision-recall curve (AUPRC) score of 0.934 ± 0.002 (accuracy of 

predictions: 0.883 ± 0.003), compared with a maximum possible AUPRC of 1.0 for perfect 

predictions and 0.5 for random predictions. The logistic regression coefficients from this model 

show the bias towards specific residues in AD-positive sequences (Fig 2B). Consistent with 

results from prior analysis of natural and synthetic AD sequences (Cress and Triezenberg, 1991; 

Ma and Ptashne, 1987a; Pacheco et al., 2018; Ravarani et al., 2018; Warfield et al., 2014), the 

regression coefficients demonstrated that functional ADs are depleted of positively charged 

residues (R,H,K), and enriched for negatively charged (D,E), hydrophobic and aromatic residues, 

particularly F and W. 

 

While no unique sequence or short linear motif has been recognized as conserved in natural 

ADs, it is possible that combinations of short heterogeneous sequence motifs contribute to AD 

function. To explore this possibility, we developed a regression model that utilizes the 

frequencies of all 400 possible dipeptide sequences. The resulting logistic regression 

coefficients from this analysis show the bias towards specific dipeptides that are enriched or 

depleted in the synthetic ADs (Fig 3). Using dipeptide instead of amino acid composition 

improved model performance from an AUPRC score of 0.934 ± 0.002 to 0.942 ± 0.002 (accuracy 

of prediction: 0.891± 0.004). Some dipeptides are clearly enriched in ADs such as D or E 

followed by a hydrophobic residue, especially F or W (log p-values from likelihood ratio tests 

are shown inside the boxes in Fig 3). The reverse dipeptides (e.g., W followed by D or E) show a 

negligible impact on the model performance (Methods). Importantly, we also found that 
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certain dipeptides are strongly depleted in ADs, such as an aliphatic followed by a positive or 

polar residue, proline, or glycine (e.g. VP), whereas the same was not true for the reverse 

dipeptides (Fig 3). This analysis suggests that dipeptide sequences contribute to AD function 

over and above the contribution from their amino acid composition. 

 

To test these conclusions further, we swapped individual dipeptide coefficients in the 

regression model (e.g., the DW coefficient was swapped with all other coefficients in 400 

separate models) and used the new models to predict AD function (Fig S1A). We found that 

replacing the DW coefficient (labeled Fwd) with every other coefficient in this matrix decreases 

average model performance significantly, while replacing the WD coefficient (labeled Rev) has 

no appreciable effect on average model performance. Fig S1A also shows that replacing 

coefficients for six similar dipeptides (EW, EV, DV, DL, DF, and DY) also decreased model 

performance while replacement of the reverse peptide coefficients does not. This analysis 

further indicates that these dipeptides contribute to AD function. 

 

Since reversing dipeptides in the regression model affected our prediction performance, we 

asked whether the spacing between residues generally plays a role in determining activation 

function. We therefore compared occurrences of D-W separated by variable numbers of 

residues in functional and permuted sequences (Fig S1B). This analysis showed that at short 

spacings of 0-4 residues, having a D before a W is generally enriched over the opposite order. 

Altogether, our analysis showed that amino acid composition strongly correlates with AD 

function and suggests that enrichment of favorable dipeptide sequences and depletion of 

others contributes to function. These properties differentiate ADs from a control group of non-

functional sequences. 

 

We also compared the performance of our regression model with a previously proposed 

universal 9 amino acid AD sequence motif (Piskacek et al., 2007) ( 

https://www.med.muni.cz/9aaTAD/) Both the regular and the more stringent 9aa sequence 
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pattern did not perform well with our experimental data, achieving accuracies of 0.57 and 0.60, 

respectively .  

 

A deep learning model for AD prediction 

To discover complex features that can contribute to AD function in an unbiased, agnostic 

fashion and to improve the accuracy of AD predictions, we trained a deep-learning neural 

network model that does not require prior knowledge of features contributing to AD function 

(Schmidhuber, 2015). The model inputs are the 30-residue sequences from each peptide in the 

positive and negative sets (20 values per position in one-hot encoding), predicted secondary 

structure (three values per position) and predicted disorder (one value) (Fig 4A). A series of 29 

filters were used for data convolution that allowed us to model associations between residues 

at distant and variable positions. The resulting data is analyzed using a dense neural network 

with two soft-sign layers and the final output node yielding the probability of the input 

sequence to possess AD function. During training, the weights of the filters and other neural 

network connections are optimized, correcting for an imbalance of positives and negatives by 

subsampling the same number of negatives down to the same number of positives before each 

training epoch.  

 

Fig 4B compares the performance of the best deep learning and regression models. The best 

deep learning model, termed ADpred, uses only amino acid sequence and secondary structure 

predictions and shows great improvement in performance over the dipeptide regression model 

with an AUPRC score of 0.975 ± 0.001 (accuracy 0.932 ± 0.001) compared with an AUPRC score 

of 0.942 ± 0.002 (accuracy 0.891 ± 0.004) for the dipeptide model. We found that secondary 

structure but not disorder predictions modestly improved model performance (Fig 4C). The 

striking improvement in performance of the deep learning models over regression approaches 

suggests the existence of important features associated with AD function in addition to bias in 

amino acid composition and dipeptides sequences. 
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To evaluate the contribution of peptide charge for AD prediction using the deep learning 

model, we compared average charge per residue versus ADpred probabilities for both AD 

positive and negative sequences (Fig 4D). This analysis showed that extreme positive or 

negative charge correlates well with predictions, but many peptides cannot be accurately 

predicted by charge alone. For example, while we found few ADs with net positive charge, a 

large number of negatively charged peptides do not have AD function. This is consistent with 

our findings above that other features, in addition to amino acid composition, make important 

functional contributions. 

 

ADpred identifies functionally important AD residues 

To test the utility of ADpred on a natural AD, we evaluated its performance on the Gcn4 central 

AD (cAD) where thousands of variants have been tested for in vivo function (Jackson et al., 

1996; Staller et al., 2018; Warfield et al., 2014). We mutated a region of the cAD sequence in 

silico (residues 108-137) changing every residue to every other amino acid. We fed the resulting 

set of peptides to ADpred to predict AD probability. Remarkably, in silico predictions show 

excellent correspondence to prior results of in vivo function with a Pearson correlation of 

R=0.82 (Fig. 5A, B). For example, the importance of the three residues that make direct contact 

with Med15 (W120, L123 and F124; labeled in red in 5A) are clearly apparent as well as the 

lesser but noticeable impact of three other hydrophobic residues (F108, Y110 and L113; labeled 

in green) that have been observed in vivo (Jackson et al., 1996; Staller et al., 2018). 

Furthermore, our model predicts that insertion of positively charged residues are most likely to 

have a deleterious impact on function when positioned near the key hydrophobic residues, that 

insertions of additional hydrophobic residues generally increase function, and that no single 

negatively charged residue is important, in agreement with earlier in vivo studies (Jackson et al., 

1996; Staller et al., 2018; Warfield et al., 2014).  

 

Using the same in silico mutagenesis approach, we predicted important residues within other 

natural ADs (Fig S2). Overall, we observe an excellent correspondence between the in silico 

predictions and the experimental identification of functional residues in the yeast activators 
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Ino2 and Gal4 (Pacheco et al., 2018, Tuttle et al., 2019). However, two predictions deviating 

from the experimental results are Gal4 residues Y865 and Y867. Both are predicted to be 

functionally important, but when individually mutated to Ala they have at least 75% WT 

function (Tuttle et al., 2019). 

 

We next used ADpred to identify ADs in transcription factors where in vivo AD function has 

been approximately mapped (Fig 5C) (Arnold et al., 2018; Kuras and Thomas, 1995; Leuther et 

al., 1993; Ma and Ptashne, 1987b; Pacheco et al., 2018; Rothermel et al., 1997; Schwank et al., 

1995; Stebbins and Triezenberg, 2004). For this analysis, we used an ADpred probability of ≥ 0.8 

as a high confidence threshold for AD prediction. In the figure, blue peaks show the AD 

predictions, while green boxes indicate experimentally validated AD function. For many factors 

(Gal4, Gcn4, Ino2, Met4, Rtg3, Rap1), our model predicts AD function coincident with or directly 

adjacent to known ADs. One exception is the Gcn4 N-terminal AD, where optimal AD function 

requires a combination of four short hydrophobic clusters scattered throughout the 100 aa long 

N-terminal region (Jackson et al., 1996; Tuttle et al., 2018). None of these four short clusters 

can act as an AD on its own but requires the others for its collaborative function. It is likely that 

our model could not find this long AD region because it was trained on peptides of 30 residues.  

 

For some of the factors analyzed (Gal4, Hap4, Rap1), our predictions fell outside of the AD 

regions mapped in vivo and sometimes within segments having predicted structure (grey boxes) 

e.g., Gal4. One possibility is that these AD predictions are false positives, meaning that these 

peptides do not encode AD function. An alternative explanation is that these peptides have the 

potential for AD function but are not positioned in the proper context to function in their 

natural setting; e.g. are in structured regions. To investigate these scenarios, we tested several 

of these predicted ADs. 30-residue segments containing predicted yeast ADs (indicated by red 

triangles in Fig 5C) were fused to the Gcn4 DNA binding domain. Function was assayed in vivo 

by treating cells with sulfometuron methyl (SM) for 90 min to simulate amino acid starvation 

and to induce synthesis of Gcn4, followed by RNA quantitation using RT qPCR (Fig 6A; Fig S3, 

Table S2). When assayed at the Gcn4-dependent HIS4 gene, a predicted AD from Gal4 (Gal4_A) 
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(Ma and Ptashne, 1987b) and three from Hap4 (Hap4_A,B,C), produced 3.7- to 8.6-fold higher 

transcription compared with SM-treated cells lacking Gcn4 (labeled “vector” in Fig 6A; dashed 

line). At HIS4, we used activation of transcription by ≥ 3-fold for scoring AD+ function.  Our 

results show that these predicted ADs do not inherently lack activity but can function as ADs in 

an appropriate context.  

 

To test the performance of our model on activators from other eukaryotes, we measured the 

AD function of several sequences analyzed in Drosophila using a medium-throughput AD-

screening approach (Arnold et al., 2018). We examined sequences from factors MTF-1, Bteb2, 

and C14451 that were shown to have AD function in Drosophila and were predicted to have AD 

function using ADpred (Fig S4. Table S2). While MTF-1 did not function as an AD in our system, 

the other two had AD activity resulting in 5-10-fold higher levels of transcription compared with 

cells lacking Gcn4 (Fig 6A and Fig S3). We also tested regions of two factors, HLH3B and Sage, 

that have AD function in Drosophila but were predicted by ADpred to have no AD function. We 

found that neither of these sequences functioned as ADs in the yeast system, further validating 

the ADpred results. 

 

ADpred can overrule strong amino acid composition bias 

As demonstrated above, amino acid sequence composition is perhaps the most important 

component determining AD function, but other features also make important contributions. 

Given that a model using only sequence composition as a feature reaches quite high accuracies, 

we asked whether the ADpred predictions are dominated by sequence composition. We 

selected sequences from our libraries within a wide range of log-odds scores for amino acid 

composition (labeled A to E in Fig 6A, inset). For each selected sequence, we generated a set of 

10,000 randomly permuted 30-mer peptides and then sorted them using ADpred. From this set, 

we selected one or two pairs of sequences with identical amino acid composition but with high 

and low ADpred scores (AD+ or AD-). Upon testing these pairs of 30-mers for function at HIS4 

and using activation of transcription by ≥ 3-fold for scoring AD+ function, all predictions were 

confirmed except for one of two sequences tested with +10 log-odds score (Fig 6A). Sequence 
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E2+ has a sequence composition extremely biased toward AD function but only shows 2.6-fold 

activation (Fig 6A). Combined, our results demonstrate that ADpred can correctly predict AD 

function with high accuracy even if the sequence composition is strongly biased toward non-AD 

sequences and vice versa.  

 

We also tested all of the above peptides for activation of yeast ARG3 transcription (Fig S3A). 

ARG3 is transcribed at ~7-fold lower rate compared to HIS4, and transcription of ARG3 is 

regulated by both Gcn4 and two repressors. Our prior studies using AD derivatives at both 

promoters showed that HIS4 is generally more permissive for AD function, perhaps because of 

the more complex regulation and coactivator requirements at ARG3 (Pacheco et al., 2018; 

Tuttle et al., 2018). Because WT Gcn4 shows lower levels of activation at ARG3 compared with 

HIS4 (5.5-fold vs 14-fold), we set a threshold of 2-fold activation for scoring AD function (Fig S4, 

dashed line indicates no Gcn4). Of the four AD predictions for yeast proteins outside of 

previously mapped ADs, only one activated ARG3 >2-fold (Hap4A), but four of five Drosophila 

proteins and 15 of 18 synthetic sequences behaved as expected. Thus, our predictor performs 

well but is less accurate on a promoter with more stringent AD requirements (74% accuracy at 

ARG3 compared to 93% at HIS4.  Nevertheless, there is a high correlation of experimental vs. 

predicted values at both HIS4 and ARG3 with R=0.85 and 0.67 respectively (Fig S3B).  

 

ADs generally contain clusters of hydrophobic residues rather than specific sequence motifs 

As demonstrated above, ADpred performs significantly better than regression models based on 

amino acid composition and dipeptide frequency. For additional insight into sequence features 

leading to enhanced performance of the neural network, we analyzed the results using 

Integrated Gradients, a method that identifies positive and negative contributions to the 

prediction score (Ancona et al., 2018; Sundararajan et al., 2017). This analysis of four 

representative yeast ADs is shown in Fig 6B, with the results presented as sequence logos. In 

addition, Integrated Gradient analysis of 20 high-scoring synthetic peptides is shown in Fig S5. 

In contrast to earlier predictions (Piskacek et al., 2007; Warfield et al., 2014), we found no 

evidence for ADs to contain defined sequence motifs of three or more residues. Rather, a 
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common feature is clusters of hydrophobic residues in the background of an acidic polypeptide. 

This result explains the importance of amino acid composition, as multiple examples of this 

simple sequence feature are likely to be found within short peptides having a favorable amino 

acid composition. 

 

We also used Integrated Gradients to examine the scrambled peptides with variable amino acid 

composition used in Fig 6 (Fig S6). This analysis showed that peptides with predicted ADs, but 

having unfavorable amino acid composition, had separately clustered the favorable and 

unfavorable residues. For example, peptides with compositions labeled A and B had positive 

residues segregated to the N-terminus while the acidic and aromatic residues were positioned 

in the C-terminus.  This further validates our conclusion that clusters of hydrophobic residues in 

the background of an acidic polypeptide are important for function. 

 

ADs show higher helical propensity and less disorder than surrounding sequences from in 

silico analysis. 

To further explore properties of natural ADs, we applied the deep learning model to the entire 

yeast proteome. We classified protein regions as AD+ or AD- if a segment of five or more 

residues above a high-confidence threshold ADpred probability of 0.8 was detected. We 

compared predictions within the proteome to predictions on a subset of 132 yeast transcription 

factors, some of which are known activators (Fig 7A, Table S3). We observed a clear enrichment 

of ADs in transcription factors, and a corresponding low p-value, when the predicted AD is 

between 15-30 residues in length. While predicted ADs are enriched in transcription factors, 

they are still found, but at a lower level, in non-transcription factors. This is in agreement with 

our findings above that not all peptides with inherent AD function are in a context that allows 

them to function as activators. 

 

Finally, we explored whether sequences within the proteome having predicted AD function are 

enriched for disorder or secondary structure elements. Our analysis examined the 25, 50 and 

75th percentiles of the predicted helical propensity or disorder within 50 residues N and C-
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terminal to the predicted AD and five central residues of the ADs (the latter is to plot ADs 

vertically stacked, despite their variable length). The predicted ADs have, on average, lower 

disorder compared to the surrounding sequence (Fig 7B). Consistent with this, ADs are also 

predicted to have higher alpha helical propensity compared with 50 residues N and C-terminal 

to the predicted AD. Together, our analysis suggests that many natural ADs are peptides with 

alpha helical propensity located within disordered regions. We found this same pattern 

whether analyzing the entire yeast proteome, the subset of nuclear proteins, or only yeast 

transcription factors (Fig S5). We therefore suggest that the observed pattern of helicity and 

disorder might be some inherent property of the “AD-type peptides” and their normal protein 

environment, whether or not they are transcription factors. 

 

Discussion 

Since their discovery, the nature of transcription activation domains has been enigmatic (Gill 

and Ptashne, 1987; Hope et al., 1988; Ma and Ptashne, 1987a; Ptashne and Gann, 1990; Sigler, 

1988). Nearly all characterized ADs are intrinsically disordered and have biased amino acid 

composition. Furthermore, function corelates with negative charge and in some cases, with the 

length of the AD region. Earlier studies showed that a surprisingly large percentage of random 

sequences can encode AD function, and examination of natural and variant ADs revealed no 

obvious common sequence motif. Despite these unusual properties, activators typically target 

only a small number of conserved coactivator targets, and the individual AD-target interactions 

usually have relatively low affinity and specificity. Recent structural studies showed that one 

large class of ADs interacts with its targets via a dynamic fuzzy interface and that combining 

multiple ADs and activator binding domains in a single complex can lead to much higher affinity 

and specificity while still retaining the dynamic and fuzzy nature of the complex. However, 

major hurdles toward understanding AD function and specificity are the absence of a reliable 

way to recognize ADs in transcription factors and an understanding of the protein features that 

permit their distinct functions. Here, we used a high throughput assay to screen over a million 

synthetic peptide sequences for their ability to activate transcription of a GFP reporter. We 

analyzed the resulting sequence sets using logistic regression and a deep neural network that 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.872986doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.872986


 16 

can accurately predict AD function. The combination of these two approaches allowed us to 

identify, in a systematic way, properties and sequence features associated with AD function. 

 

The starting point for our analysis was a high throughput screen for ADs that included a genetic 

enrichment for ADs within the randomized library. Although randomized libraries have been 

screened for AD function in earlier work (Abedi et al., 2001; Erkine et al., 2002; Ma and 

Ptashne, 1987a; Ravarani et al., 2018), compared with prior screens, we identified ~60-fold 

higher numbers of ADs and a much larger number of non-ADs, an important starting point for 

systematic analysis of functional properties. For example, an earlier machine learning approach 

used 926 synthetic AD variants that gave an AD prediction AUROC score of 0.773 (in 

comparison to our AUROC of 0.977; Table S4 in Supplementary Methods) and, significantly, 

attributed different relative importance to some of the features described here (Ravarani et al., 

2018).  

 

As inferred from earlier studies, we found a striking difference in amino acid composition 

between the AD-containing and non-AD sequences. A logistic regression approach based solely 

on amino acid composition was surprisingly accurate (AUPRC 0.934). Regression allowed us to 

quantify the contribution of residue type to predicted function, and this was consistent with 

earlier work: ADs are generally depleted of positively charged residues and enriched for acidic, 

hydrophobic and especially aromatic residues. This approach also allowed us to examine the 

contributions of simple sequence motifs. Our analysis showed that ADs are enriched for specific 

dipeptides and depleted of others. One of these dipeptides, DW, had been identified earlier 

(Ravarani et al., 2018). This is in agreement with a prior proposal that one function of acidic 

residues in ADs is to promote solvent exposure of hydrophobic residues that are involved in 

direct molecular interactions (Staller et al., 2018).  

 

To further improve performance and to enable predictions on a proteome-wide scale, we 

developed a deep neural network for AD prediction. Deep learning allows predictions of 

function without a priori knowledge about which patterns or properties might be important for 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.872986doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.872986


 17 

the prediction. These properties include short and variable sequence motifs and residue 

spacing, both internal and between multiple short motifs that positively or negatively 

contribute to function. Using our large data set of AD positive and negative sequences, with the 

addition of only secondary structure predictions, this approach gave a striking improvement in 

the accuracy of AD prediction compared to the logistic regression model (AUPRC 0.977 

compared to 0.934). We also found that the deep learning model, termed ADpred, performs 

well, even with sequences that show extreme bias in amino acid composition against AD 

function. Including features representing predicted disorder did not increase performance. This 

is not surprising, since it is unlikely that a sequence in our random library would by chance fold 

by itself.  

 

Analysis of sequence features that contribute to the ADpred results using Integrated Gradients 

showed that many of the ADs contain clusters of hydrophobic residues in the background of an 

acidic polypeptide. This feature is found in both natural and synthetic ADs and seems a general 

feature corresponding to function. We suggest that these clusters function to increase the 

effective affinity of the AD peptides for their coactivator targets using a mechanism similar to 

avidity or allovalency – whereby a receptor dynamically interacts with multiple binding sites on 

a single ligand, effectively inhibiting the dissociation of the two molecules (Locasale, 2008; 

Olsen et al., 2017). This mechanism fits nicely with the dynamic and fuzzy binding of acidic 

activators to Med15, and presumably other coactivator targets, as well as the finding that AD-

coactivator binding is driven in part by a favorable entropy change (Pacheco et al., 2018; Tuttle 

et al., 2018). 

 

Our new results, combined with earlier work, suggest that functional ADs (1) consist of a 

disordered polypeptide with biased amino acid composition, (2) contain clusters of hydrophobic 

residues in the background of an acidic polypeptide, (3) are enriched for specific short dipeptide 

sequences and depleted of others, and (4) have less disorder and more helical propensity than 

surrounding sequences that facilitate the presentation of their hydrophobic residues to 

interacting partners. Taken together, our characterization fits with a fuzzy-binding mechanism 
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where the interactions take place in a dynamic environment resembling a hydrophobic cloud 

rather than combinations of sequence-specific interactions.  

 

Tests of our optimized model showed that it can accurately identify functionally important 

residues within yeast ADs. For example, in silico mutagenesis of the Gcn4 cAD to every possible 

residue and predicting the effect on AD probability gave results remarkably consistent with the 

extensive experimental analysis of Gcn4 AD function. When applied to several factors with 

known ADs, the model was successful in AD recognition, with the exception of the highly 

cooperative 100-residue long Gcn4 N-terminal AD – a polypeptide length far outside the 

parameters of our model training. We also found potential ADs within other regions of 

transcription factors. In most cases tested, these predicted ADs functioned when fused to the 

Gcn4 DNA binding domain. This result demonstrates that AD function requires that the 

polypeptide be located in the proper protein context and that not all sequences within natural 

proteins having AD potential will work as activators. Recognition of these “false-positives” 

when screening the proteome will require additional information.  For example, ADpred was 

trained on short random sequences, which are likely to be disordered. Identification of true ADs 

in transcription factors will likely be more accurate if only disordered regions are considered 

(Fig 5C). 

 

Finally, it is important to note that our screen used a TATA-containing inducible promoter. 

Earlier studies have shown that enhancers, the DNA targets of activators, can have specificity 

for a certain promoter type and that coactivator requirements can vary dependent on the gene 

regulatory region (Butler and Kadonaga, 2001; Haberle and Stark, 2018). Differences in 

coactivator requirements probably play a role in the differences in function when comparing 

synthetic ADs on HIS4, a more permissive gene, and ARG3, a more difficult gene to activate. 

This may also account for the differences we observed for the function of some Drosophila ADs 

in the fly and yeast systems. 
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Some yeast acidic activators, such as Gal4, work in all eukaryotes, and the ADs we have isolated 

here have similar properties and are likely of this class. In contrast, some higher eukaryotic cell-

type specific activators bind particular coactivator targets using a sequence-specific and 

conventional protein-protein interface that likely have different sequence requirements, e.g., 

(De Guzman et al., 2004). It will be of great interest in future work to repeat the screen using 

promoters with different coactivator requirements and promoter sequence elements to 

determine whether this setup changes the features necessary for AD function. In addition, it 

will also be of interest to test how predictions of AD function correlate with the ability to form 

condensates – a property associated with at least some ADs (Hahn, 2018).  

 

Methods 

Design of the randomized libraries 

For the first library, we computed the ratio of A, C, G, and T needed at each codon position in 

order to obtain an approximately equal probability for encoding each of the 20 amino acids and 

a minimal probability for a stop codon within our random 90-mer nucleotide sequence.  In a 

custom python script we minimized an objective function using the “basin hopping” algorithm  

(Wales and A, 1997) implemented in the Python scientific library scipy (Oliphant, 2007). The 

objective function is the Euclidean distance from equal representation of all 20 amino acids 

(Pr(aa)=0.05) and an absence of stop codons (Pr(stop)=0). The goal for the second library was to 

obtain amino acid target probabilities equal to the average observed in disordered regions. We 

used the same Python script to compute the optimal ratios of A, C, G, and T to minimize the 

Euclidean distance with target and predicted probabilities.  

 

Oligonucleotides containing 30 repeats of the randomized codons (Supplementary Methods) 

were ordered from Integrated DNA Technologies (Coralville, IA). Each of the three codon 

positions contains a defined ratio of A/C/G/T to generate the desired bias. The oligonucleotides 

were extended in a PCR reaction to add 40 bp identity on each end to plasmid pLH365 

(Supplementary Methods). This plasmid was derived from the ARS CEN LEU2 vector pRS315 and 

contains 1 Kb upstream DNA and the coding sequence for Gcn4 residues 132-281. This 
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upstream DNA contains all known Gcn4 promoter and translational regulatory elements. The 

plasmid was digested with SbfI and NotI and 4 µg of linearized vector, and 12 µg of the PCR 

products were transformed to electrocompetent yeast strain SHY1018 so that in vivo 

homologous recombination inserted the randomized 30-mers into the N-terminus of Gcn4 

(Benatuil et al., 2010). Ten transformations were run in parallel to produce a library of ~2x107 

clones. The data from both libraries were combined into a single dataset to increase the 

number of samples and improve model performance. 

 

GFP induction and FACS sorting 

Cells were diluted to OD600= 0.3 from a suspension with OD600= 1.0 and grown overnight at 30°C 

in glucose complete media lacking uracil, leucine and histidine and containing 3 mM 3-Amino 

Triazole (3AT). After 14-19 hours, cells were washed and diluted in double distilled water to 

~107/ml and FACS sorted in a FacsAriaII instrument. Cells were sorted into 4 bins of increasing 

fluorescence intensity and collected. Sorted cells were harvested by centrifugation and 

resuspended in glucose complete media lacking leucine and containing 100 µg/ml ampicillin 

and incubated for 2 days at 30°C with shaking. Cells were frozen in 20% glycerol at -80°C. 

 

Plasmid purification and High-throughput sequencing 

The background libraries were obtained from cells after growth in selection media but before 

FAC sorting. Cells in FACS-sorted bins 1-4 were barcoded using Illumina nextera i7 barcodes and 

sequenced on a Illumina HiSeq machine. For each library, approximately 109 cells from a 

suspension with OD600 =1.5 were harvested by centrifugation, washed with water and 

resuspended in 4 ml of TE buffer. Cells were lysed in a mini bead beater (BioSpec products) with 

2.5 ml of zirconium beads 7 times at maximum speed for 3 minutes and with rest intervals of 5 

minutes on ice. DNA was extracted with Phenol/CHCl3, ethanol precipitated and treated with 

RNAseA. The libraries for high-throughput sequencing were prepared as described in 

Supplementary Methods. 

 

Data processing for machine learning 
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All procedures are implemented in custom python and bash scripts. Reads 1 and 2 from paired-

end sequencing were paired with FLASH (Magoc and Salzberg, 2011). We filtered out sequences 

longer than 90 base pairs, with sequencing quality PHRED score less than 30 for a given base, 

with frameshifts, or without start or stop codons. Paired nucleotide sequences were translated 

to amino acids. Sequence clustering (Edgar, 2010) was applied to minimize redundancy in the 

libraries (with minimum sequence identity of 80% per cluster). Each cluster was represented by 

its most frequent member sequence. Each such sequence is included in the final reduced 

dataset and the total number of reads in bins 1 to 4 and background correspond to the sum of 

reads of all members of the cluster. For an initial experimental validation, an activator 

enrichment score was calculated for each sequence in the final dataset as the summation of the 

number of reads in each bin, multiplied by coefficients (coeffbin) that correspond to the mean 

value of fluorescence of each bin (Supplementary Materials): 

Score =
∑ reads+,-.
+,-/0 ∗ coeff+,-

reads-34
 

Here, readsneg stands for the number of reads in the AD-negative set, which comprises all reads 

from the unsorted background library minus any AD sequences found in FACS bins 1 to 4.  

 

Machine learning analysis 

The redundancy-filtered set of sequences with read counts in bins 1 to 4 and background were 

split into positive (AD-positive) and negative (AD-negative) sets. The AD-negative set contains 

all sequences in the background library except those found within FACS bins 1 to 4. The positive 

set contains all sequences with at least one read in total in bins 2 to 4. Omitting sequences that 

were only found in bin 1 improved model performance, presumably by eliminating false 

positives. Charges were computed for each sequence as the summation of amino acid 

frequencies multiplied by a coefficient where (E,D=-1; K,R=1 and H=0.5). 

 

For Fig. 2A, we compared the sequence composition between the positive and negative sets by 

computing the log-odds score for each sequence and plotting its distribution for the two 

libraries. The log odds score for each sequence was calculated as the sum of the log 
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enrichments of each of the 20 amino acids in the sequences, where enrichment is the ratio of 

amino acid frequencies in the AD-positive versus the AD-negative sequence sets. Positive scores 

indicate an amino acid composition similar to the AD-positive set while negative scores indicate 

a composition similar to the AD-negative set. Denoting with 𝜙667 the averaged frequency of the 

amino acid aa in the positive set and with 𝜙668  the frequency in the negative set, the log odds 

score is: 

𝑙𝑜𝑔-𝑜𝑑𝑑𝑠	𝑠𝑐𝑜𝑟𝑒 = 	 C log	(𝜙66
7

𝜙668
G )

IJ

66/0

. 𝜙66 

 

In Fig. 2B, we trained a logistic regression model with L2 regularization (𝜆 = 3.9	108Q was 

chosen from a grid of 40 default values provided in LogisticRegressionCV function from scikit-

learn package) to predict whether a sequence is AD-positive or AD-negative. The model was 

evaluated using 5-fold cross-validation. This required optimizing 21 parameters, one for each 

amino acid frequency in the sequence and one offset. For Fig. 3, we trained a logistic regression 

model to predict AD function using the 400-dimensional dipeptides composition instead of the 

20-dimensional single amino acid composition. 

 

To assess the importance of specific dipeptides for AD function, we performed 400 likelihood 

ratio tests, each comparing the full model with models lacking one dipeptide feature. 

Dipeptides with significance p-values below 0.001 are indicated in Fig. 3 by their base 10 

logarithm. We also built alternative AD score distributions by flipping the coefficients of a 

dipeptide to every other dipeptide and measuring the performance of these models in the test 

and validation datasets (Fig S1A). We repeated this for all dipeptides, or the specific dipeptides 

shown, and compared the distribution visually with boxplots.  

 

The deep neural network for ADpred  (Fig 4A) was implemented using Keras 2.1.6 (Chollet, 

2015) with a TensorFlow (tensorflow.org) backend. Briefly, the input was composed of 

sequence and secondary structure (H, E and –, for Helix, b-sheet and random coil from PSIPRED 

4.0.1) in a one-hot encoded matrix of dimension 30 by 23. This input was fed into a model 
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made up of a convolutional layer, two dense layers and the output dense layer. The convolution 

layer had 29 filters with filter size 6x23, the first hidden dense layer had 100 neurons and the 

second hidden layer had 30 neurons. Each layer had a softplus activity  (log(1 + 𝑒S)). The 

hidden layers were regularized with L2 regularization (l=0.001) and dropout (P=0.5) layers.  The 

final output layer had a single neuron with a sigmoid activation function and was used to 

compute the final probability for AD function prediction.  

 

The model was trained with the ADAM optimizer (Kingma & Ba, 2014), using the binary cross 

entropy loss function, and the model’s performance was analyzed using AUPRC (area under a 

precision-recall curve), which corrects for skewed class sizes and is a common metric used in 

classification tasks. Each epoch was split into 250 batches. At the beginning of each epoch, we 

randomly drew an equal number of positive and negative samples from the original data set. 

 

The performance of ADpred was evaluated using 10-fold cross-validation. This process involved 

using 8 of the folds for training, 1 of the folds for validation, and the final fold for testing. The 

fold used for testing rotated between the ten folds over ten iterations. At each iteration the 

model hyperparameters (batch size, number of epochs, optimization algorithm, learning rate 

and momentum, activation functions, drop out probabilities and convolutional filter size) were 

determined using grid search over a pre-defined set of possibilities. To reduce variance, 10 

random weight initializations were used for each set of hyperparameters. The model that 

performed the best on the validation set out of all combinations of hyperparameters and 

weight initializations was subsequently evaluated on the test set. The evaluation metric on both 

the validation set and the test set was average precision, which is a conservative approach for 

calculating the area under the precision-recall curve. The results are shown in Figure 4B 

To train ADPred, each hyperparameter was fixed to the mean of the optimum over its 10 values 

(detailed in the previous paragraph).  Then the complete set was split again into 1 part as a test 

set and 9 parts for training. The best model over 100 random initialization of the weights was 

chosen based on its AUPRC score on the test set. 
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For figure 5A, all residues of a cAD 30mer were mutated to all other 19 amino acids and ADpred 

probability was computed. In Figure 5B the same approach was applied to cAD derivatives, and 

ADpred results were compared to experimental results (Tuttle et al., 2019).  

 

To search for AD-regions in full protein sequences, we rolled a 30-residue long window over the 

entire sequences and assigned the score to the residue in the middle (the 16th position in the 

30mer). Ordered domains were obtained from HHpred (Zimmermann et al., 2018)  and 

d2p2.pro webserver (Oates et al., 2013). 

 

Analysis of predicted AD function by RT qPCR 

To experimentally test ADpred and to demonstrate that the model captures more than the 

amino acid composition of input sequences, we designed 30-mers with the same amino acid 

composition (and hence log-odds scores, Fig. 2A) but in the opposite extremes of the scale of 

ADpred probabilities. We picked sequences from low to high log-odds scores (A to E in Fig 6A) 

and permuted the order of amino acids in each of these sequences 10,000 times. We sorted 

each library of 10,000 sequences by their ADpred probabilities. We then selected peptides with 

high and low prediction scores and tested them for in vivo function by fusion to the Gcn4 DNA 

binding domain (Supplementary Methods). 

 

Proteome analysis for ADs 

To search for ADs in full length yeast protein sequences, a window of 30 residues was scanned 

along all annotated protein sequences in yeast (data from Saccharomyces Genome Database). 

and the ADpred probability for the window was assigned to the central amino acid in the 

window (the 16th). We calculated p-values for the enrichment of ADs in the set of transcription 

factors compared to the yeast proteome with the hypergeometric test as follows. The summed 

lengths M of all proteins in the proteome corresponds to the population size, and the summed 

length N of all transcription factor sequences corresponds to the “labeled” part of the 

population. Sites with five or more contiguous residues with a score ≥ 0.8 correspond to the 

samples drawn. Suppose there are m such sites, n of which are lying within transcription 
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factors. The p-value for the hypergeometric test is the probability to obtain k or more sites 

within the transcription factors.   

The enrichment is computed as  

enrichment = 	
𝑛/𝑚
𝑁/𝑀 

and the p-value corresponds to: 

C
^_` a^

b8_
c8` a

^bca

_

`/d

 

 

Implemented in scipy.stats.hypergeom as the survival function. Disorder and secondary 

structure predictions were calculated with PSIPRED 4.0.1(Cuff and Barton, 2000) and IUPred 1.0 

(Dosztányi, 2017).  

 
9aaAD motif were searched using re python library for regular expressions. 

The motifs searched are the most and less stringent (Prosite syntax): 

[MDENQSTYG]{KRHCGP}[ILVFWM]{KRHCGP}{CGP}{KRHCGP}[ILVFWM] [ILVFWMAY]{KRHC} and 

[MDENQSTYCPGA]X[ILVFWMAY]{KRHCGP}{CGP}{CGP}[ILVFWMAY]XX).  
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Figure Legends 

Figure 1. Experimental design and validation. A) Schematic of high throughput screen for ADs. 

Cells contain a library of random 90-mers fused to the N-terminus of the Gcn4 DNA binding 

domain and a GFP reporter driven by a synthetic Gcn4-dependent promoter. Cells with Gcn4-

AD function were enriched by growth in 3-AT followed by FACS to isolate the GFP-positive AD-

containing cells. DNA from the library before FACS and from the four GFP-containing bins were 

sequenced. TES: ADH1 terminator; pA: poly-A site. B) Density plots of the number of cells vs 

relative fluorescence intensities from FACS analysis. The three plots show cells containing WT 

Gcn4, the 3-AT-enriched library and cells containing no Gcn4. Vertical lines in the middle plot 

show a schematic of the gates used for binning AD-containing cells. C) Experimental validation 

of enrichment scores on 18 AD sequences versus GFP expression in the reporter strain. 

Sequences were picked from a wide range of enrichment scores. The AD enrichment score 

measures enrichment of the AD sequence in bins 1 to 4 with respect to the background library.  

 

Figure 2. Properties of synthetic ADs. A) Distribution of log-odds scores for sequences from the 

AD-positive (blue) and AD-negative (orange) sets. B) Coefficients of amino acid frequencies 

derived from a logistic regression model for AD probability. Blue = positive charge; red = 

negative charge; green = hydrophobic/aromatic, cyan = polar and yellow = others. 

  

Figure 3. Dipeptide sequences contribute to AD function. Heatmap of the coefficients from a 

logistic regression model using only dipeptide frequencies. The first amino acid in the dipeptide 

is on the Y-axis. Log10 p-values are shown where p <0.001.  p values are from likelihood ratio 

tests using all 400 dipeptide regression coefficients versus all but one (Methods).  

 

Figure 4. Deep neural network (NN) architecture and performance. A) Input to the deep NN is a 

30 amino acid sequence and its predicted sequence features (secondary structure and/or 

intrinsic disorder). A convolutional layer can learn patterns characteristic of ADs independent of 

their precise position in the AD sequence. The flattened outcome of the convolution is used as 

an input for a dense two-layer-network with 100 and 30 neurons respectively. Lastly, the 
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output layer composed of a single neuron gives the probability for the input sequence to have 

AD function. B) Analysis of model performance. The precision-recall curve compares the 

performance of the linear regression model utilizing dipeptide frequencies and the best deep 

learning model (ADpred) utilizing peptide amino acid sequences and secondary structure 

predictions. (C) Comparison of several regression and deep learning models evaluated with 10-

fold cross validation, with the lines corresponding to standard error of the mean. Dis. = disorder 

predictions; Seq. = peptide sequence; 20 = secondary structure prediction. D) Correlation 

between predictions of the deep learning model and the average charge per residue of the 

30mers. Dotted line represents peptide with neutral average charge. Bottom panel shows a 

histogram for the distribution of sequences binned on ADpred probabilities. 

 

Figure 5. Performance of the deep learning model on known activators in yeast and fly. A) 

ADpred predictions of AD function probability for all possible single amino acid mutations of the 

Gcn4 central AD (cAD). An increase in ADpred score is darker red, decreases are lighter red or 

blue. B) The AD activity of the cAD constructs measured in (Warfield et al., 2014), transformed 

into 0-1 scale, shows a high correlation with the negative logit function of the ADpred 

probability (-log p/1-p). C) Several well-characterized activators from yeast and fly were 

analyzed by ADpred. Known activation domain-containing regions are colored green, ADpred 

predictions in blue and predicted structured domains in gray. Red triangles indicate predicted 

ADs tested for AD function (details in Fig. 6). 

 

Figure 6. Performance of the deep learning model on predicted natural and synthetic ADs. A) 

RT qPCR quantitation of mRNA from the yeast HIS4 gene, normalized to ACT1 mRNA. Cells 

contained the indicated AD sequence (Table S2) fused to the Gcn4 DBD in pLH365 and were 

induced with SM for 90 min before mRNA quantitation. Grey bars = no SM added, all others 

have SM; Black bars = control Gcn4 derivatives including WT Gcn4, the Gcn4 cAD and two 

previously characterized cAD derivatives (FLESLF and m115) (Warfield et al., 2014). Red bars = 

sequences predicted to have high probability of AD function; blue bars = low probability of AD 

function (Fig S3B). Dotted horizontal line indicates the level of SM-induced transcription in cells 
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lacking Gcn4. Inset:  the histogram of log-odds scores is from Fig 2. Arrows point to regions 

where selected AD-positive sequences were randomized and used to search for one or two 

pairs of sequences with the same amino acid composition and high (+) or low (-) ADpred scores 

(Methods). Labeling of sequence pairs with identical log-odds scores is with a letter 

corresponding to Fig 6A inset followed by 1 or 2; e.g., A1+/A1-, A2+/A2-, etc. B) Predicted 

importance of individual residues for ADpred scores analyzed using Integrated Gradients. 

Contributions (positive upwards, negative downwards) of the residues in 4 selected yeast ADs 

(colors are the same as in Fig 2A).  

 

Figure 7. Properties of predicted AD regions in yeast transcription factors. A) Enrichment of 

predicted ADs in yeast transcription factors (Table S3) compared to the complete proteome 

plotted against the minimum length threshold for calling an AD. The enrichment p-values from 

a Fisher test are shown below. B) Predicted disorder and helicity in and around predicted ADs in 

a set of 132 yeast transcription factors (Table S3). Black thick line: median values; Grey: values 

between the 25th and 75th percentile. 

 

Figure S1. A)  Distribution of AD scores obtained when a dipeptide coefficient is swapped to 

one of the 399 others (Methods and text). Reverse: WD instead of DW etc. B) Observed (red) 

and expected (blue) frequencies of DxW in the positive set depending on the length of x 

between 0 and +20 residues, and analogously for WxD plotted versus -x values. The expected 

frequencies are computed by randomly permuting the positive sequences. The difference 

between observed and expected frequencies is shown in dark blue. 

 

Figure S2. Prediction of important residues within yeast ADs and comparison with in vivo 

analysis. ADpred scores predicting the probability of AD function for all possible single amino 

acid mutations of the two Ino2 ADs and Gal4 AD. An increase in AD probability is darker red, a 

decrease blue. For comparison, results from an in vivo analysis where double or triple Ala 

substitutions were assayed for AD function (Pacheco et al., 2018; Tuttle et al., 2019). Conserved 

hydrophobic and acidic residues that were mutated are shown in blue and green, respectively. 
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Double or triple Ala mutations resulting in less than ~ 50% AD function are marked with 

brackets below the x-label. For Ino2 AD1, conserved residues that ADpred predicts to be 

important but not tested experimentally are indicated by: *. For Gal4 mutations, residue F849 

(marked with **) was mutated in conjunction with Y846 and this derivative has 47% WT 

activity. Red asterisk marks Gal4 residues Y865 and Y867, which have ≥75% WT function when 

individually mutated to Ala. 

 

Figure S3. (A) Same as Fig. 6A but measuring AD function using RT qPCR quantitation of mRNA 

at yeast ARG3. Red bars = sequences with high ADpred probability; blue bars = low ADpred 

probability (See Fig S3B for ADpred scores). All samples were treated with SM unless otherwise 

indicated. Dotted horizontal line:  level of SM-induced transcription in cells lacking Gcn4. (B) 

Scatter plot of the logarithm of ADpred probabilities versus log-experimental qPCR results 

obtained on HIS4 and ARG3 mRNAs. Pearson correlation and p-value for a two-sided hypothesis 

test (where the null hypothesis corresponds to slope=0) are indicated. 

 

Figure S4. Five AD regions identified in a medium throughput screen in Drosophila (Arnold et 

al., 2018) that were used for functional assays in Fig 6A. Blue shading: ADpred scores; green 

lines: regions with AD function in Drosophila, red lines: background levels from Drosophila 

screen. 

 

Fig S5. Shown are 20 of the top scoring synthetic ADs from the AD-positive set analyzed with 

Integrated Gradients. Logos are drawn as in Fig 6B. 

 

Figure S6. Shown is the Integrated Gradient analysis of predicted AD-positive peptides that 

were assayed for function in Fig 6A. Labeling of the peptides is as in Fig 6A and indicates amino 

acid composition with A being most unfavorable. 

 

Figure S7. Structural properties of regions surrounding predicted ADs in yeast transcription 

factors. In the upper panel the whole proteome (only proteins with reported localization) is 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.872986doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.872986


 31 

analyzed, a short list of 132 proteins considered transcription factors are analyzed in the middle 

panel (same as in Fig 7B) and 812 nuclear proteins are analyzed in the lower panel. “x” axis is 

composed of the 5 central residues of the predicted AD surrounded by 50 residues on each 

side. Black thick line represents the median and the grey shadowed area represents the 25th to 

75th percentile. 

 

Supplementary Files and Tables  

Supplementary Methods:  

Table S1 (open with text editor) 

 Unsorted list of AD-positive and AD-negative sequences with:  

• List of AD-positive and negative sequences 

• Distribution of sequences in the 4 bins 

• Calculated AD-enrichment score 

 

Table S2  

• RT qPCR results 

• Sequence of the synthetic ADs tested, and their DNA coding sequences 

 

Table S3  

• Set of 132 yeast TFs used in the AD search and predicted AD location for the longest AD 

in each factor. 

•  

Table S4 (in Supplemental Methods) 

Performance metrics of the regression and deep learning models. 
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Fig 4 Erijman et al
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Fig 5 Erijman et al

▼ Tested for AD 
function (Fig 6)

M
ut

at
io

ns
Gcn4 cAD

A

ADpred

Documented ADs
-logit ADpred score

cA
D

de
riv

at
iv

e 
ac

tiv
ity

Structured

B C



0

0.2

0.4

0.6

0.8

1

1.2

ve
ct

or
 -S

M
ve

ct
or

G
cn

4 
-S

M
G

cn
4

cA
D 

-S
M

cA
D

cA
D 

(F
ES

LF
)

cA
D 

(m
11

5)
G

al
4_

A
H

ap
4_

A
H

ap
4_

B
H

ap
4_

C
M

TF
-1

Bt
eb

2
CG

14
45

1
H

LH
3B

sa
ge A1

-
A1

+
B1

-
B1

+
B2

-
B2

+
C1

-
C1

+
C2

-
C2

+
D

1-
D

1+ D
2-

D
2+ E1

-
E1

+
E2

-
E2

+

Fig 6 Erijman et al
m

RN
A 

HI
S4

 / 
AC

T1

Sequences fused to Gcn4 DBD

B

A

AD +/- controls
Predicted AD-
Predicted AD+

Gcn4 cAD

Ino2 AD1:

Ino2 AD2:

Gal4:

Integrated Gradient logos

cA
D 

(W
W

W
LA

)

A B C D E



Fig 7 Erijman et al
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Fig S1 Erijman et al
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Fig S2 Erijman et al
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Fig S3 Erijman et al
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Fig S4 Erijman et al
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