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Abstract 
After an experiment has been completed and analyzed, a trend may be observed that is 

“not quite significant”.  Sometimes in this situation, researchers incrementally grow their 

sample size N in an effort to achieve statistical significance. This is especially tempting in 

situations when samples are very costly or time-consuming to collect, such that collecting an 

entirely new sample larger than N (the statistically sanctioned alternative) would be prohibitive. 

Such post-hoc sampling or “N-hacking” is condemned, however, because it leads to an excess of 

false positive results. Here Monte-Carlo simulations are used to show why and how incremental 

sampling causes false positives, but also to challenge the claim that it necessarily produces 

alarmingly high false positive rates.  In a parameter regime that would be representative of 

practice in many research fields, simulations show that the inflation of the false positive rate is 

modest and easily bounded. But the effect on false positive rate is only half the story. What 

many researchers really want to know is the effect N-hacking would have on the likelihood that 

a positive result is a real effect that will be replicable: the positive predictive value (PPV). This 

question has not been considered in the reproducibility literature. The answer depends on the 

effect size and the prior probability of an effect. Although in practice these values are not 

known, simulations show that for a wide range of values, the PPV of results obtained by N-

hacking is in fact higher than that of non-incremented experiments of the same sample size and 

statistical power. This is because the increase in false positives is more than offset by the 

increase in true positives. Therefore in many situations, adding a few samples to shore up a 

nearly-significant result is in fact statistically beneficial. In conclusion, if samples are added after 

an initial hypothesis test this should be disclosed, and if a 𝑝 value is reported it should be 

corrected. But, contrary to widespread belief, collecting additional samples to resolve a 

borderline 𝑝 value is not invalid, and can confer previously unappreciated advantages for 

efficiency and positive predictive value. 

 

Background 
There has been much concern in recent years concerning the lack of reproducibility of 

results in some scientific literatures. The call for improved education in statistics and greater 

transparency in reporting is justified and welcome. But if we apply overly-conservative rules 

dogmatically, we as a community risk throwing out a lot of babies (good data, promising leads) 

with the statistical bath water. Experiments in biology and psychology often require substantial 

financial resources, scientific talent, and use of animal and/or human subjects. There is an 

ethical imperative to use these resources efficiently. To ensure both reproducibility and 

efficiency of research, experimentalists need to understand statistical issues rather than blindly 

apply rules.  
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The rule in question is a cornerstone of null hypothesis significance testing: sample 

exactly the predetermined sample size N, and then accept the verdict the hypothesis test, 

whatever it is. Adding a few samples and retesting after a negative result can produce 

misleading outcomes. But this depends on the parameter regime in which one is operating; 

what researchers need to know is what can occur in their operating regime. 

Empirical scientists are accustomed to looking at data, so simulation is an excellent way 

to gain intuitions about the implications of statistical methods. Simulation is also a frequentist 

approach: no Bayesian assumptions are required. Here I simulate the denounced practice of “N-

hacking” – incrementally adding more samples after the fact whenever a preliminary result is 

“almost significant”.  The simulations demonstrate the known effect that post-hoc sample 

growth of this kind elevates the false positive rate, and show why this is the case.  After 

exploring a broad range of assumptions bracketing common practice in many fields of research, 

however, it emerges that the elevation in false positive rate is quite modest, and it becomes 

apparent that it could readily be corrected for. Moreover, additional simulations show that 

there is a truth underlying researchers’ intuition that growing the sample size is a good idea.  

The purpose of this article is not to dismiss concerns about sampling procedures, but rather to 

demonstrate that there are better options than either starting over from scratch or abandoning 

a hypothesis after obtaining a nearly-significant outcome. 

 

Results 
These simulations can be taken to represent a large number of independent studies, 

each collecting separate samples to test a different hypothesis. I assume that a significance 

criterion 𝛼 has been set in advance, and the sample size would be increased only for those tests 

that meet a criterion of “𝑝 close to 𝛼”. I further assume that the maximum number of samples 

the study could or would add is no more than a few times greater than the original sample size, 

or a few hundred total samples.  All simulations were performed in Matlab 2018a. 

 

Effect of incrementally growing sample size on the false positive rate 

Experiments were simulated by drawing two independent samples of size 𝑁 from the 

same normal distribution. An independent sample Student’s t-test was then used to accept or 

reject the null hypothesis that the samples came from distributions with the same mean. 

Because the samples always came from the same distribution, any positive result is a false 

positive. By definition, the t-test produces false positives at a rate of exactly 𝛼, the significance 

threshold, regardless of the mean or standard deviation of the source distribution or the sample 

size 𝑁. I will call the false positive rate when the null hypothesis is true 𝐹𝑃0 (“FP null”). 

I defined a plausible Asymmetric N-increasing policy as follows: every time a comparison 

yielded a p value that was “almost significant”, additional sample points were added 

incrementally to the sample, and the t-test repeated. This was iterated until the p value was 

either significant, or no longer close, or the maximum number of samples was reached. The 

definition of “almost significant” was: 𝛼 ≤  𝑝 <  (1 + 𝑤) 𝛼, where 0 < 𝑤 ≤ 1.  For example if 

𝛼 = 0.05 and 𝑤 = 0.2, one would accept a hypothesis if 𝑝 < 0.05, reject if 𝑝 > 0.06, and add 
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samples for 𝑝 values in between. This would be representative of conditions under which I have 

seen researchers increment sample size in the fields of biology in which I have worked. 

Results of such a policy are shown in Figure 1, assuming an initial sample size of 

𝑁𝑖𝑛𝑖𝑡 = 12, incremental sample growth of 𝑁𝑖𝑛𝑐𝑟 = 6, and maximum sample size of 𝑁𝑚𝑎𝑥 = 24. 

For every choice of 𝑤 and 𝛼, 𝑀 = 106 independent experiments were simulated.  This is meant 

to represent 106 separate studies, each using this policy to test only one hypothesis. 

As expected, this Asymmetric N-increasing policy yielded an increase in false positives 

𝐹𝑃0, which was more severe as 𝑤 increased (Fig. 1a). Nevertheless the overall elevation in false 

positives was rather modest. For example with a policy of  𝛼 = 0.05 and 𝑤 = 1, sample size 

was grown whenever 𝑝 was between 0.05 − 0.10, resulting in a realized false positive rate 

𝐹𝑃 = 0.0625 instead of the nominal 0.05. Following this policy resulted in a negligible increase 

in the sample size on average (Fig. 1b).  Note that no multiple comparison correction was done 

within study for the interim retesting on the policy; instead the false positives due to multiple 

comparisons are included in the reported false positive rates, i.e. these are the uncorrected false 

positive rates. 

 

 
Figure 1. Effect of selective sample-increasing on false positive rate 𝑭𝑷𝟎. Results shown are for experiments 

with initial sample size 𝑁𝑖𝑛𝑖𝑡 = 12, and sample increments 𝑁𝑖𝑛𝑐𝑟 = 6, and maximum sample size 𝑁𝑚𝑎𝑥 = 24. 

Each point or symbol represents results from 𝑀 = 106 simulated experiments. (a) For any choice of 𝛼(0.005, 

0.01, 0.025, 0.0500, 0.1; colors), the Asymmetric N-increasing policy yields an increase in false positives 𝐹𝑃0 

which grows with the decision window 𝑤. The case of (𝑤 = 0) is identical to the standard fixed-N policy, and 

yields false positives at a rate of 𝐹𝑃0 = 𝛼(solid symbols). (b) Average 𝑁 in the final sample using the 

Asymmetric policy, as a function of 𝛼and 𝑤. (c) The Symmetrical N-increasing policy yields a net decrease in 

false positives, which grows with 𝑤. (d) Average 𝑁 in the final sample using the Symmetric policy.  

 

The main reason false positives are elevated by this policy is that the experiments that 

were incremented and retested were chosen in a biased way. By selectively incrementing only 

the subset of true negatives in which the difference between experimental and control groups 

was rather large, and thus nearly significant, even a small difference between groups in the 

added samples would be sufficient to push the overall group difference over the threshold for 

significance, purely by chance.  

The problem with this policy is that it is asymmetric: 𝑁 is incremented when 𝑝 was just 

above threshold, but not when it was just below threshold. To demonstrate this point, consider 

a Symmetric N-increasing policy, in which incremental sample growth occurred whenever a 𝑝 
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value was either just below or just above α: (1 − 𝑤) 𝛼 ≤ 𝑝 <  (1 + 𝑤) 𝛼.  It turns out that 

making the policy symmetric more than overcomes the problem – it would convert more false 

positives to true negatives than it converts true negatives to false positives, resulting in a net 

reduction in false positives (Fig. 1c). This is because in addition to the effect noted above, this 

policy also incremented the sample size in a biased subset of the false positives: ones in which 

the difference between experimental and control groups was rather small and thus barely 

significant. The Symmetric policy resulted in a slightly larger final sample size on average (Fig. 

1d). In discussions of statistical malpractice, it is often asserted that an experimentalist would 

never add more samples after obtaining a significant 𝑝 value, but interestingly there is evidence 

that they do (1). Therefore the consequences of both policies will be explored further below. 

 

Dependence on 𝜶 and 𝒘 

For the Asymmetric N-increasing policy, analysis of the simulated data reveals that for 

any given choice of 𝑤, the false positive rate depends linearly on 𝛼 𝐹𝑃0 = 𝑘𝛼 (Fig 2a). The 

slopes of these lines are in turn an increasing function of the decision window 𝑤 (Fig 2b, 

symbols). On the Symmetric policy, the dependence of 𝐹𝑃 on 𝛼 is also linear (Fig 2c) and the 

slope 𝑘 declines with 𝑤 (Fig 2d).  

 

     
Figure 2. Dependence of false positive rate 𝑭𝑷𝟎 on 𝜶 and 𝒘. Results from simulations using 𝑁𝑖𝑛𝑖𝑡 = 12, 

𝑁𝑖𝑛𝑐𝑟 = 6, 𝑁𝑚𝑎𝑥 = 24, with 𝑀 = 106simulated experiments per condition. (a) The realized false positive rate 

𝐹𝑃0 for an Asymmetrical N-increasing policy when the null hypothesis is true. Color indicates 𝑤 (cf. panel b). 

For each value of 𝑤, 𝐹𝑃0is plotted for each value of 𝛼 and the data points connected (not a fit). The identity 

line (black) is the false positive rate of the standard Fixed-N policy, 𝐹𝑃0 = 𝛼. (b) The slopes 𝑘 obtained from 

linear fits to the data shown in (a), plotted as a function of 𝑤 (colored symbols). The dependence of the slope 

𝑘 on 𝑤 is not linear in general, but was approximately linear in this parameter range (linear fit, black). (c) Like 

(a) but for the Symmetrical N-increasing policy. Note that for 𝑤 > 0.5, 𝐹𝑃0 is biased upward at larger values of 

𝛼 due to the imposed cap of 2𝑁 additional samples. Therefore to determine slopes, lines for each 𝑤 were fit 

using only values of 𝛼 for which this cap did not impact any simulation.  (d) The slopes 𝑘 from the linear fits to 

the data shown in (c), for all values of 𝑤 for which a slope could be estimated (i.e. at least two values of 𝛼 

were not impacted by sampling cap). The dependence of the slope 𝑘 on 𝑤 is not linear in general, but was 

approximately linear in this parameter regime (linear fit, black). 

 

Dependence on 𝑵𝒊𝒏𝒊𝒕 and 𝑵𝒊𝒏𝒄𝒓 

These results above depend quantitatively on the assumptions made for 𝑁𝑖𝑛𝑖𝑡 , 𝑁𝑖𝑛𝑐𝑟, 

and 𝑁𝑚𝑎𝑥 .   Additional simulations below explore values of 𝑁𝑖𝑛𝑖𝑡  ranging from 2 to 128 initial 

sample points,  incremental sampling 𝑁𝑖𝑛𝑐𝑟 ranging from 1 to 𝑁𝑖𝑛𝑖𝑡  per increment, capping the 
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maximum total sample size at either𝑁𝑚𝑎𝑥 = 256 or 𝑁𝑚𝑎𝑥 = 5𝑁𝑖𝑛𝑖𝑡 . Simulations were run with 

values of 𝛼 between 0.005 and 0.05 and values of 𝑤 from0.1 to 0.4.  These assumptions more 

than bracket the range of realistic sample sizes and ad-hoc sample growth that would be 

commonly used in many experimental research fields. For each combination of 𝑁𝑖𝑛𝑖𝑡, 𝑁𝑖𝑛𝑐𝑟 , 𝛼 

and 𝑤,  𝑀 = 106 experiments with no true effect were simulated to estimate the fraction 

yielding false positive results expected on the null hypothesis.   

The simulations show that initial sample size and incremental sample size are important. 

Results for the Asymmetric policy with 𝛼 = 0.05, 𝑤 = 0.4 are shown in Figure 3a. The false 

positive rate 𝐹𝑃0 is always elevated compared to 𝛼 (black line), and this is more severe when 

the intial sample size is larger (curves slope upward) or the incremental sample growth is 

smaller (cooler colors are higher). Nevertheless the false positive rate didn’t exceed 0.06 for any 

condition. In this range of parameters, the dependence of 𝑘 on 𝑤 was approximately linear, so 

one can visualize the results for all combinations of of 𝛼 and 𝑤 on the same scale by plotting 

them as (
𝐹𝑃0

𝛼
− 1)/𝑤  (Fig 3b). Recall that for the fixed-N policy by definition 𝐹𝑃0 = 𝛼, so this 

equation evaluates to 0 for any parameter combination. Positive values on this scale indicate an 

increase in the false positive rate compared to the fixed-N policy, and negative values reflect a 

lower false positive rate. Combining results for all choices of 𝛼 and 𝑤 and fitting curves as a 

function of 𝑁𝑖𝑛𝑖𝑡  (Fig 3c) allows one to summarize trends independent of choice of 𝛼 and 𝑤.  

 

 
Figure 3. Dependence of false positive rate 𝑭𝑷𝟎 on the initial sample size and sample increment. Each symbol 

represents the result from 106 experiments simulated with a ground truth of no effect. a. The realized false positive rate 

𝐹𝑃0 of the Asymmetric N-increasing policy, as a function of  log2 𝑁𝑖𝑛𝑖𝑡 (horizontal axis) and 𝑁𝑖𝑛𝑐𝑟(colors), for the case 

𝛼 = 0.05, 𝑤 = 0.4, 𝑁𝑚𝑎𝑥 = 256. b.  Results for all choices of 𝛼 (0.005, 0.010, 0.025, or 0.050; symbol shapes) and w (0.1, 

0.2, 0.3 or 0.4, small horizontal shifts), plotted as (
𝐹𝑃

𝛼
− 1)/𝑤 (vertical axis) to reveal regularities. c. Summary of 

simulations in (b) obtained by fitting the equation 𝐹𝑃 = (𝑐𝑤 + 1)𝛼.  Symbols indicate simulations in which 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡 

(closed circles), 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡/2 (open triangles), 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡/4 (open squares) and 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡/8 (open diamonds). 

Dotted black lines relate to the rules of thumb (see text). Panels d-f: as in a-c, for the Symmetrical N-increasing policy. 

Similar results were found for both policies using 𝑁𝑚𝑎𝑥 = 5 𝑁𝑖𝑛𝑖𝑡 (not shown). 
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In the case of the Symmetric policy, the false positive rate 𝐹𝑃0 is always lower than 𝛼; this 

beneficial effect is strongest when 𝑁𝑖𝑛𝑐𝑟 is large (warm colors in Fig 3d-f) or 𝑁𝑖𝑛𝑖𝑡  is small 

(positive slopes in Fig 3d-f).  

In summary, these simulations show that the effect of incremental sampling on the false 

positive rate is real, but it is modest in size and lawfully related to a handful of parameters. From 

the simulations one can take away some rules of thumb (dotted lines, Fig 3 c,f): 

 
For example: a study that committed to an Asymmetric policy with 𝑤 = 0.4 , 𝑁𝑖𝑛𝑖𝑡 = 10, 

𝑁𝑖𝑛𝑐𝑟 = 10,  𝑁𝑚𝑎𝑥 = 50 could conservatively estimate that the false positive rate expected on 

the null hypothesis is 𝐹𝑃0 < 0.0550 by rule of thumb, compared to the simulation result of 

𝐹𝑃0 = 0.0541 ± 0.0001.  Additional simulations for 𝛼 = 0.05 𝑜𝑟 0.10,  𝑁𝑖𝑛𝑐𝑟 = 1 (i.e. the worst 

case conditions) were extended to 𝑤 = 19.0 for 𝑁𝑖𝑛𝑖𝑡 = 2 − 128 with 𝑁𝑚𝑎𝑥 = 256 and still did 

not exceed this empirical bound (not shown). These rules of thumb are meant to be helpful 

guides, but have not been formally proven, which limits generalization to other conditions not 

tested. The Matlab code provided in Supplementary Materials can be used to estimate by 

simulation the false positive rate for other parameter combinations.  

For any single experiment, the 𝑝 value obtained after incremental sampling should be 

corrected, and a number of methods are already available for this (2-8). 

 

Trade-off between statistical power and positive predictive value 

N-hacking increases the false positive rate expected on the null hypothesis because 

some true negative results will by chance be converted to false positives when a few samples 

are added.  But the motivation for adding samples is the hope of increasing sensitivity: some 

“almost-significant” effects are false negatives, which might be converted to true positives with 

added samples. How these harmful and beneficial effects balance depends on what fraction of 

the tested hypotheses are in fact true (prior probability of effect) 𝑃(𝐻1), and how large the 

effects are when present (effect size 𝐸). The reason for this is nicely explained in (9). To explore 

this trade-off, one must simulate experiments in which some of the hypotheses tested are true, 

i.e. there are some real effects. In that context one can discuss the sensitivity, or statistical 

power, which is the fraction of real effects for which the null hypothesis is rejected – the chance 

that a real effect, if present, will be discovered.  The selectivity, or positive predictive value 

(PPV), is the fraction of the experiments rejecting the null hypothesis that reflect real effects – 

the chance that a positive result will turn out to be reproducible. More formal statements of 

these definitions are given in Appendix 1. 

  

Dependence on 𝑵𝒊𝒏𝒊𝒕 and 𝜶 

To show how 𝑁𝑖𝑛𝑖𝑡  and 𝛼 affect the statistical power and positive predictive value of an 

experiment, simulations were done exactly as described above, but now 1% of all experiments 

Assymetric Policy   Symmetric Policy 

𝐹𝑃0 <  𝛼(1 +
𝑤

2
) for 𝑁𝑖𝑛𝑐𝑟 ≤ 𝑁𝑖𝑛𝑖𝑡  𝐹𝑃0 < 𝛼 (1 −

𝑤

4
) for 𝑁𝑖𝑛𝑐𝑟 ≤ 𝑁𝑖𝑛𝑖𝑡  

𝐹𝑃0 <  𝛼(1 +
𝑤

4
) for 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡  𝐹𝑃0 < 𝛼 (1 −

𝑤

2
) for   𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡  
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were simulated with a real effect of 1𝜎 difference between the population means, such that 

rejecting the null is the correct conclusion.  This was simulated for several choices of 𝑁𝑖𝑛𝑖𝑡  and 

𝛼, comparing 𝑤 = 0 (i.e. fixed-N policy) to 𝑤 = 0.4, on either the Asymmetric or Symmetric N-

increasing policy. Note that in real experiments, the prior probability of a real effect and the true 

size of the effect are not known. But in simulations these facts are imposed, and thus known 

precisely. 

First, it is helpful to remember that even in the standard fixed-N policy there is a trade-

off between sensitivity and selectivity, which is controlled by the choice of 𝛼. For a given sample 

size 𝑁, increasing the arbitrary cutoff for significance 𝛼 increases sensitivity, at the expense of 

reduced PPV. By varying 𝛼 one can define a curve for the sensitivity-selectivity trade-off (e.g., Fig 

4a, any red curve). This curve summarizes the options available for interpreting data sets 

acquired in this way. The choice of 𝛼 is up to the investigator, depending on the relative priority 

one sets on avoiding missing real effects vs. avoiding believing false ones.  

Simulating this for different choices of 𝑁 further illustrates that in a fixed-N policy, a 

larger sample size 𝑁 is always better: it increases both sensitivity and selectivity, moving the 

entire curve up and to the right (Fig 4a, compare any two red curves). This observation suggests 

a generalization that the statistical quality of any two experimental policies can be compared by 

relating these curves. A higher curve is better – it means one could choose some 𝛼to achieve 

greater sensitivity for any desired selectivity, or to achieve greater selectivity for any desired 

sensitivity, relative to any curve that lies below it. 

 

  
Figure 4. Trade-off between selectivity and sensitivity. (a) Realized selectivity vs. sensitivity in simulations 

with effect size 1 prior effect probability 0.01, and 𝑁𝑖𝑛𝑖𝑡=6, 12, 24 or 48 (four curves of each color). Symbols 

indicate 𝛼 (○=0.001, ▽=0.005, □=0.01, △=0.025, ◊=0.05).  Text labels indicate 𝑁𝑖𝑛𝑖𝑡 for pairs of curves. For 

every combination of these parameters a total of 𝑀 = 104/𝛼 experiments were simulated to estimate the 

probabilities of true positives, true negatives, false positives and false negatives caused by the policy. Results 

for the standard fixed-N policy (red) and for an Asymmetric N-increasing policy using 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡, 

𝑁𝑚𝑎𝑥 = 2𝑁𝑖𝑛𝑖𝑡, and 𝑤 = 0.4 (blue) are shown. The small subset of experiments that added samples (to 

𝑁𝑓𝑖𝑛𝑎𝑙 = 2𝑁𝑖𝑛𝑖𝑡) are shown in dotted blue curves and open symbols for 𝑁𝑖𝑛𝑖𝑡 = 6 and 𝑁𝑖𝑛𝑖𝑡 = 12.  (b) Results 

for standard fixed-N vs. Symmetric N-increasing policy, details otherwise as in (a). In other simulations, the 

Power-PPV curves for both the Asymmetric and Symmetric N-increasing policies were above those of the 

fixed-N policy for effect size ranging from 𝐸 = 0.5 to 2 and prior probability 𝑃(𝐻1) ranging from 0.001 to 0.1 

(not shown). 
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The curves for the standard fixed-N policy (red curves, Fig 4a) provide the benchmark to 

which other sampling policies may be compared. An example Asymmetric N-increasing policy is 

shown (blue curves, Fig 4a).  Because few experiments experience incrementing, the average 

final sample size was negligibly greater than the fixed-N policy: 〈𝑁final〉 ≤ 1.02 𝑁𝑖𝑛𝑖𝑡 for all 

parameter combinations tested (not shown; cf. Fig.2a). Therefore, the overall sensitivity and 

selectivity of the policy can be reasonably compared to the fixed-N policy with 𝑁 = 𝑁𝑖𝑛𝑖𝑡 (paired 

curves). For all choices of 𝑁𝑖𝑛𝑖𝑡  simulated, the curve for the Asymmetric N-increasing policy 

(blue) fell entirely above and to the right of the corresponding curve for the fixed-N policy (red). 

Thus on average the Asymmetric N-increasing policy resides entirely on a better frontier than 

the fixed-N policy: for any point on the fixed-N curve there exists some choice of 𝛼 for which the 

Asymmetric policy curve has equal selectivity with higher sensitivity, and another choice of 𝛼 for 

which the Asymmetric policy has equal sensitivity with higher selectivity.   

Comparing the two policies with the same choice of 𝛼 is also informative (symbols of 

same shape on the red vs. paired blue curves). For the parameter combinations with lower 

power (𝑁𝑖𝑛𝑖𝑡 = 6 𝑜𝑟 12 with any 𝛼, or 𝑁𝑖𝑛𝑖𝑡 = 24 with 𝛼 < 0.01), using the same choice of 𝛼 in 

an Asymmetric N-increasing policy – even without any correction for the false positive rate or 

multiple comparisons – yielded improvements in both statistical power and PPV relative to 

fixed-N. This was the case up to at least 𝑤 = 1 (not shown). For the parameter combinations 

with higher power (𝑁𝑖𝑛𝑖𝑡 = 48 with any 𝛼, or 𝑁𝑖𝑛𝑖𝑡=24 with 𝛼 ≥ 0.01), using the same 𝛼 for the 

Asymmetric N-increasing policy led to a loss in selectivity relative to the fixed-N policy (the 

matched symbols are to the left of their fixed-N benchmarks). Still, this loss in selectivity was 

accompanied by a far greater improvement in statistical power than could be achieved by 

moving along the red curve (changing 𝛼) to obtain the same selectivity. In this sense, the 

Asymmetric policy represented a superior trade-off even in these cases. 

The small subset of experiments for which sample size was increased had 2𝑁𝑖𝑛𝑖𝑡 final 

samples. Is the whole effect due to the fact that un-incremented experiments lie on the fixed-N 

curve for 𝑁 = 𝑁𝑖𝑛𝑖𝑡  and the incremented subset lie on the curve for 𝑁 = 2𝑁𝑖𝑛𝑖𝑡? The answer is 

no.  Considering the incremented subset of experiments separately (dotted blue curves) reveals 

that they live on a frontier above the curve for fixed-N experiments with a sample size of 

𝑁 = 2𝑁𝑖𝑛𝑖𝑡.  The subset of experiments that were not incremented (which had a sample size of 

exactly 𝑁𝑖𝑛𝑖𝑡) lay on a curve that was slightly above or indistinguishable from the fixed-N 

benchmark in all cases examined (not shown). 

These simulations demonstrate that for an effect size of 1𝜎 and a rather pessimistic 

prior probability of 0.01, the Asymmetric N-increasing is a win-win scenario: for any initial 

sample size, whatever selectivity (PPV) one can achieve on the fixed-N policy, that same 

selectivity can be achieved with higher statistical power on the Asymmetric N-increasing policy 

with some choice of 𝛼. Additional simulations showed that this remained the case as either the 

prior probability or effect size approached 0 (although PPV approaches 0 in both cases), for a 

range of 𝑁𝑖𝑛𝑖𝑡  and 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡  (not shown).  

The Symmetric N-increasing policy was superior to the fixed-N policy (Fig 4b, compare 

red to blue as described for Fig 4a), as well as beating the Asymmetric policy (compare blue 

curves in 4a to 4b). Even using the same choice of 𝛼the Symmetric policy increased both 
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selectivity and sensitivity relative to fixed-N for all conditions tested. The subset of experiments 

on the Symmetric policy that had added samples to a final 2𝑁 fell on a curve well above the 

fixed-N experiments 2𝑁 samples, and the subset of experiments that reached a verdict with 𝑁 

samples fell on a curve either above or indistinguishable from the fixed-N curve with 𝑁 samples.  

 

Dependence on the decision window 𝒘 

To determine the impact of the decision window 𝑤 on these conclusions, I further 

simulated results of the Asymmetric policy for a range of 𝑁𝑖𝑛𝑖𝑡  for 𝑤 ranging from 0.2 to 10 and 

𝑁𝑖𝑛𝑐𝑟 = 1.  In my experience people rarely N-hack when 𝑝 > 2𝛼 (𝑤 = 1), and it was shown 

above that higher values of 𝑤 would produce quite high false positive rates on the null 

hypothesis (𝐹𝑃0). But how would this affect statistical inference when some of the experiments 

have real effects? 

As 𝑤 increases, the curves in the PPV vs. Power plot always move up and/or to the right 

(Fig 5, top row). Comparing simulation outcomes for the same choice of 𝛼, one sees that 

increasing 𝑤 always increases sensitivity (warm colors are above cool colors along any curve, Fig 

5 bottom row). For any choice of 𝛼, as 𝑁𝑖𝑛𝑖𝑡  increases uncorrected N-hacking switches from 

increasing the PPV to eroding it, compared to the fixed-N policy (gray curves slant left).  

 

 
Figure 5. Asymmetric N-increasing policies improve statistical inference even when 𝒘 is large. 
Realized selectivity vs. sensitivity in simulations with effect size 𝐸 = 1𝜎 prior effect probability 
𝑃(𝐻1) = 0.10, with 𝑁𝑖𝑛𝑖𝑡 as indicated on column title, 𝑁𝑖𝑛𝑐𝑟 = 1, 𝑁𝑚𝑎𝑥 = 50. Each symbol represents 

the uncorrected result from 𝑀 = 106 simulated experiments. Symbols indicate 𝛼 (○=0.01, ▽=0.02, 
□=0.05).  Colors indicate 𝑤 (bluered= 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 10). Note that dark blue 
(𝑤 =  0) is the standard fixed-N policy. Top row: simulations with the same 𝑤 and different 𝛼 are 
connected with curves, color indicates 𝑤. Bottom row: the same data, but simulations with the same 𝛼 
and different 𝑤 are connected with gray curves. 
  

Nevertheless, the trade-off of PPV vs. Power remains advantageous. For example, 

consider 𝑁𝑖𝑛𝑖𝑡 = 8,  𝛼 = 0.05. In this case the fixed-N experiment has a PPV of 0.50 (not 0.95, as 

the experimenters might falsely believe), and a power of 0.46. Asymmetric N-hacking with a 

window of 𝑤 = 5 implies that more samples would be added for any interim test result of 

0.05 < 𝑝 < 0.25. Without any correction for incremental sampling (as shown), this would erode 
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the ultimate PPV from 0.50 down to 0.43 (in other words the False Positive Risk would be 57% 

instead of 50%). But in exchange for this, the statistical power would be increased from 0.46 to 

0.78. So the investigators would be slightly more likely to believe a result that is a fluke, but far 

more likely to find a real effect if it is there. Different ways of correcting the 𝑝 value will place 

one somewhere to the right on this overall superior curve. 

It is noteworthy that in the most extreme case of Asymmetric N-increasing (𝑁𝑖𝑛𝑖𝑡 = 2, 

retesting after every 𝑁𝑖𝑛𝑐𝑟 = 1 sample) the practice is strictly beneficial, always increasing both 

power and PPV without even adjusting 𝑝 or 𝛼. The significance of this will be discussed below. 

 

Discussion 
Main conclusions 

These simulations demonstrate that increasing the sample size incrementally whenever 

a result is “almost” significant will lead to a higher rate of false positives expected by chance (i.e. 

if the null hypothesis is true). The problem arises from the fact that equally close “just” 

significant results are not similarly challenged.  Most writers warn that this practice will lead to 

extremely high or even 100% false positive rates (5, 10-13). But those projections are based on 

assumptions that are not representative of typical practice in some scientific fields, such as that 

an experimentalist would add more samples after obtaining a non-significant result no matter 

how far from 𝛼 the p value was, or would continue adding samples indefinitely until achieving a 

significant outcome. If instead one considers circumstances in which the p value would have to 

be rather close to 𝛼 for one to add samples (e.g., no more than twice 𝛼), and a limited number 

of total samples could be added before giving up (e.g., no more than five times the initial 

sample), the effects on the false positive rate are modest and clearly bounded. 

The increase in the false positive rate depends on the initial sample size 𝑁𝑖𝑛𝑖𝑡 , 

significance criterion 𝛼closeness criterion 𝑤, increment size 𝑁𝑖𝑛𝑐𝑟, and total sample cap 𝑁𝑚𝑎𝑥.  

Simulations demonstrate in which direction and how steeply the false positive rate depends on 

these factors.  Some rules of thumb emerge for how bad the effect could possibly be, given 

those parameters. This is not meant to be a proposed method for correcting the 𝑝 value; there 

already several correction methods available to account for incremental sampling – even if the 

decision to increment the sample size was made after the fact (2-8).   

Further simulations demonstrate that under many conditions this type of N-hacking is 

superior to a fixed-N policy in the sense that it increases the statistical power achievable for any 

given positive predictive value (PPV), compared to studies that strictly adhere to the initially 

planned 𝑁. This has not been previously noted. In particular, for the great many experimental 

studies that use a small initial sample size (𝑁 ≤ 12) and 𝛼 = 0.05, if one would only add 

samples post-hoc when 𝑃 < 0.1 and would always quit before exceeding 𝑁 = 50 samples, it is 

simply not true that N-hacking leads to an elevated risk of unreproducible results. A verdict of 

“statistical significance” reached in this manner, far from being dubious, is more likely to be 

reproducible than results reached by fixed-N experiments with the same initial or final sample 

size –  even if no correction were applied for sequential sampling or multiple comparisons.  
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Scientists in exactly this situation are currently being told (by teachers, advisors, 

reviewers, editors, and even staff biostatisticians) that if they have obtained a non-significant 

finding with a 𝑝 value just above 𝛼, they cannot validly add more samples to their data set to 

improve statistical power; they must either run a completely independent replication, or accept 

the null hypothesis.  The results shown here imply that this is bad advice. It is true that adding 

samples after the test violates the basic premise of null hypothesis significance testing (NHST). 

But that is not the same as being invalid.  Adding more samples with disclosure is never invalid, 

and there are methods for rigorous correction of the 𝑃 value within the NHST framework. 

Moreover, these simulations show that there are statistical benefits of incremental sampling 

that are often overlooked.  

 

Extensions and limitations 

These simulations used a normal distribution for the ground truth source distribution 

and an independent sample t-test as our basic hypothesis test. But the analysis of the false 

positive rate 𝐹𝑃0 only depends on the assumption that the statistical test used generates p 

values that are uniformly distributed between 0-1 on the null hypothesis. In other words, as long 

as the statistical test being used is valid for the distribution being sampled and the structure of 

the experiment, the dependence of false positive rate on parameters in these simulations 

should generalize to any source distribution and statistical test.  Power analysis may be affected 

by the shape of the source distribution, however, so generality of those results to other 

distributions should not be assumed. 

These simulations only considered experiments in which a single hypothesis is tested on 

each sample.  Multiple tests on a single sample (such as a gene chip array experiment) is a very 

different situation, because in that case incrementing 𝑁 and retesting would lead to re-testing 

of all the hypotheses, regardless of their original p values. This case has been discussed by 

others.   

Numerical simulations and graphs are easy for experimental scientists to understand, 

because they present the expectations of the null hypothesis in terms directly comparable to 

data. These simulations covered a broad range of parameters to provide concrete intuitions 

about the directions and orders of magnitudes of effects in relation to experimental parameters. 

But this is no substitute for analytic treatments, which can determine exactly under what 

conditions these results will apply, provide rigorous proofs and precise bounds or corrections.  

Nothing in this argument assumes that one can know the PPV of any single experiment. 

In the real world the prior probability of a true effect 𝑃(𝐻1) and the effect size 𝐸 are unknown 

to the investigator. But in simulations the effect size and prior probability are known, which 

allows one to demonstrate that certain inequalities hold regardless of those values. Under 

certain conditions (e.g., when power is low due to small 𝑁 or stringent 𝛼), whatever the PPV 

would be using fixed-N, the PPV after Asymmetric N-increasing would be greater. Under other 

conditions, the PPV after Asymmetric N-increasing is lower than that of a fixed-N experiment, 

but there still exists some choice of 𝛼 that would provide the same PPV as fixed-N with higher 

power, and some other choice that would provide the same power with higher PPV. How to find 

these values of 𝛼 is not addressed.  
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These simulations asked: if a population of scientists followed a certain sampling policy, 

what fraction of their experiments would yield a “significant” difference when the null 

hypothesis was in fact true (𝐹𝑃0), and what fraction of their “significant” findings would be real 

effects (PPV)?  These are population-level questions. One could separately analyze the 

outcomes in subsets of the simulated experiments whose interim or final 𝑝 values fell in narrow 

sub-ranges, though I have not. When interpreting any single experiment one should take into 

account the specific 𝑝 values that were obtained at each decision point (a “𝑝-equals” rather 

than “𝑝-less-than” approch)(14). 

 

The real reason you should not N-hack 

Some may be suspicious of the claim that N-hacking, in the sense simulated here, 

provides better statistical inference than fixed-N experiments, in terms of the power achieved 

for any given PPV, as well as the number of samples required to achieve this power. But this 

result is not at odds with established statistical theory. The N-incrementing policies described 

here are closely related to other well-described sequential sampling methods – particularly in 

the limit of 𝑁𝑖𝑛𝑖𝑡 = 2, 𝑁𝑖𝑛𝑐𝑟 = 1 (Fig 5, left panels). For example, in Wald’s Sequential 

Probability Ratio Test (15), one sets a threshold 𝛼 to accept and another threshold 𝛽 to reject a 

hypothesis. Then one computes a test statistic S after each new sample is added. If 𝑆 < 𝛼 the 

hypothesis is accepted, if 𝑆 > 𝛽 the hypothesis is rejected, and if 𝛼 < 𝑆 < 𝛽 one continues 

sampling. Similarly, a Bayesian sequential sampling method sets a criterion 𝑐, and then 

sequentially computes the Bayes Factor for the hypothesis vs. null hypothesis. If 𝐵𝐹 > 𝑐 the 

hypothesis is accepted, 𝑖𝑓 𝐵𝐹 <
1

𝑐
  the hypothesis is rejected, and otherwise one keeps sampling 

(16). The drift diffusion model (DDM), which is widely used to model decision-making, is closely 

related (17). Fully sequential sampling methods are known to be statistically powerful and 

efficient. The kind of N-hacking commonly practiced is merely a weak version, conferring minor 

benefits compared to fixed-N methods. So the real reason not to advocate N-hacking as an 

intentional method is that fully sequential sampling methods are even better (18, 19). 

Finally it is worth noting that this entire problem arises because of the currently 

standard practice of setting arbitrary cutoffs for “statistical significance” and reducing analog 𝑃 

values to binary hypothesis tests. It is not at all clear that experimental science is well served by 

this overall approach (20-22).  Converting a p value into a significance verdict necessarily 

discards information. Maintaining an analog estimate of the evidence for a hypothesis as data 

are accumulated would be better (23 ), and would eliminate the need for most of this 

discussion.  

Even if a 𝑝 value has been corrected for incremental sampling, it has been argued that 𝑝 

values are so widely misunderstood as to be misleading. This is a separate question from the 

one addressed here. Although it remains controversial, many advocate supplementing reported 

𝑝 values with some other measure that is closer to what the experimentalists want to know, 

such as the PPV, Odds Ratio (14, 24), Bayes Factor(16, 25), the False Positive Risk (1-PPV) (26), or 

a non-Bayesian bound on the Bayes Factor (27).  Those arguments and suggestions are all still 

applicable to corrected 𝑝 values after incremental sampling.  
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Supplementary Materials 
Matlab code for simulating the false positive rate on the null hypothesis (𝐹𝑃0) can be found at 

http://www.ratrix.org/codeshare/NhackingAndFPrate.zip 
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Appendix 1. Definitions 
𝐻0   Null hypothesis (no effect) For example, in an independent sample t-test comparing 

samples from populations A and B, the null hypothesis is 
that the means of the groups are the same:  𝐻0: 𝜇𝐴 = 𝜇𝐵 

𝐻1   Alternative hypothesis (effect) For the t-test example, the alternative is that means of 
the populations are not the same:   𝐻1: 𝜇𝐴 ≠ 𝜇𝐵 

𝑁     Sample size number of samples assessed from each population 

𝑝     Value returned by statistical test The fraction of experiments in which one would observe 
a difference between groups at least as great as the 
difference observed, if in fact  𝐻0 were true.  

𝛼     Significance criterion A criterion to reject 𝐻0 only if 𝑝 < 𝛼 

𝐹𝑃0   False Positive Rate on the Null 
           

For any decision policy, probability of rejecting the null if 
the null is true:   𝐹𝑃0 ≡ 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0)   
For fixed-N case, by definition, 𝐹𝑃0 = 𝑝 
In simulations, obtained when all simulated experiments 
draw both samples from the same distribution. 

𝐸     Effect size The true difference in the means of the two populations 
being compared, expressed as a ratio of the (shared or 

pooled) standard deviation: 𝐸 ≡
|𝜇𝐴−𝜇𝐵|

𝜎
 

In real experiments the effect size is unknown a priori, 
and estimates from data are often upwardly biased. In 
simulations 𝐸 is imposed and thus known. 

𝑃(𝐻1) Prior probability of an effect The probability 𝐻0 is false, before considering the data. In 
real experiments this is very problematic to estimate. In 
simulations this is imposed: 𝑃(𝐻1) of the simulated 
experiments draw samples from distributions whose 
means are in fact different. 

Power (Sensitivity) The probability that a real difference will be found to be 
significant:   𝑃𝑜𝑤𝑒𝑟 ≡ 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻1) 
Depends on 𝑃(𝐻1) and 𝐸 

𝑃𝑃𝑉  Positive Predictive Value 
           (Selectivity) 

The probability that an effect that was deemed significant 
is in fact real:     𝑃𝑃𝑉 ≡ P(𝐻1| 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0) 
Depends on 𝑃(𝐻1) and 𝐸 
Related to “False Positive Risk”(14, 26) as: 
 𝐹𝑃𝑅 = 1 − 𝑃𝑃𝑉 
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