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Abstract  
After an experiment has been completed and analyzed, a trend may be observed that is “not 

quite significant”.  Sometimes in this situation, researchers incrementally grow their sample size 

N in an effort to achieve statistical significance. This is especially tempting in situations when 

samples are very costly or time-consuming to collect, such that collecting an entirely new 

sample larger than N (the statistically sanctioned alternative) would be prohibitive. Such post-

hoc sampling or “N-hacking” is denounced because it leads to an excess of false positive results. 

Here simulations are used to illustrate and explain how unplanned incremental sampling causes 

excess false positives. In a parameter regime representative of practice in many research fields, 

however, simulations show that the inflation of the false positive rate is surprisingly modest. 

The effect on false positive rate is only half the story. What many researchers really care about 

is the effect of N-hacking on the likelihood that a positive result is a real effect: the positive 

predictive value (PPV). This question has not been considered in the reproducibility literature. 

The answer depends on the effect size and the prior probability of an effect. Although in 

practice these values are not known, simulations show that for a wide range of values, the PPV 

of results obtained by N-hacking is in fact higher than that of non-incremented experiments of 

the same sample size and statistical power. This is because the increase in false positives is more 

than offset by the increase in true positives. Therefore, in many situations, adding a few samples 

to shore up a nearly-significant result would in fact increase reproducibility, counter to current 

rhetoric. To strictly control the false positive rate on the null hypothesis, the sampling plan (and 

all other study details) must be prespecified. But if this is not the primary concern, as in 

exploratory studies, collecting additional samples to resolve a borderline 𝑝 value can confer 

previously unappreciated advantages for efficiency the positive predictive value of the 

generated hypotheses.   

 

Background  
There has been much concern in recent years concerning the lack of reproducibility of results in 

some scientific literatures (1). The call for improved education in statistics and greater 

transparency in reporting is justified and welcome. But if we apply rules by rote, we as a 

community risk throwing out a lot of babies (good data, promising leads) with the statistical 

bath water. Experiments in biology often require substantial financial resources, scientific talent, 

and use of animal subjects. There is an ethical imperative to use these resources efficiently. To 

ensure both reproducibility and efficiency of research, experimentalists need to understand 

statistical issues rather than blindly apply rules.  

The rule brought into question here is a cornerstone of null hypothesis significance 

testing: test exactly the predetermined sample size N, and then accept the verdict of the 

hypothesis test, whatever it is. Empirical scientists are accustomed to looking at data, so 
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simulation is an excellent way to gain intuitions about the implications of statistical methods. 

Here I simulate the questionable research practice of “N-hacking” – incrementally adding more 

samples after the fact whenever a preliminary result is “almost significant”.   

This study began with the intent of demonstrating the known dire consequences of this 

practice, but obtained an effect an order of magnitude smaller than previously reported (2-5). 

The discrepancy was traced to parameter choices: I had used parameters reflective of real-world 

practice in experimental biology, whereas published demonstrations had used unrealistic ones. 

After exploring a broad range of parameters bracketing most biology experiments, it emerged 

that in the relevant parameter regime for Biology, the elevation in false positive rate is quite 

modest and lawfully predictable. Moreover, the effects on reproducibility (PPV) – which have 

not been previously explored – turned out to be beneficial, not harmful. These results were both 

unexpected and robust. This parameter regime may a “special case” of no interest to the field of 

theoretical statistics, but it is the only case of interest to experimentalists.   

These simulations were meant to describe what researchers in fact do, not to prescribe 

what they should do. The goal is not to dismiss concerns about sampling procedures, but rather 

to clarify them in order to better inform choices. Readers will gain working intuitions about why 

N-hacking is a problem, and how the magnitude and direction of the resulting bias depend on 

the details of decision heuristics. The results show that in an exploratory study, judicious sample 

incrementation can be a better option than either starting over from scratch or abandoning a 

hypothesis after obtaining a nearly-significant outcome. The results also motivate why formal 

sequential sampling protocols could be a better choice for biology studies that require 

confirmatory p values. 

 

Results 
These simulations can be taken to represent a large number of independent studies, each 

collecting separate samples to test a different hypothesis. All simulations were performed in 

MATLAB 2018a. Formal definitions of terms and symbols are summarized in a side box.   

 

Part I. Effect of incrementally growing sample size on the false positive rate 

Experiments were simulated by drawing two independent samples of size 𝑁 from the same 

normal distribution. An independent sample Student’s t-test was then used to accept or reject 

the null hypothesis that the samples came from distributions with the same mean. Because the 

samples always came from the same distribution, any positive result is a false positive. I will call 

the observed false positive rate when the null hypothesis is true 𝐹𝑃0 (“FP null”), also known as 

the Type I Error Rate. I assume that the significance criterion 𝛼 has been set in advance.  By 

construction, the t-test produces false positives at a rate of exactly 𝛼, the significance threshold. 

The MATLAB code used for simulating the false positive rate on the null hypothesis (𝐹𝑃0) can be 

found in (6), along with the numeric results of the all simulations described in Figures 2-4. 

 

A cautionary scenario 

Suppose 10,000 separate labs each ran a study with sample size N=8, where in every case there 

was no true effect to be found. If all used a criterion of 𝛼 = 0.05, we expect 500 false positive 
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results. But suppose all the labs that got “nonsignificant” outcomes reasoned that their studies 

were underpowered, and responded by adding four more data points to their sample and 

testing again, repeating this as necessary until either the result was significant or the sample size 

reached N=1000.  The interim p values would fluctuate randomly as the sample sizes are grown 

(Figure 1a). In two of the cases shown (red and blue curves) the p value crossed the significance 

threshold (α=0.05, black line) by chance. Had these studies ended as soon as 𝑝 < 𝛼 and 

reported significant effects, these would represent excess false positives, above and beyond the 

5% we intended to accept. Dashed curves show how these “p values” would have continued to 

evolve if sampling had continued.  

 
Figure 1. The problem with N-hacking. Simulation of experiments in which there was no true effect, 
starting with samples of size N=8. If the result was nonsignificant, a study added 4 more and 
retested, until either the result was significant or N=1000.  a. Evolution of p values of four simulated 
experiments as N was increased. b. Distribution of initial and final p values of 10,000 such simulated 
experiments, in bins of width 0.01. c. Distribution of final sample sizes of the simulated experiments, 
based on counts of each discrete sample size.  
 

 In a simulation of 10,000 such experiments, the p values for the initial N=8 samples were 

uniformly distributed between 0 and 1 (Figure 1b, blue), with 495 cases (~5%) falling below 0.05 

(red line). After N-hacking, there were 4262 false positives instead of the expected 500 (Figure 

1B, black). Therefore, the final “𝑝 values” are not really 𝑝 values – they do not reflect the 

probability of obtaining the result by chance if the null hypothesis is true. This alarming result 

has been pointed out by many others (1-5), and serves to illustrate that N-hacking can be a 

serious problem for anyone operating in this regime. 

This scenario postulates extremely industrious researchers, however. Suppose the 

experimental units were mice. For the 5% of labs that obtained a false positive at the outset, the 

sample size was a reasonable N=8 mice. All other labs had larger final samples. Three quarters of 

the labs tested over 100 mice, and over half of the labs tested 1000 mice before giving up. This 

simulation also postulates extremely stubborn researchers: in 75% of the simulated runs, 

additional data were collected even after observing an interim “p value” in excess of 0.90. In my 

experience in experimental biology research, these choices are implausible. 
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A plausible scenario in experimental biology 

Suppose instead that the sample size would be increased only for those tests that meet a 

criterion of “𝑝 close to 𝛼”. Furthermore, suppose that the maximum number of samples the 

study could or would add is no more than a few times greater than the original sample size. I 

simulated such an Asymmetric N-increasing policy as follows: every time a comparison yielded a 

p value that was “almost significant”, additional samples were added incrementally, and the t-

test repeated. This was iterated until the p value was either significant, or no longer close, or the 

maximum number of samples was reached. The definition of “almost significant” was: 𝛼 ≤

 𝑝 <  (1 + 𝑤) 𝛼, where 0 < 𝑤 ≤ 1.  For example, if 𝛼 = 0.05 and 𝑤 = 0.2, one would accept a 

hypothesis if 𝑝 < 0.05, reject if 𝑝 > 0.06, and add samples for 𝑝 values in between.  

Results of such a policy are shown in Figure 2.  

As expected, this Asymmetric N-increasing policy yielded an increase in the rate of false 

positives 𝐹𝑃0, and this was more severe as the eligibility window 𝑤 increased (Figure 2a). 

Nevertheless, the overall elevation in false positives was rather modest. For example, with a 

policy of   𝛼 = 0.05 and 𝑤 = 1, sample size was grown whenever 𝑝 was between 0.05 and 0.10, 

resulting in a realized false positive rate 𝐹𝑃0 = 0.0625 instead of the nominal 0.05. Following 

this policy resulted in a negligible increase in the sample size on average (Figure 2b).  Note that 

the false positives due to multiple comparisons are included in these reported false positive 

rates, i.e. these are the uncorrected false positive rates. 

 
Figure 2. Effect of uncorrected selective sample-increasing on false positive rate 𝑭𝑷𝟎. Results shown 
are for experiments with initial sample size 𝑁𝑖𝑛𝑖𝑡 = 12, and sample increments 𝑁𝑖𝑛𝑐𝑟 = 6, and 
maximum sample size 𝑁𝑚𝑎𝑥 = 24. Each point or symbol represents results from 𝑀 = 106 simulated 

experiments. (a) For any choice of 𝛼 (0.005, 0.01, 0.025, 0.0500, 0.1; colors), the Asymmetric N-
increasing policy yields an increase in false positives 𝐹𝑃0 which grows with the decision window 𝑤. 
The case of (𝑤 = 0) is identical to the standard fixed-N policy, and yields false positives at a rate of 

𝐹𝑃0 = 𝛼 (solid symbols). (b) Average 𝑁 in the final sample using the Asymmetric policy, as a function 

of 𝛼 and 𝑤. (c) The Symmetrical N-increasing policy yields a net decrease in false positives, which 
grows with 𝑤. (d) Average 𝑁 in the final sample using the Symmetric policy.  
 

To many, it is counterintuitive that adding more observations could do anything but 

improve statistical rigor – more N is better, right? The main reason false positives are elevated is 

that experiments were chosen for incrementation in a biased way. By selectively incrementing 

only the subset of true negatives in which the difference between experimental and control 

groups was rather large, and thus nearly significant, even a small difference between groups in 
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the added samples would be sufficient to push the overall group difference over the threshold 

for significance, purely by chance.  

The problem is that the rule is asymmetric: it challenges a preliminary result when 𝑝 is 

just above threshold, but not when it is just below threshold. To demonstrate this point I also 

simulated a Symmetric N-increasing policy, in which incremental sample growth occurred 

whenever a 𝑝 value was close, whether below or above α: (1 − 𝑤) 𝛼 ≤ 𝑝 <  (1 + 𝑤) 𝛼.  

Making the policy symmetric more than overcomes the problem – it converts more false 

positives to true negatives than it converts true negatives to false positives, resulting in a net 

reduction in false positives (Figure 2c). This is because in addition to the effect noted above, the 

Symmetric policy also incremented the sample size in a biased subset of the false positives: ones 

in which the difference between experimental and control groups was rather small and thus 

barely significant. The Symmetric policy resulted in a slightly larger final sample size on average 

(Figure 2d).  

In discussions of statistical malpractice, it is often asserted that an experimentalist 

would never add more samples after obtaining a significant 𝑝 value, but interestingly there is 

evidence that some do (7), and my observations of real practice in biology concur with this. 

Therefore, the consequences of both policies will be explored further below. 

 

Dependence on 𝜶 and the eligibility window 𝒘 

For the Asymmetric N-increasing policy, analysis of the simulated data reveals that for any given 

choice of 𝑤, the false positive rate depends linearly on 𝛼  𝐹𝑃0 = 𝑘𝛼 (Figure 3a). The slopes of 

these lines are in turn an increasing function of the decision window 𝑤 (Figure 3b, symbols). On 

the Symmetric policy, the dependence of 𝐹𝑃 on 𝛼 is also linear (Figure 3c) and the slope 𝑘 

declines with 𝑤 (Figure 3d).  

 

     
Figure 3. Dependence of false positive rate 𝑭𝑷𝟎 on 𝜶 and 𝒘. Results from simulations using 𝑁𝑖𝑛𝑖𝑡 = 12, 𝑁𝑖𝑛𝑐𝑟 =
6, 𝑁𝑚𝑎𝑥 = 24, with 𝑀 = 106simulated experiments per condition. (a) The realized false positive rate 𝐹𝑃0 for an 
Asymmetrical N-increasing policy when the null hypothesis is true. Color indicates 𝑤 (cf. panel b). For each value 
of 𝑤, 𝐹𝑃0is plotted for each value of 𝛼 and the data points connected (not a fit). The identity line (black) is the 
false positive rate of the standard Fixed-N policy, 𝐹𝑃0 = 𝛼. (b) The slopes 𝑘 obtained from linear fits to the data 
shown in (a), plotted as a function of 𝑤 (colored symbols). The dependence of the slope 𝑘 on 𝑤 is not linear in 
general, but was approximately linear in this parameter range (linear fit, black). (c) Like (a) but for the 

Symmetrical N-increasing policy. Note that for 𝑤 > 0.5, 𝐹𝑃0 is biased upward at larger values of 𝛼 due to the 
imposed cap of 2𝑁 additional samples. Therefore, to determine slopes, lines for each 𝑤 were fit using only 
values of 𝛼 for which this cap did not impact any simulation.  (d) The slopes 𝑘 from the linear fits to the data 
shown in (c), for all values of 𝑤 for which a slope could be estimated (i.e. at least two values of 𝛼 were not 
impacted by sampling cap). The dependence of the slope 𝑘 on 𝑤 is not linear in general, but was approximately 
linear in this parameter regime (linear fit, black). 
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Dependence on initial sample size 𝑵𝒊𝒏𝒊𝒕 and increment size 𝑵𝒊𝒏𝒄𝒓 

Above I assumed an initial sample size of 12, adding 6 more samples at a time, up to a maximum 

of 24 samples. To determine if these results were a peculiarity of these assumptions, I repeated 

the simulations for 𝑁𝑖𝑛𝑖𝑡  ranging from 2 to 128 initial sample points,  adding 𝑁𝑖𝑛𝑐𝑟  ranging from 

1 to 𝑁𝑖𝑛𝑖𝑡  samples each time, and capping the maximum total sample size at 𝑁𝑚𝑎𝑥 = 256. 

These assumptions more than bracket the range of realistic sample sizes and ad-hoc sample 

growth that would be commonly used in many experimental biology fields.   

Results for the Asymmetric policy with 𝛼 = 0.05, 𝑤 = 0.4 are shown in Figure 4a. The false 

positive rate 𝐹𝑃0 is always elevated compared to 𝛼 (black line), but this is more severe when the 

intial sample size is larger (curves slope upward) or the incremental sample growth is smaller 

(cooler colors are higher).  

 

Figure 4. Dependence of false positive rate 𝑭𝑷𝟎 on the initial sample size and sample increment. 
Each symbol represents the result from 106 experiments simulated with a ground truth of no 
effect. a. The realized false positive rate 𝐹𝑃0 of the Asymmetric N-increasing policy, as a function 
of  log2 𝑁𝑖𝑛𝑖𝑡 (horizontal axis) and 𝑁𝑖𝑛𝑐𝑟(colors), for the case 𝛼 = 0.05, 𝑤 = 0.4, 𝑁𝑚𝑎𝑥 = 256. b.  
Results for all choices of 𝛼 (0.005, 0.010, 0.025, or 0.050; symbol shapes) and w (0.1, 0.2, 0.3 or 

0.4, small horizontal shifts), plotted as (
𝐹𝑃

𝛼
− 1)/𝑤 (vertical axis) to reveal regularities. For the 

fixed-N policy by definition 𝐹𝑃0 = 𝛼, so this equation reduces to 0 (black line). Positive values on 
this scale indicate an increase in the false positive rate compared to the fixed-N policy, and 
negative values reflect a lower false positive rate.  c. Summary of simulations in (b) obtained by 
fitting the equation 𝐹𝑃 = (𝑐𝑤 + 1)𝛼.  Symbols indicate simulations in which 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡 (closed 
circles), 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡/2 (open triangles), 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡/4 (open squares) and 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡/8 
(open diamonds). Dotted black lines relate to the rules of thumb (see side box). Panels d-f: as in a-
c, for the Symmetrical N-increasing policy. Similar results were found for both policies using 
𝑁𝑚𝑎𝑥 = 5 𝑁𝑖𝑛𝑖𝑡 (not shown). 
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Nevertheless the false positive rate didn’t exceed 0.06 for any condition. In this range of 

parameters, the dependence of 𝑘 on 𝑤 was approximately linear, so one can summarize the 

results for all combinations of of 𝛼 and 𝑤 by linearly scaling them (Figure 4b-c). In the case of 

the Symmetric policy, the false positive rate 𝐹𝑃0 is always lower than 𝛼; this beneficial effect is 

strongest when 𝑁𝑖𝑛𝑐𝑟  is large or 𝑁𝑖𝑛𝑖𝑡  is small (Figure 4d-f).  In summary, the effect of 

uncorrected incremental sampling on the false positive rate is real, but it is modest in size and 

lawfully related to a handful of parameters.  

The “𝑝 value” obtained after unplanned incremental sampling is still not a true 𝑝 value. A 

number of methods are available for planned incremental sampling or 𝑝 value correction (4, 8-

13). If the sampling policy was not set in advance, however, a correction of the 𝑝 value can only 

be an estimate, because you can never truly know (or prove) what you would have done if the 

data had been otherwise. The point here is that in exploratory studies, if one limits unplanned 

incrementation to cases where the initial 𝑝 value is rather close to 𝛼, the bias introduced by 

incrementation is not very large. For example, if one’s cutoff for ad hoc sample incrementation is 

𝑝 < 2𝛼 (corresponding to 𝑤 = 1), the false positive rate will never be elevated by more than a 

factor of 1.5 (see Appendix 2). Therefore, if one does a Bonferroni correction for the multiple 

comparisons involved (a factor of 2 or more, depending on how many times one incremented) 

one will have more than corrected for this deviation from the plan. 

 

Part II. Trade-off between statistical power and positive predictive value 

So far these simulations still make another unrealistic assumption: that the null hypothesis is 

always true. In real research, presumably at least some studies testing for effects that in reality 

do exist. N-hacking increases the false positive rate expected on the null hypothesis because 

some true negative results will by chance be converted to false positives when a few samples 

are added.  But the researchers’ motivation for adding samples is the hope of increasing 

sensitivity: some “almost-significant” effects are false negatives, which might be converted to 

true positives with added samples. How these effects balance depends on what fraction of the 

tested hypotheses are in fact true (prior probability of effect, 𝑃(𝐻1)) and how large the effects 

are when present (effect size, 𝐸). The reason for this is nicely explained in (14).  

To explore this in simulations, one must simulate some experiments with no effect (as 

above) and other experiments with real effects. In simulations, we know the ground truth about 

which experiments had real effects, so we can directly measure two important quantities: (1) 

the sensitivity or power, which is defined as the fraction of real effects for which the null 

hypothesis is rejected; and (2) the selectivity, or positive predictive value (PPV), which is defined 

as the fraction of all positive results that are real effects (as opposed to false positives). 

 Result of hypothesis test 

not significant significant 

Tr
u

th
 no effect a. True Negative b. False Positive 

real 
effect 

c. False Negative d. True Positive 

           𝑃𝑜𝑤𝑒𝑟 =
𝑑

𝑐+𝑑
        𝑃𝑃𝑉 =

𝑑

𝑏+𝑑
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The sensitivity-selectivity trade-off 

Simulations were done exactly as described above, but now 1% of all experiments were 

simulated with a real effect of 1𝜎 difference between the population means, such that rejecting 

the null is the correct conclusion. The remaining 99% of experiments had no real effect. The 

fixed-N policy was compared to either an Asymmetric or Symmetric N-increasing policy. 

First it is helpful to recall that in the standard fixed-N policy there is always a trade-off 

between sensitivity and selectivity, which is controlled by the choice of 𝛼. For a given sample 

size 𝑁, increasing the arbitrary cutoff for significance 𝛼 increases sensitivity, at the expense of 

reduced PPV (e.g., Figure 5a, any red curve slopes downward). By varying 𝛼 one can define a 

curve for the sensitivity-selectivity trade-off, which summarizes the options available for 

interpreting data sets acquired in this way. The choice of 𝛼 is up to the investigator, depending 

on the relative priority one sets on avoiding missing real effects vs. avoiding believing false ones.  

Simulating this for different choices of 𝑁 further illustrates that in a fixed-N policy, a 

larger sample size 𝑁 is always better: it increases both sensitivity and selectivity, moving the 

entire curve up and to the right (Figure 5a, compare any two red curves). Drawing on this 

intuition, the statistical quality of any two experimental policies can be compared by relating 

these curves. A higher curve is better – it means one could choose 𝛼 for any desired PPV and 

achieve higher Power; or choose 𝛼 for any desired Power and achieve higher PPV, compared to 

any curve that lies below it. 

  
Figure 5. Trade-off between selectivity and sensitivity. (a) Realized selectivity vs. sensitivity in 

simulations with effect size 1 prior effect probability 0.01, and 𝑁𝑖𝑛𝑖𝑡=6, 12, 24 or 48 (four curves of 

each color). Symbols indicate 𝛼 (○=0.001, ▽=0.005, □=0.01, △=0.025, ◊=0.05).  Text labels for pairs 
of curves indicate initial sample size 𝑁𝑖𝑛𝑖𝑡. For every combination of these parameters a total of 𝑀 =
104/𝛼 experiments were simulated. Results for the standard fixed-N policy (red) and for an 
Asymmetric N-increasing policy using 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡, 𝑁𝑚𝑎𝑥 = 2𝑁𝑖𝑛𝑖𝑡, and 𝑤 = 0.4 (blue) are shown. 
The small subset of experiments that added samples (to 𝑁𝑓𝑖𝑛𝑎𝑙 = 2𝑁𝑖𝑛𝑖𝑡) are shown in dotted blue 

curves and open symbols for 𝑁𝑖𝑛𝑖𝑡 = 6 and 𝑁𝑖𝑛𝑖𝑡 = 12.  (b) Results for standard fixed-N vs. 
Symmetric N-increasing policy, details otherwise as in (a).  

 

The curves for the standard fixed-N policy (red curves, Figure 5) thus provide the 

benchmark to which other sampling policies may be compared. An example Asymmetric N-

increasing policy is shown (blue curves, Figure 5a).  Because samples were added to only a few 

experiments, the average final sample size was negligibly greater than the fixed-N policy: 

〈𝑁final〉 ≤ 1.02 𝑁𝑖𝑛𝑖𝑡  for all parameter combinations tested (c.f. Figure 2b). Therefore, the 

overall sensitivity and selectivity of the policy can be reasonably compared to the fixed-N policy 
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with 𝑁 = 𝑁𝑖𝑛𝑖𝑡  (paired curves). For all choices of 𝑁𝑖𝑛𝑖𝑡  simulated, the curve for the Asymmetric 

N-increasing policy (blue) fell entirely above and to the right of the corresponding curve for the 

fixed-N policy (red). Thus the Asymmetric N-increasing policy resides entirely on a better 

frontier than the fixed-N policy: for any point on the fixed-N curve there exists some choice of 𝛼 

for which the Asymmetric policy curve has equal selectivity with higher sensitivity, and another 

choice of 𝛼 for which the Asymmetric policy has equal sensitivity with higher selectivity.   

Comparing the two policies with the same choice of 𝛼 is also informative (symbols of 

same shape on the red vs. paired blue curves). For the parameter combinations with lower 

power (𝑁𝑖𝑛𝑖𝑡 = 6 𝑜𝑟 12 with any 𝛼, or 𝑁𝑖𝑛𝑖𝑡 = 24 with 𝛼 < 0.01), using the same choice of 𝛼 in 

an Asymmetric N-increasing policy – even without any correction for the false positive rate or 

multiple comparisons – yielded improvements in both statistical power and PPV relative to 

fixed-N. This was the case up to at least 𝑤 = 1 (not shown). For the parameter combinations 

with higher power (𝑁𝑖𝑛𝑖𝑡 = 48 with any 𝛼, or 𝑁𝑖𝑛𝑖𝑡=24 with 𝛼 ≥ 0.01), using the same 𝛼 for the 

Asymmetric N-increasing policy led to a loss in selectivity relative to the fixed-N policy (the 

matched symbols are to the left of their fixed-N benchmarks). Still, this loss in selectivity was 

accompanied by a far greater improvement in statistical power than could be achieved by 

moving along the red curve (changing 𝛼) to obtain the same selectivity. In this sense, the 

Asymmetric policy represented a superior trade-off even in these cases. 

The small subset of experiments for which sample size was increased had 2𝑁𝑖𝑛𝑖𝑡  final 

samples. Is the whole effect due to the fact that un-incremented experiments lie on the fixed-N 

curve for 𝑁 = 𝑁𝑖𝑛𝑖𝑡 and the incremented subset lie on the curve for 𝑁 = 2𝑁𝑖𝑛𝑖𝑡? The answer is 

no.  Considering the incremented subset of experiments separately (dotted blue curves) reveals 

that they live on a frontier above the curve for fixed-N experiments with a sample size of 

𝑁 = 2𝑁𝑖𝑛𝑖𝑡 .  The subset of experiments that were not incremented (the majority, which had a 

final sample size of exactly 𝑁𝑖𝑛𝑖𝑡) lay on a curve that was slightly above or indistinguishable from 

the fixed-N benchmark in all cases examined (not shown). 

The Symmetric N-increasing policy was superior to the fixed-N policy in every way 

(Figure 5b, compare red to blue), as well as beating the Asymmetric policy (compare blue curves 

in Figure 5a vs. 5b). Even using the same choice of 𝛼 the Symmetric policy increased both 

selectivity and sensitivity relative to fixed-N for all conditions tested.  

These simulations demonstrate that for an effect size of 𝐸 = 1𝜎 and prior probability of 

0.01, N-hacking is a win-win scenario. Although the absolute numbers depend on the effect size 

𝐸 and fraction of experiments that had real effects 𝑃(𝐻1), the relationships between the curves 

were the same for effect sizes ranging from 𝐸 = 0.5 to 2 and prior 𝑃(𝐻1) ranging from 0.001 to 

0.1 (not shown). Additional simulations showed that this remained the case as either the prior 

probability or effect size approached 0 (although PPV approaches 0 in both cases), for a range of 

𝑁𝑖𝑛𝑖𝑡  using 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡 (not shown). In real experiments, 𝐸 and 𝑃(𝐻1) are not known, but this 

doesn’t prevent us from concluding that regardless of their values, N-hacking in this regime 

would improve reproducibility. 

 

Dependence on the eligibility window 𝒘 

In Part I, I showed that if one only adds samples when 𝑝 is rather close to 𝛼, the false positive 
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rate 𝐹𝑃0 is only moderately elevated (Figure 2), but if one used a larger eligibility window 𝑤, the 

false positive rate could be quite high among experiments with no real effect (Figure 1). Does 

the benefit of N-hacking fall apart when 𝑤 gets large?  To test this, I further simulated results of 

the Asymmetric policy under this condition, for 𝑤 ranging from 0.2 to 10, also varying 𝛼 to 

define the power-PPV curves. As 𝑤 increases, these curves move up and to the right (Figure 6, 

top row). This implies that even if one uses very loose criteria for adding samples, N-hacking has 

some benefits. 

For a fixed choice of 𝛼, increasing 𝑤 always increases sensitivity (warm colors are above 

cool colors along any curve, Figure 6 bottom row). This makes sense: the more willing one is to 

add a few more samples, the more false negatives one can rescue to true positives.   

 

 
Figure 6. Asymmetric N-increasing policies improve statistical inference even when 𝒘 is 
large. Realized selectivity vs. sensitivity in simulations with effect size 𝐸 = 1𝜎 prior effect 
probability 𝑃(𝐻1) = 0.10, with 𝑁𝑖𝑛𝑖𝑡 as indicated on column title, 𝑁𝑖𝑛𝑐𝑟 = 1, 𝑁𝑚𝑎𝑥 = 50. Each 
symbol represents the uncorrected result from 𝑀 = 106 simulated experiments. Symbols 

indicate 𝛼 (○=0.01, ▽=0.02, □=0.05).  Colors indicate 𝑤 (blue→red= 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 
3, 4, 5, 10). Note that dark blue (𝑤 =  0) is the standard fixed-N policy. Top row: simulations 
with the same 𝑤 and different 𝛼 are connected with curves, color indicates 𝑤. Bottom row: 
the same data, but simulations with the same 𝛼 and different 𝑤 are connected with gray 
curves. 
  

For larger sample sizes, however, uncorrected N-hacking (holding 𝛼 constant) reduces 

positive predictive value (e.g. 𝑁𝑖𝑛𝑖𝑡 = 16, gray curves slant to the left) compared to a fixed-N 

policy (dark blue symbols). Nevertheless, the trade-off between PPV and Power is 

advantageous. For example, consider 𝑁𝑖𝑛𝑖𝑡 = 8,  𝛼 = 0.05. In this case the fixed-N experiment 

has a PPV of 0.50 (not 0.95, as the experimenters might falsely believe), and a statistical power 

of 0.46. Asymmetric N-hacking with a window of 𝑤 = 5 means that more samples would be 

added for any interim test result of 0.05 < 𝑝 < 0.25. Without any correction for incremental 

sampling or multiple comparisons (as shown), this would erode the PPV from 0.50 down to 0.43 

(in other words the False Positive Risk would be 57% instead of 50%). But in exchange for this, 

the statistical power would be increased from 0.46 to 0.78. The investigators would be slightly 

more likely to believe a result that is a fluke, but far more likely to find a real effect if it is there.   
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Discussion 
Main conclusions 

These simulations demonstrate that increasing the sample size incrementally whenever a result 

is “almost” significant will lead to a higher rate of false positives, if the null hypothesis is true. 

This has been said many times before, but most writers warn that this practice will lead to 

extremely high false positive rates (1-5). We can replicate those results if we use the same 

assumptions: that an experimentalist would add more samples after obtaining a non-significant 

result no matter how far from 𝛼 the p value was, and would continue adding samples until N is 

quite large (Figure 1). If instead one considers circumstances in which the 𝑝 value would have to 

be rather close to 𝛼 for one to add samples (e.g., no more than twice 𝛼), and a limited number 

of total samples could be added before giving up (e.g., no more than five times the initial 

sample), the effects on the false positive rate are modest and bounded. 

The magnitude of the increase in the false positive rate depends on the initial sample 

size 𝑁𝑖𝑛𝑖𝑡 , significance criterion 𝛼 closeness criterion 𝑤, increment size 𝑁𝑖𝑛𝑐𝑟 , and total sample 

cap 𝑁𝑚𝑎𝑥 .  These simulations demonstrate in which direction and how steeply the false positive 

rate depends on these factors.  Some rules of thumb emerge for how bad the effect could 

possibly be, given those parameters (Appendix 2). While this cannot be used to formally correct 

the p value, it could provide useful guidance to the researcher in an exploratory study. 

Further simulations demonstrated that under many conditions this type of N-hacking is 

superior to a fixed-N policy in the sense that it increases the positive predictive value (PPV) 

achievable for any given statistical power, compared to studies that strictly adhere to the 

initially planned 𝑁. This has not been previously noted, and was unexpected. For experimental 

studies that use a small initial sample size (𝑁 ≤ 12) and 𝛼 = 0.05, if one would only add 

samples post-hoc when 𝑝 < 0.1 and would always quit before exceeding 𝑁 = 50 samples, it is 

simply not true that N-hacking leads to an elevated risk of unreproducible results as often 

claimed. A verdict of “statistical significance” reached in this manner, far from being dubious, is 

more likely to be reproducible than results reached by fixed-N experiments with the same initial 

or final sample size – even if no correction is applied for sequential sampling or multiple 

comparisons.  

With the noble motivation of improving reproducibility, researchers are now being told 

that if they have obtained a non-significant finding with a 𝑝 value just above 𝛼, they must never 

add more samples to their data set to improve statistical power. They must either run a 

completely independent larger-N replication, or fail to reject the null hypothesis (which 

generally means relegation to the file drawer, in the current publishing climate). To dissuade 

researchers from unplanned sample incrementation, multiple didactic articles have shown that 

the resulting false positive rate would be wildly inflated (c.f. Figure 1). These demonstrations 

were unrealistic and misleading. To make informed choices, researchers need more relevant and 

nuanced information about the trade-offs they must negotiate. 

 

So, is N-hacking ever OK?   

Adding samples after completing the planned experiment violates a basic premise of 

null hypothesis significance testing (NHST), and forfeits control of the Type I Error rate. But if the 
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goal is to generate hypotheses that are likely to be reproducible, many researchers might validly 

be willing to abandon having an exact 𝑝 value in exchange for reducing the risk of false 

negatives, improving the positive predictive value, and conserving time, animal lives, and other 

resources. In an explicitly exploratory study, some statisticians might concede that unplanned 

sample incrementation is not even N-hacking.   

For researchers conducting transparently exploratory studies, then, these simulations 

could inform better informal decision heuristics about sample growth. An exploratory study 

should be labeled as such, disclose that sample incrementation occurred, report the interim 𝑁 

and 𝑝 values, and describe their decision heuristics as honestly as possible. The simulations 

presented here would help a reader interpret the implications of those choices.  

But if an exact 𝑝 value is required, as in a confirmatory study, no deviation from the 

prospective experimental design is OK, including N-hacking. That doesn’t rule out incremental 

sampling, however. It would not be N-hacking if the incrementation policy were committed to 

advance, because pre-specification makes it possible to determine the results expected when 

the null hypothesis is true, at least by simulation.   

If one is going to pre-specify an incremental sampling plan, however, one could 

probably do better than the ad-hoc heuristics simulated here, which were meant merely to 

describe what I believe to be common lab practices. It is beyond the present scope to explain 

and compare sequential sampling methods, and others have ably done so (15, 16). Here I will 

just provide a brief indication of some options. 

One option is a phased study. For example, one could prespecify a 2-phase protocol 

with an initial phase of 𝑁 = 16 and 𝛼 = 0.10, followed (if a “significant” effect is found in Phase 

I) by a second phase with 𝑁 = 33 and 𝛼 = 0.01.  Compare this to a Symmetric N-increasing 

policy with  𝑁𝑖𝑛𝑖𝑡 = 16, 𝑁𝑖𝑛𝑐𝑟 = 1,  𝛼 = 0.05, 𝑤 = 1, 𝑁𝑚𝑎𝑥 = 128. In both cases, additional 

data will be collected whenever the initial sample yields 𝑝 < 0.10. If prespecified (and no other 

deviations from the research plan occurred) both would have strictly interpretable 𝑝 values. In a 

simulation with an effect of size 0.5 SD and a prior probability of 0.1 (106 runs) these both had 

an average sample size of about 20, a statistical power of about 26%, a PPV of about 92%.   

Another option is Wald’s Sequential Probability Ratio Test (17), which has been proven 

to be optimal in some respects. In Wald’s method, one sets in advance a threshold 𝑎 to accept 

and another threshold 𝑏 to reject the null hypothesis. Then one computes a test statistic 𝑆 after 

each new sample point is added (the cumulative log likelihood ratio of the alternatives).  If 𝑆 ≤

𝑎 the null hypothesis is accepted, if 𝑆 ≥ 𝑏 the alternative is accepted, and if 𝑎 < 𝑆 < 𝑏, one 

continues sampling. The thresholds 𝑎 and 𝑏 can be set analytically to obtain the desired 

statistical power 𝛽 and false positive rate 𝛼. Superficially, the N-incrementing policies simulated 

here resemble Wald’s method in that there are two thresholds and an indeterminate range 

between them when sampling continues, but Wald selects these two thresholds in an optimal 

way.  A downside of Wald is that one must commit to sampling until one or the other threshold 

is crossed, which puts one at risk of having to test a very large N. 

A third option is Bayesian Sequential Sampling. This method sets a criterion 𝑐, and then 

sequentially computes the Bayes Factor for the hypothesis vs. null hypothesis. If 𝐵𝐹 > 𝑐 the 
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hypothesis is accepted, 𝑖𝑓 𝐵𝐹 <
1

𝑐
  the hypothesis is rejected, and otherwise one keeps sampling 

(18). This is also closely related to Wald’s method and the drift diffusion model (DDM) of 

decision-making (19), and does not require knowledge of the prior probability. 

Broader Implications 

In the effort to promote rigor in science, we need to question “questionable” research practices 

more deeply. Some may be inevitably and severely misleading (20). Others may have small 

effects, or only in specific circumstances. The potential for abuse does not establish actual 

abuse; sometimes the same practice (e.g. “unplanned sample incrementation”) could either 

reduce or increase reliability of research, depending on exactly how it is deployed. A more 

realistic and nuanced exploration is far more instructive for researchers, and can lead to more 

useful suggestions for improved practice of science. 

Many experimental studies in Biology are exploratory, involving not only unplanned 

incremental sampling but also iterative revisions of the experimental methods, analysis 

methods, and hypotheses. In such studies one cannot obtain a confirmatory 𝑝 value, even if the 

sampling plan is prespecified. However, this flexibility may be essential to the success of the 

research in terms of making valid, novel discoveries efficiently. Therefore, science reforms that 

seek to turn all research projects into confirmatory research could backfire.  Instead, we in 

Biology need to be more open about labeling exploratory studies as such (including refraining 

from reporting 𝑝 values or telling null-hypothesis-testing stories), and work harder to articulate 

the methods and heuristics we routinely employ to ensure scientific rigor in the context of 

exploratory studies. 
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Definitions 
𝐻0   Null hypothesis (no effect) For example, in an independent sample t-test comparing 

samples from populations A and B, the null hypothesis is 
that the means of the groups are the same:  𝐻0: 𝜇𝐴 = 𝜇𝐵 

𝐻1   Alternative hypothesis (effect) For the t-test example, the alternative is that means of 
the populations are not the same:   𝐻1: 𝜇𝐴 ≠ 𝜇𝐵 

𝑁     Sample size In a fixed-N policy: the number of samples in each group 
In an incrementing policy: 

𝑁𝑖𝑛𝑖𝑡   Initial sample size   
𝑁𝑖𝑛𝑐𝑟  Number of samples added each time   
𝑁𝑚𝑎𝑥  Maximum sample size before stopping 

𝑝     Value returned by statistical test The fraction of experiments in which one would observe 
a difference at least as great as the observed difference, 
if in fact  𝐻0 were true. 

𝛼     Significance criterion A criterion to reject 𝐻0 only if 𝑝 < 𝛼 

𝑤    Eligibility window In these incrementing policies, defines how close to 𝛼 a 𝑝 
value must be to add samples   

𝐹𝑃0   False Positive Rate on the Null 
           

For any decision policy, probability of rejecting the null if 
the null is true:   𝐹𝑃0 ≡ 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0)   
For fixed-N case  𝐹𝑃0 = 𝑝 
In simulations, obtained when all simulated experiments 
draw both samples from the same distribution. 

𝐸     Effect size The true difference in the means of the two populations 
being compared, expressed as a ratio of the (shared or 

pooled) standard deviation: 𝐸 ≡
|𝜇𝐴−𝜇𝐵|

𝜎
 

𝑃(𝐻1) Prior probability of an effect The probability 𝐻0 is false, before considering the data. In 
simulations, this fraction of experiments draw samples 
from distributions whose means are in fact different. 

Power (Sensitivity) The probability that a real difference will be found to be 
significant:   𝑃𝑜𝑤𝑒𝑟 ≡ 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻1) 
Depends on prior 𝑃(𝐻1) and effect size 𝐸 

𝑃𝑃𝑉  Positive Predictive Value 
           (Selectivity) 

The probability that an effect that was deemed significant 
is in fact real:     𝑃𝑃𝑉 ≡ P(𝐻1| 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0) 
Depends on prior 𝑃(𝐻1) and effect size 𝐸  
Related to “False Positive Risk”(21, 22): 𝐹𝑃𝑅 = 1 − 𝑃𝑃𝑉 

Appendix 1: Extensions and limitations of these results 
These simulations used a normal distribution for the source distributions and an independent 

sample t-test as the hypothesis test. But the analysis of the false positive rate 𝐹𝑃0 only depends 

on the assumption that the statistical test used generates p values that are uniformly distributed 

between 0-1 on the null hypothesis. In other words, as long as the statistical test being used is 

valid for the distribution being sampled and the structure of the experiment, the dependence of 

false positive rate on parameters in these simulations should generalize to any source 

distribution and statistical test.  Power analysis may be affected by the shape of the source 
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distribution, however, so generality of those results to other distributions should not be 

assumed. 

I have simulated the practice of unplanned sample incrementation after computing a p 

value on the initially planned sample. But even if no interim statistical tests are performed, the 

same issues arise. For example, deciding whether to collect more data depending on the effect 

size seen in the initial data, or based on visual inspection of scatter plots, is also N-hacking.   

In the real world, the prior probability of a true effect 𝑃(𝐻1) and the effect size 𝐸 are 

unknown to the investigator. But in simulations the effect size and prior probability are known. 

Testing a wide range of values, it was possible to draw general conclusions about the direction 

of the effect of N-hacking, entirely on frequentist grounds. In “underpowered” conditions (low 

𝑁, stringent 𝛼, small effect size, low prior probability), whatever the PPV would have been using 

fixed-N, the PPV after Asymmetric N-increasing would be greater. Under other conditions, the 

PPV after Asymmetric N-increasing is lower than that of a fixed-N experiment, but there still 

exists some choice of 𝛼 that would provide the same PPV as fixed-N with higher power, and 

some other choice that would provide the same power with higher PPV. How to find these 

values of 𝛼 is not addressed, however.  

These simulations only considered experiments in which a single hypothesis is tested on 

each sample.  Multiple tests on a single sample (such as a gene chip array experiment) is a very 

different situation, because in that case incrementing 𝑁 and retesting would lead to re-testing 

of all the hypotheses, regardless of their original p values. That situation is not considered here. 

Numerical simulations and graphs are easy for experimentalists to understand, because 

they present the expectations of the hypothetical scenario in terms directly comparable to data. 

But I have not attempted an analytic treatment that would allow for a proof or specification of 

the conditions under which these results obtain.  

These simulations asked: if a population of scientists followed a certain sampling policy, 

what fraction of their experiments would yield a “significant” difference when the null 

hypothesis was in fact true (𝐹𝑃0), and what fraction of their “significant” findings would be real 

effects (PPV)?  These are population-level questions. When interpreting any single experiment, 

however, one should take into account the specific 𝑝 values that were obtained (a “𝑝-equals” 

rather than “𝑝-less-than” approch)(21). 

As others have noted, “chasing significance”, such as by N-hacking, may be incentivized 

by the currently standard practice of setting arbitrary cutoffs for “statistical significance” and 

reducing analog 𝑝 values to binary hypothesis tests. It is not at all clear that experimental 

science is well served by this overall approach (23-25, 26 ). But since N-hacking biases the 𝑝 

value itself, the issues explored here would arise even if no decision threshold were used. 

Many statisticians advocate supplementing reported 𝑝 values with some other statistical 

measure such as the Odds Ratio (21, 27), Bayes Factor(18, 28), the False Positive Risk (1-PPV) 

(22), or a non-Bayesian bound on the Bayes Factor (29).  Some of these measures do not make 

any assumptions about how data were collected, and in this respect are immune to concerns 

about N-hacking. 
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Appendix 2: A conservative bound? 
If the simulated decision rules were implemented as strict policies, the simulated data 

show the following inequalities (dotted lines, Figure 4 c,f): 

 

Assymetric Policy   Symmetric Policy 

𝐹𝑃0 <  𝛼(1 +
𝑤

2
) for 𝑁𝑖𝑛𝑐𝑟 ≤ 𝑁𝑖𝑛𝑖𝑡  𝐹𝑃0 < 𝛼 (1 −

𝑤

4
) for 𝑁𝑖𝑛𝑐𝑟 ≤ 𝑁𝑖𝑛𝑖𝑡  

𝐹𝑃0 <  𝛼(1 +
𝑤

4
) for 𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡  𝐹𝑃0 < 𝛼 (1 −

𝑤

2
) for   𝑁𝑖𝑛𝑐𝑟 = 𝑁𝑖𝑛𝑖𝑡  

 

These are loose bounds (in many conditions the false positive rate falls well below this 

value), but have the virtue of being easy to calculate. For example: an Asymmetric N-increasing 

policy with 𝑤 = 0.4, 𝑁𝑖𝑛𝑖𝑡  = 10, 𝑁𝑖𝑛𝑐𝑟 = 10,  𝑁𝑚𝑎𝑥 = 50, would have an estimated 𝐹𝑃0 <

0.0550 by rule of thumb, compared to the simulation result of 𝐹𝑃0 = 0.0541 ± 0.0001.  

 Additional simulations for 𝛼 = 0.05 or 0.10, 𝑁𝑖𝑛𝑐𝑟 = 1 (i.e. the worst case conditions) 

were extended to 𝑤 = 19 for 𝑁𝑖𝑛𝑖𝑡  = 2 to 128 with 𝑁𝑚𝑎𝑥 = 256 and still did not exceed this 

empirical bound (not shown). The MATLAB code provided in (6) can be used to simulate the 

false positive rate for other parameter combinations.  

           In principle, these inequalities could be used to estimate a bound on the false positive rate 

or estimate a corrected p value after unplanned sample incrementation if the heuristic decision 

rule can be articulated. This estimate will be conservative if one assumes an asymmetric policy, 

a larger window w than one thinks one would ever increment, and a maximum sample size Nmax 

larger than one thinks one would ever collect.  But this will still be only an estimate, unless the 

decision policy is fixed in advance. 
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