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Abstract

Progress in shortening the duration of tuberculosis (TB) treatment is hampered by the lack of
a predictive model that accurately reflects the diverse environment within the lung. This is im-
portant as TB has been shown to produce distinct localisations to different areas of the lung
during different disease stages, with the environmental heterogeneity within the lung of factors
such as air ventilation, blood perfusion and oxygen tension believed to contribute to the apical
localisation witnessed during the post-primary form of the disease.

Building upon our previous model of environmental lung heterogeneity, we present a net-
worked metapopulation model that simulates TB across the whole lung, incorporating these no-
tions of environmental heterogeneity across the whole TB lifecycle to show how different stages
of the disease are influenced by different environmental and immunological factors. The alve-
olar tissue in the lung is divided into distinct patches, with each patch representing a portion
of the total tissue and containing environmental attributes that reflect the internal conditions at
that location. We include populations of bacteria and immune cells in various states, and events
are included which determine how the members of the model interact with each other and the
environment. By allowing some of these events to be dependent on environmental attributes,
we create a set of heterogeneous dynamics, whereby the location of the tissue within the lung
determines the disease pathological events that occur there.

Our results show that the environmental heterogeneity within the lung is a plausible driving
force behind the apical localisation during post-primary disease. After initial infection, bacterial
levels will grow in the initial infection location at the base of the lung until an adaptive immune
response is initiated. During this period, bacteria are able to disseminate and create new lesions
throughout the lung. During the latent stage, the lesions that are situated towards the apex are the
largest in size, and once a post-primary immune-suppressing event occurs, it is the uppermost
lesions that reach the highest levels of bacterial proliferation. Our sensitivity analysis also shows
that it is the differential in blood perfusion, causing reduced immune activity towards the apex,
which has the biggest influence of disease outputs.

Keywords: Tuberculosis, Computational biology, Within-host model, Bacteria,
Metapopulation, Lung, Localisation

Email address: mjp22@st-andrews.ac.uk (Michael J. Pitcher)

Preprint submitted to bioRxiv December 12, 2019

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.12.871269doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.871269
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Tuberculosis (TB) accounts for over 1 million deaths each year [1], despite the fact that an
effective treatment has existed for decades. The current standard regimen for drug-susceptible
forms of TB requires six months of multiple antibiotics, and a large number of factors can con-
tribute to a patient’s ability to adhere to the treatment [2]. Non-adherence can have serious
consequences, both for the patient, as it increases the chances of relapse after treatment, and
for the wider society, as an incomplete course of antibiotics can lead to the remaining bacteria
developing drug resistance [3, 4]. Therefore, creating novel regimens of shorter duration is of
great importance, as doing so would improve overall patient adherence and reduce these risks of
relapse and drug resistance. Unfortunately, recent efforts to create new regimens of four months
have not been successful.

Experiments on mice using moxifloxacin showed promising results with regard to bacteri-
cidal effects [5] and it was predicted that the use of this drug could reduce human treatment
duration. However, clinical trials incorporating the drug in novel regimens were unable to prove
non-inferiority [6, 7], possibly due to the heterogeneity of distribution of drugs within the lesion
during treatment [8]. This demonstrates a crucial hurdle in the drug development process for TB:
we lack the predictive power at the preclinical stage to make effective decisions as to which of the
many possible new regimens to progress through to expensive and costly clinical trials. Using
in vitro experiments, it is not possible the create the full environment seen within patients and
there exists no single in vivo animal model which completely encapsulates the pathophysiology
seen within humans [9]. In silico models, of both mathematical and computational form, could
provide a compromise: allowing us to simulate the disease in a full (synthetic) environment at
a fraction of the time and cost required for in vitro and in vivo models. The ability to create
a simulation model that reflects the full spectrum of pathophysiology seen in humans with TB
would reduce the use of animal models and allow us to make predictions as to the efficacy of
novel regimens, and thus better inform our decisions with regard to prioritisation of these new
treatments. Furthermore, the development of these models allows us to explore the dynamics of
TB infection and provides insight into the complex dynamics that occur and which we do not
fully understand yet.

TB infection begins with the inhalation of one or more Mycobacterium tuberculosis (M.
tuberculosis) bacterium, which lands at the alveolar tissue of the lower respiratory tract, where it
begins to replicate. There, a complex battle between the host immune response and the pathogen
begins. Figure 1 shows the possible outcomes of a TB infection. In a small percentage of people,
the immune response is sufficient and the bacterial load is low enough that the infection is cleared
from the body. For most people, the bacteria proliferate and the innate immune response is
insufficient to cope with the bacteria, and thus an adaptive immune response is triggered. In
patients whose immune system is compromised in some manner, this adaptive immune response
is also insufficient and thus active disease is formed, termed ‘primary TB’ as it originates from
the initial bacterial load. In the majority of patients, the adaptive immune response is strong
enough to contain but not eradicate the bacteria, and the infection remains in an asymptomatic
‘latent’ form. This latent form of disease represents a reservoir for bacteria, as the infection may
re-activate if the immune system later weakens and the structures containing the bacteria suffer
degradation, allowing the bacteria to replicate extracellularly. This is termed ‘post-primary TB’.

Whilst both primary and post-primary stages are active, symptomatic forms of TB which can
lead to patient mortality, it is important to recognise that these two forms of disease are distinct
in localisation and pathology [11]. The initial infection site for TB tends to occur in the lower
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Figure 1: Overview of the clinical outcomes of M. tuberculosis exposure. Adapted from [10], values from [1, 10]. Red
boxes indicate active, symptomatic disease.
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regions of the lung, which are more ventilated than other lung regions. Post-primary disease
involves cavitation, whereby the alveolar tissue is eroded and access is permitted to the bronchial
tree, and this cavitation always occurs at the apices of the lungs [12]. Cavitation does not occur
during primary disease. Thus, the bacteria that land in the lower regions must somehow dis-
seminate to the apical regions, and the environment at the apex of the lungs must be preferential
for cavitation to occur. It has been hypothesised that the environmental conditions within the
lung contribute to these differences in localisation [12, 13, 14, 15], with factors such as the lower
blood perfusion and higher oxygen tension at the apices compared to the basal regions believed
to contribute to M. tuberculosis proliferation there. But exactly how these factors influences
disease is not well understood.

In silico modelling of TB is still in its infancy, and most existing models of the disease have
simulated the disease on the scale of a single lesion [16, 17, 18]. In [19], we presented the first in
silico model of TB over the whole lung to incorporate the environmental heterogeneity present
within the organ in order to understand how the differentials in factors such as blood perfusion
and oxygen tension impact disease. In this paper, we build upon this model and present a new
iteration of the model which includes a more granular network as its base and incorporates the
full life-cycle of disease, to show how the environment within the lung impacts each stage of
disease in a unique manner.

2. Whole lung model of TB with environmental heterogeneity

The model, termed TBMetapopPy, simulates the interaction between immune cells, bacteria,
and the local environment both within the lung and in the associated lymphatics. It takes the
form of a networked metapopulation: multiple patches exist within the model, which are linked
together with edges to form a network. Patches contain subpopulations of various immune cells
or bacteria, which may interact with each other and the local environment within the patch, or
may translocate from one patch to another.

2.1. Environment

The spatial domain of the model consists of the alveolar tissue within the lung and the lymph
nodes draining the lungs. The lung tissue is divided into multiple patches, each representing the
total alveolar tissue present in a branch of the bronchial tree. Each patch within the lung contains
environmental attributes that reflect the initial conditions within the lung at that position. These
are listed in Table 1. As V and Q represent fractions of the total ventilation and perfusion,
respectively, supplied to the lung that reach a patch, the sum of each of these values across all
patches equals 1. The lymphatic patch contains no environmental attributes.

All patches contain populations divided into compartments, each of which represents the
species and status of immune cells or bacteria, as described in Table 2. We model 4 types of
bacteria, based on their location and/or replication rate. Bacteria that are present in or on the tis-
sue surface are ‘extracellular’. M. tuberculosis has been shown to exhibit ‘dormancy’, associated
with the accumulation of lipid bodies, whereby it reduces its replication rate but becomes more
resistant to antibiotics [20, 21]. In order to incorporate this, we allow bacteria to switch between
a ‘replicating’ (BER) and a ‘dormant’ (BED) state when extracellular. M. tuberculosis has evolved
to suppress the destructive mechanism of immune cells by preventing phagolysosome biogenesis,
and thus is able to reside within the intracellular matrix of host cells [22, 23, 24]. We define two
types of intracellular bacteria - those within dendritic cells (BID) and those inside macrophages
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Label Attribute Description
V Ventilation The fraction of inhaled air that is passed to that area

of the lung
Q Perfusion The fraction of all blood sent to the lung that reaches

the given patch
O Oxygen tension Oxygen tension remaining in the air of the lungs af-

ter gas exchange has occurred. This is dependent on
both the amount of air received (V) and the amount of
blood received (Q).

G Drainage The rate at which cells are able to transfer from the
lung to the lymphatics system relative to the lung av-
erage.

Table 1: Environmental attributes within the lung patches of TBMetapopPy

Label Compartment
BER Bacterium extracellular - replicating
BED Bacterium extracellular - dormant
BID Bacterium intracellular - dendritic
BIM Bacterium intracellular - macrophage
DI Immature dendritic cell
DM Mature dendritic cell
MR Resting macrophage
MI Infected macrophage
MA Activated macrophage
TN Naı̈ve T cell
TA Activated T cell
C Caseum

Table 2: Population compartments within TBMetapopPy

(BIM), as both of these cells have been shown to become infected by M. tuberculosis [25]. We do
not make the distinction between replicating and dormant here: we assume that dendritic cells
are too small to permit internal bacterial replication, and that the internal environment within a
macrophage is hostile and thus forces the bacteria into a slower-replicating state regardless of
replication rate when ingested.

We model 3 types of immune cells: dendritic cells, macrophages and T cells. The primary
role of dendritic cells in the model is antigen-presentation: the immature dendritic cells (DI) res-
ident in the lung encounter and ingest bacteria, causing them to convert to a mature state (DM).
These mature cells can then trigger an adaptive immune response by transferring to the lymphat-
ics and activating T cells there. Macrophages play a similar role, as they can also encounter
and ingest bacteria and transfer to the lymphatics, but we assume that macrophages are less mo-
bile than dendritic cells and have a greater internal capacity - they are more likely to remain
in the lung and attempt to eliminate bacteria there. Thus, macrophages have a ‘resting’ (MR)
and ‘infected’ state (MI). We also include an ‘activated’ state (MA), whereby the macrophage’s
bactericidal ability is improved during an adaptive immune response [26].

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.12.871269doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.871269
http://creativecommons.org/licenses/by-nc-nd/4.0/


Symbol Description Value
P A series of (x,y) coordinates composing the external perimeter of the

model environment
(50,0), (0, 0), (0,
100), (50, 100)

a An (x,y) point, on P, where the branching process originates from (50, 50)
f The length of the new branch as a fraction of the line dividing the

perimeter in two
2

z The minimum area needed to stop the branching process 0.05
S V The skew of ventilation values from base to apex, i.e. how many

times greater the V value will be for a patch at the very base of the
lung compared to one at the very apex of the lung

2

S Q The skew of perfusion values from base to apex 3
S G The skew of drainage values from base to apex 1

Table 3: Parameters for constructing the environment of TBMetapopPy

Naı̈ve T cells (TN) are present within the lymphatic system and may be activated by antigen-
presenting cells. Multiple varieties of activated T cells exist within the lungs with varying differ-
ent functions [27, 28]. For simplicity, we do not make a distinction between the different roles
and include just one type of activated T cell (TA) to serve as a representation for all real-world
types.

2.2. Initial conditions

At the start of a simulation using TBMetapopPy, a network is constructed, using the param-
eters in Table 3, which models the bronchial tree as a simple space-filling tree. Firstly, a set of
coordinates which define the perimeter, P, are provided, creating a two-dimensional shape, S .
A point, a, on the perimeter is also chosen. The following algorithm is then executed to build a
space-filling tree:

1. A point, b, on P is chosen such the line ab bisects the shape S evenly
2. A point, c, is created on the line ab, whereby the line ac is a fraction, f , of the distance of

the line ab.
3. Steps 1 and 2 are repeated twice, this time using c as the start point and perimeter series

of c − a − P1 − b − c and c − b − P2 − a − c respectively, where P1 represents the points
between a and b on perimeter P, and P2 is the points from b back to a.

4. Each iteration creates two new shapes of half the size of the parent shape. A threshold, z,
is provided, and once the child shape sizes drop below this threshold, the iteration at that
branch terminates.

5. The endpoints of the branch form the patches of the finished network.

This process (an example of which is shown in Figure 2) creates a space-filling tree: the end
points of the tree may be geometrically close to one another but distant on the bronchial tree.
A further patch is added to represent the lymphatic system. In order to create a network, edges
are added to show translocation of members across the system. An edge is added between every
alveolar patch and the lymph patch.

Once constructed, the environment is firstly seeded with values for the environmental at-
tributes of the lung patches. Ventilation skew (S V ) and perfusion skew (S Q) parameters are
defined such that a patch at the very apex of the lung would have both V and Q values set to
1, whilst a patch at the very base of the lung would have a V value of S V and Q value of S Q.
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Figure 2: Example of the branching algorithm used to generate the environment within the second TBMetapopPy model.
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Patches are then assigned values according to these scales and based on their vertical position, as
shown in Equations 1 and 2, where y is the vertical position of the patch, ymax is the y-coordinate
of the highest vertical point of the area and ymin is the y-coordinate of the lowest vertical point.
These equations create linear scales of perfusion and ventilation across the lung, as seen in the
literature [29].

V = 1 + (ymax − y) ∗
S V − 1

ymax − ymin
, (1)

Q = 1 + (ymax − y) ∗
S Q − 1

ymax − ymin
. (2)

Once every patch in the lung has been assigned these values, the sums of all V and Q are calcu-
lated and each patch’s values are divided by these totals in order to normalise them and ensure
the sum of all values across the lung comes to 1. Oxygen tension, O, is calculated automatically
as per Equation 3.

O =
V
Q

(3)

All patches (lung and lymph) are then seeded with population values. Lung patches are assumed
to contain MR and DI in the absence of infection, with the lymph patch containing MR and TN .
We assume these populations remain at an equilibrium level without infection calculated as per
Equation 4, where Cx is the equilibrium value for the compartment x, Rx is the recruitment rate
for x and µx is the death rate for x.

Cx =
Rx

µx
. (4)

Within the lung, the recruitment rate for a given compartment will be scaled by the perfusion, Q,
at the patch, resulting in Equation 5.

Cx =
QRx

µx
. (5)

Finally, bacteria are seeded within the lung, with loads of IR for BER and ID for BED placed
within a single patch in the lung. The choice of patch can either be chosen randomly based on
ventilation values or hard-coded to a specific patch dependent on the scenario being explored.

2.3. Events

As the simulation runs, populations are able to interact with each other and the local environ-
ment, with members switching into different compartments as they change states or locations.
Here, we define the dynamics that occur within the TBMetapopPy model. The event system of
the model uses the Gillespie Algorithm to model time - each interaction is coded as a separate
event and each must define how its rate of occurrence is calculated from the event parameters
(listed in Table 4 and explained in Section 2.4) and the current population counts of the network,
and must also define the outcome of the event being performed.

2.3.1. Innate immune response
MR cells are initially present in both the lung and lymphatic system. These cells die naturally

at a rate of µMR, and are replaced through recruitment which occurs at rate QαML in the lung
and αMY in the lymph. As Q is the perfusion value at the patch, which is itself a fraction of the
perfusion to the whole lung, the parameter αML represents the total number of cells recruited to
the entire lung, a portion of which will be sent to a specific patch.
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DI cells also die (at rate µDI), and are replaced in the lung through recruitment (at rate QαD).
In the lymphatics, naı̈ve T cells die (at rate µT N) and are replaced through recruited cells (at rate
αT ).

The bacteria in the lung are initially extracellular and are able to replicate freely, with BER

replicating at rate λRBER and BED replicating at rate λDBED. In order to model the effects of
hypoxia on bacterial replication, we include an event to switch bacteria to BED with increased
likelihood in an oxygen-poor environment, with rate ξBER

(
O−σξ

O−σξ+θξ
−σξ

)
, whereby σξ > 0. We also

include the reverse event, with BED converting to BER when presented with an oxygenated area,
with rate equal to ξBED

(
Oσξ

Oσξ+θξ
σξ

)
.

The phagocytes within the lung may encounter the bacteria and ingest them. This occurs at
rate γRMR

BE
BE+θγR

for MR and rate γDDI
BE

BE+θγD
for DI , where BE = BER + BED. When performed,

an extracellular bacteria is probabilistically chosen to be ingested based on current levels. We
model the ability of M. tuberculosis to avoid destruction by assigning a probability to bacte-
rial destruction when MR encounter bacteria, with η representing the probability that a MR cell
will become infected and the bacterium will become intracellular , whilst (1 − η) represents the
probability that the bacterium will be destroyed. We assume that DI are incapable of bacterial de-
struction and so always convert to DM when ingesting bacteria, and that the different replication
phenotypes (BER or BED) have the same chances of survival under phagocytosis.

If a bacteria survives the ingestion process, it converts to an intracellular state (BIM or BID for
phagocytosis by MR or DI respectively) and the cell converts to an infected state (MR convert to
MI , DI convert to DM). MI and DM both die naturally, at rates µMI MI and µDMDM respectively,
and this may return some of the internal bacteria back into extracellular compartment BED (we
assume that the internal conditions within a macrophage are stressful to bacteria and thus they
have been forced into a dormant state, which they remain in once released). For DM death, we
assume the single internal BID is always released, whilst for MI death, we assume a percentage
of the bacteria inside the macrophage (ψµ BIM

MI
) are destroyed with the remainder ((1 − ψµ) BIM

MI
)

released.
Once in the internal compartment of the immune cell, bacteria can replicate, constrained by

the internal capacity of the cell. We assume DI cells are too small to permit replication and
thus BID do not replicate. BIM may replicate at rate λI BIM

(
1 − (BIM )σλ

(BIM )σλ+(φMI )σλ

)
. Thus the rate of

replication decreases as the levels of bacteria approach the total carrying capacity of all infected
macrophages (φMI). As macrophages start to fill with bacteria, they may ‘burst’, rupturing their
outer wall and releasing bacteria. The rate of occurrence for this is inverse to replication, i.e.
it increases as the bacterial level approaches capacity, with rate βMI

(
(BIM )σλ

(BIM )σλ+(φMI )σλ

)
. When this

occurs, a fraction of total BIM (calculated as ψζ BIM
MI

) are destroyed, with the remainder, (1−ψζ) BIM
MI

,
returning to the compartment BED. The death of an infected macrophage releases a portion of
caseum, C, into the extracellular compartment.

Resting macrophages may overcome their inability to destroy bacteria by activating - this
converts the MR member to MA. This process is triggered by the presence of bacteria, at rate
εMBMR

BE
BE+θεMB

. Activated macrophages can ingest bacteria in the same manner as MR, with
rate γAMA

BE
BE+θγA

, but MA cannot become infected and thus the bacteria ingested are always de-
stroyed, simulating the increased bactericidal effects of macrophage activation. MA cells die at
rate µMAMA.

Infection is not just restricted to the initial location and the lymphatics. We assume that
there exists a period of time after bacteria become present in the lymphatics and before the
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establishment of a structured lesion there, and that during this time period bacteria are able to
freely move from the lymph nodes into the blood and thus be transferred back into the lung
to seed new lesions. In modelling terms, we assume that the presence of caseum indicates a
stable lesion, and thus the rate of translocation of bacteria from the lymphatics into the lung is
τBY BED(1 − C

C+θτBY
).

2.3.2. Adaptive response
In response to infection, the body increases the supply of immune cells to the lung to assist

within containment. This is modelled by separate events for each resident immune cell type at
each location. In the lung, enhanced macrophage recruitment occurs at rate βMLQ ωMI+MA

ωMI+MA+θβML
.

We assume that MI and MA cells create the necessary chemokines to trigger enhanced recruit-
ment, and include ω as a weighting term to allow for these cells to produce differing levels
of chemokine. Similarly, dendritic cell recruitment is enhanced at rate βDQ ωMI+MA

ωMI+MA+θβD
. In the

lymphatics, macrophage recruitment is enhanced at rate βMY
ωMI+MA

ωMI+MA+θβMY
. Enhanced T cell re-

cruitment is dependent on dendritic cells and is increased at rate βT
DM

DM+θβT
.

Both dendritic cells [30, 31] and macrophages [32] have been shown to transfer to the lym-
phatics during infection in order to present antigens and trigger an adaptive immune response.
We treat both DI and MI as antigen-presenting cells and we model their transfer to the lymphatics
as two separate events: with DI translocating at rate τDGDI and MI translocating at rate τMGMI ,
thereby creating different rates of clearance at different regions, based on G. This transfer, whilst
necessary for establishing an adaptive immune response, also carries the risk of spreading infec-
tion, as any internalised bacteria are also transferred to the lymphatics. The transfer of bacteria
to the lymph nodes may be a necessity for establishing an adaptive immune response [33]. Thus
in our model, transfer of MI also causes the transfer of BIM members (calculated as the average
number of BIM per MI), and transfer of a DM member also transfers a single BID.

Antigen-presenting cells in the lymphatics can cause activation of T cells from a naı̈ve to
an activated state. This occurs at rate εT TN

MI+DM
MI+DM+θεT

, and results in TN changing to TA. Once
activated, these T cells migrate to the sources of infection to enhance the immune response and
contain the bacteria. We allow the body to direct T cells to where they are needed by basing the
rate of translocation of these cells from the lymphatics to the lung on the number of DM - the
presence of these cells in the lymphatics gives an indication of the level of infection within the
lung as they only originate within the lung. Thus, increased numbers of DM in the lymphatics
indicates that more T cells need to migrate to contain infection in the lung, rather than remaining
in the lymph to fight infection there. The rate of translocation is τT TA

DM
DM+θT

.
Activated T cells perform two primary functions in the model: the first is to cause activation

of macrophages, converting MR into MA, occurring at rate εMT MR
TA

TA+θεMT
. The second function

of TA is to causes apoptosis - the controlled destruction of infected cells. This is modelled by
allowing TA members to destroy MI members at rate κM MI

TA
TAθκM

. Doing so also destroys some
internal bacteria, calculated as ψκM

BIM
MI

, with (1 − ψκM) BIM
MI

converting from BIM to BED. TA

members naturally die at rate µT ATA.

2.3.3. Weakening of the immune system
The events described previously constitute the primary and latency stages of infection: an

initial infection occurs within the lungs and the bacteria levels are brought under control by
an adaptive immune response. In order to model a post-primary infection (more specifically,
a reactivation scenario whereby the immune system containing the bacteria during the latency
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Parameter Description Baseline Dist. Range Ref
λR BER replication rate 0.814 N 0.03 [16]
λD BED replication rate 0.26 N 0.01 [16]
λI BIM replication rate 0.26 N 0.01 E
σλ Sigmoid for BIM replication 2.0 N 0.01 [34]
φ Carrying capacity of macrophages 50 N 10 [34]
ξ Rate of conversion between bacterial states 1 U 0.01 - 2.0 E
θξ Half-saturation for conversion between bacterial states 1 U 0.01 - 2.0 E
σξ Sigmoid for conversion between bacterial states 2 U 1.0 - 3.0 E
τBY Rate bacteria move from lymphatics to lung 1e-3 U 5e-4 - 2e-3 E
θτBY Half-sat of caseum stopping bacterial reseeding of lung 500 U 250 - 750 E
αD Rate of standard recruitment of DI into the lung 599e4 N 75e4 E
βD Rate of enhanced recruitment of DI into the lung 5000.05 U 1e-1 - 1e5 E
θβD Half-sat value for enhanced recruitment of DI in lung 5500 U 1e3 - 1e4 E
µDI Death rate of DI 0.01 N 4e-3 [34]
µDM Death rate of DM 0.3 N 0.1 [34]
γD Rate at which DI encounters bacteria 0.3 U 0.2-0.4 E
θγD Half-sat value for contact between DI and bacteria 5500 U 1e3 - 1e4 E
τD Rate of translocation of DM from lung to lymphatics 0.55 U 0.1 - 1.0 [35, 36]
αML Rate of standard recruitment of MR into the lung 599e5 N 75e5 [37]
βML Rate of enhanced recruitment of MR into the lung 50000.05 U 1e-1 - 1e5 E
θβML Half-sat value for enhanced recruitment of MR in lung 5e3 U 1 - 1e4 E
αMY Rate of standard recruitment of MR into the lymphatics 53.465 N 3.0 [35]
βMY Rate of enhanced recruitment of MR into lymphatics 750 U 600 - 900 E
θβMY Enhanced recruitment of MR in lymph half-sat 5500 U 1e3 - 1e4 E
ω Weighting value for chemokine release by MI to MA 0.55 U 1e-2 - 1 E
µMR Death rate of MR 0.01 N 4e-3 [34]
µMA Death rate of MA 0.01 N 4e-3 [34]
µMI Death rate of MI 0.01 N 4e-3 [34]
ζ Rate of bursting of MI 0.25 N 0.05 [34]
τM Rate of migration of MI from lung to the lymphatics 0.001 U 1e-4 - 1e-1 E
εMB Rate of activation of MR by extracellular bacteria 0.01 U 1e-4 - 1e-1 E
θεMB Half-sat for activation of MR by extracellular bacteria 5500 U 1e3 - 1e4 E
εMT Rate of activation of MR by TA 0.3 U 0.1 - 0.5 [34]
θεMT Half-saturation for activation of MR by TA 5500 U 1e3 - 1e4 E
κM Rate at which TA destroy MI 1.35 U 0.7 - 2 [34]
θκM Half-saturation value for TA destruction of MI 1e3 U 1e1 - 2e3 E
ψκM % of bacteria destroyed when MI is destroyed by TA 0.5 U 0.5 - 1 E
γR Rate at which MR ingest bacteria 0.3 N 0.01 [34]
θγR Half-sat for contact between MR and bacteria 5500 U 1e3 - 1e4 E
η Probability MR becomes infected during phagocytosis 0.75 U 0.5-1.0 E
γA Rate at which MA ingest bacteria 0.8 U 0.2-1.4 E
θγA Half-sat for contact between MA and bacteria 5500 U 1e3 - 8e3 E
αT Rate of standard recruitment of TN into lymphatics 1000 N 3.0 [34]
βT Rate of enhanced recruitment of TN into lymphatics 1000 U 900 - 4000 E
θβT Enhanced recruitment of TN into lymphatics half-sat 1e3 U 1 - 2e3 E
εT Rate of activation of t-cells 0.4 U 0.1 - 0.7 [34]
θεT Half-sat value for activation of T cells 1e3 U 1e1 - 2e3 E
τT Rate of T cell migration from lymphatics into lung 0.625 U 0.3 - 0.95 [34]
σT T cell migration sigmoid 0.25 U 1e-3 - 3.0 E
µT N Rate of death for TN 0.102 N 1e-2 [34]
µT A Rate of death for TA 0.333 N 1e-2 [34]
λT Rate of replication for TA 0.15 U 1e-3 - 0.3 E

Table 4: Event parameters (E = estimated). All values are based on rates of event per day.
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phase is compromised and thus allows for bacterial levels to rise again), we include an event that
reduces the rate of T cell recruitment (i.e. αT is decreased). Unlike the previous events, this event
is not stochastic and instead is coded to occur at a user-defined time-point. For or experiments,
we chose for this event to occur at 350 days, after latency has been established and the bacterial
loads have relatively stabilised.

2.4. Parameters

The parameters used in the event dynamics, environment construction and initial conditions
are listed in Table 4, and have been derived from existing literature where possible or estimated.
Each parameter is given a baseline value for the purposes of running individual simulations (see
Section 3), as well as a range, representing the biological uncertainty of the parameter, which is
used for sensitivity analysis (see Section 4).

3. Results

We began by running simulations using the model with parameters set to the baseline values
as defined in Tables 3 and 4. As the model is stochastic, 32 repetitions were run and the results
presented are averaged over these repetitions.

3.1. Primary infection to latent infection - total bacteria and lesion size

We first examined the total bacterial load of the system over time. Figure 3 shows the results
of the total bacterial load for each of the 32 repetitions over time. In the initial phase, a primary
infection begins and reaches its peak between 25 and 45 days in all simulations. This is brought
under control by the introduction of the adaptive immune response with low bacterial levels in all
simulations by about day 55. This correlates with evidence that the adaptive immune response
for TB occurs within humans within 5-6 weeks [36].

Whilst all simulations are relatively consistent to the point where the infection has been
brought under control, with only minor variations in the height and time of the peak of initial
infection, the results vary much greater in the response after this point. Whilst many simulations
tend to keep bacteria numbers at a low level, for those that do not, the total number present has
a large amount of variation. But it is impossible from this Figure to accurately understand the
whole situation: a high bacterial load may be a result of a single large lesion, or multiple small
lesions. It is important to make the distinction between these two scenarios: multiple small le-
sions can be interpreted as being stable: the immune system is able to keep these lesions at a
low level and stop bacterial growth; whereas a large lesion can be interpreted as a failure of the
immune system to control bacterial growth at that location: this may lead to tissue damage, and
then cavitation. Therefore, it is preferable for the host to keep the lesion size small, and it is im-
portant for us to understand the size of the lesions created. We investigated the notion of bacteria
distribution by tracking the average size of all lesions for each simulation, with the results shown
in Figure 4. Here, we see that the average lesion size after day 60 is much lower: indicating
that while there are a high number of bacteria, they are often being contained in multiple smaller
lesions than fewer, tissue-damaging large lesions.
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Figure 3: Total bacterial load of all patches over time within the TBMetapopPy system, showing individual counts for
each of 32 repetitions
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Figure 4: Average size (measured as number of bacteria) of all lesions over time within the TBMetapopPy system,
showing individual averages for each of 32 repetitions
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Figure 5: Vertical distribution of lesion sizes with TBMetapopPy simulations during the primary infection stage. Colour
shows the average lesion size at each of 20 evenly sized horizontal slices of lung taken from 32 simulations.
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Figure 6: Vertical distribution of average lesion sizes with TBMetapopPy simulations during the latent infection stage

3.2. Spatial distribution of lesions and lesion size from primary to latent infection

We then explored which spatial areas of the lung were being affected by the disease over
the course of the infection, by looking at the average lesion size for each horizontal slice of
alveolar tissue (i.e. we group patches together that fall within the same given vertical position
boundaries). Figure 5 shows the correlation of average lesion size to vertical position in the lung
during the primary stages of infection. The initial lesion (in the very lowest region) grows and
peaks at around 30 days - this was the largest average lesion size seen over the whole course of
the simulation time-frame. By day 50, the lesion has stabilised but bacteria have spread to other
regions of the lung. At this point, these lesions are all at a very small average size, despite the
differences in their life-cycles: the large, older lesion at the base has almost completely healed,
whilst the lesions at other regions in the lung have just begun and are thus at a small size. Figure
6 shows the average lesion size during the following stages of infection, from day 60 to day
150. We witnessed that whilst lesion size starts homogeneous across the lung, as time progresses
the lesions at the apical region start to expand at a greater rate than those towards the base.
This is in stark contrast to the lesions during the primary stage, which are typically completely
homogeneous in terms of bacterial load. The size of these lesions during latency fluctuates in
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Figure 7: Vertical distribution of the number lesions with TBMetapopPy simulations during the primary infection stage

a sinusoidal manner (see Figure 4), but these average lesions sizes never reach the size seen
during the primary infection. We further explored the numbers of lesions during infection, again
stratifying the lesions based on their vertical position. Figure 7 shows the average number of
lesions in each horizontal division of the lung per simulation. Here, we only counted patches
where there was a bacterial presence - i.e. any lesions that were healed (no bacteria remaining)
were not counted. In the primary stages, there is always a lesion present in the lowest basal region
(the initial lesion where infection begins). By day 50, other lesions have begun to form across
the lung, with a fairly even spread across the vertical dimension. Figure 8 shows the average
number of lesions per horizontal section per simulation for later timesteps. At the very bottom
section, the number of lesions decreases and reaches a level comparable to the rest of the lung.
This occurs due to healing: the original lesion is, in many simulations, being completely healed
of bacteria and thus is no longer counted. For the remainder of the lung, we witnessed some
heterogeneity in the number of the lesions. By day 120, there appear to be two distinct regions
with greater lesion counts: one at the very bottom of the lung and one in the second quadrant
from the top of the lung (marked A and B respectively on Figure 8).
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Figure 8: Vertical distribution of the number lesion sizes with TBMetapopPy simulations during the latent infection stage.
Colour shows the average number of lesions present at each of 20 evenly sized horizontal slices of lung, with average
taken from 32 simulations. A and B denote the regions with greatest number of lesions.
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3.3. Post-primary disease

Having established that our model permits a higher bacterial load towards the apices during
latent infection, we then proceeded to model the post-primary stage of the disease. As the actual
causes of the change from latency to post-primary are unclear, and may not be the same for every
individual case, we chose to model one case: a weakening of the immune system. In order to
model this, we introduced a static event, which is set at the beginning of simulation and will
always occur at the set time-point. This event drops the T cell recruitment rate, αT , by half, and
is set to occur at 250 days, well after latency has been established. We again ran 32 simulations,
this time running for 500 days.

Figure 9 shows the distribution of the average lesion size for each of the 32 simulations. We
see the same pattern as before for primary and latency disease. At the time of the T cell recruit-
ment drop, the lesion sizes increase again, in many cases reaching levels similar to those seen
at primary disease. We determine these to be a post-primary form of disease. We also note that
not all replications reach this level: in some cases, where the average lesion size was low during
latency, the average lesion size after the T cell recruitment drop increases but does not reach
these high levels. In Figure 9 we show the spatial distribution of average lesion sizes within the
lung. Again, the lesion size is large at base during primary infection (t=30), and this levels out at
the end of primary infection and the beginning of the latent phase (t=60), with a slightly greater
lesion size (approximately 1400) at the apex during latency (t=150). After the T cell recruitment
drop, the average lesion sizes increase, with the largest (at approximately 3300 bacteria), most
damaging lesions appearing at the apex of the lung (t=400).

4. Sensitivity Analysis

Having established that the environmental heterogeneity present within the lung environ-
ment can plausibly contribute to the differences in localisation seen during different stages of
infection, we then proceeded to run uncertainty and sensitivity analysis, exploring the scale of
uncertainty present within the results of our model and apportioning this uncertainty to the uncer-
tainty within our input parameters. The reasons for doing this are two-fold. Firstly, our model,
like any model constructed to simulate real-world biology, is built upon real-world data which
is often incomplete [38], possibly due to a lack of available in vivo and in vitro models. There-
fore, it is important to understand exactly how this uncertainty in the model input propagates
to its outputs, as this can highlight which uncertain parameters should be investigated further
(perhaps in a laboratory or clinical trial setting) in order to reduce the parameter uncertainty and
thus improve our confidence in the model’s outputs. Secondly, by varying the values of input
parameters and tracking the variance of the model’s outputs, we are afforded insight into which
of the model parameters is most influential on the given output, and thus can deduce which in-
dividual events within the system most influence disease outcomes. Future treatments that can
target these important functions would be more likely to be successful.

Our model contains a large number of parameters based on biological processes which are
uncertain, and this introduces a large amount of uncertainty into our results. As these parameters
drive various events within the model that rely on the same elements (such as the bacterial and
immune cell compartments), it is reasonable to assume that there will be interactions between
parameters. Furthermore, the complex host-pathogen interactions that occur during TB disease
mean that we can expect non-linearities to be present in our model as well, as shown in our
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Figure 9: Average size (measured as number of bacteria) of all lesions over time within the TBMetapopPy system
incorporating a T cell recruitment drop (black line), showing individual averages for each of 32 repetitions
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Figure 10: Vertical distribution of average lesion sizes with TBMetapopPy simulations during the primary (t=30), early
latency (t=60), latency (t=150) and post-primary (t=400) infection stages.
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Output Description
ΩT The total number of bacteria (of all states) present

within the system
ΩN The total number of lesions present within the sys-

tem (i.e. patches where bacteria count > 0, does
not include lesions which have been sterilised)

ΩS The average size of all lesions within the system
(i.e. the average number of bacteria per patch,
includes patches where the lesion has been ster-
ilised)

Table 5: Outputs from TBMetapopPy used for sensitivity analysis

results in Figure 10: the reduced perfusion towards the apex improves the chances of bacterial
growth in that region, but the perfusion at the very apex is too low to permit the bacteria access
to the uppermost region. These factors of interactions and non-linearities mean that in order to
perform a valid sensitivity analysis, a global approach must be used, i.e. all parameters must be
varied at the same time [38], and the whole n-dimensional (where n is the number of parameters)
parameter space must be explored.

In order to do this, we chose to follow the methodology laid out by Marino et al in performing
global uncertainty and sensitivity analysis of systems biology models [39]. For our parameter
value ranges, where parameters were derived from values from the literature, we assigned a range
based on a normal distribution using the literature value as the mean and an appropriate standard
deviation value. For parameters which have been estimated, a uniform distribution was chosen
with a large range to reflect the additional uncertainty.

There exists a large number of possible outputs from the model. For the purposes of our anal-
ysis, we examined three outputs, as listed in Table 5. These values vary over time, as the system
moves between different stages of infection. Therefore, we track the sensitivity values of each
parameter and output combination over a time period, chosen as being day 1 of infection to day
120 (by which time the primary infection has been contained and a latent infection established).
We chose to only perform sensitivity analyses on the primary and latency stages of infection: our
model of post-primary disease requires one of the parameters (αT ) to be changed during simula-
tion. The sensitivity analyses we have outlined in this chapter are unable to account for changing
parameter values so would not generate accurate results for a post-primary stage.

4.1. PRCC

We began by first calculating Partial Rank Correlation Coefficient (PRCC) values for all
parameters against all output variables over the time-span of 120 days. We chose to use 100
stratifications of the input parameter ranges, and used the average results of 20 repetitions in
order to reduce the contribution of aleatory uncertainty.

We first plotted the results of our three outcomes in order to perform our Uncertainty Analy-
sis and understand how uncertain our outcomes were. These are shown in Figure 11, which
shows the plots of each of the 100 aggregations of 20 repetitions for each parameter sample gen-
erated by a Latin Hypercube Sampling method, and summarised in Figure 12, which shows the
mean and standard deviation over time of these outputs.

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.12.871269doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.871269
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 11: Uncertainty analysis plot of each output over time from each of the 100 averages (of 20 repetitions) for each
parameter sample

Figure 12: Uncertainty analysis summary statistics plot of all outputs over time from each of the 100 averages (of 20
repetitions) for each parameter sample.

From these plots, we note that there is a high degree of uncertainty in our output variables,
particularly in the later stages of infection (as seen by the large errors present for all three out-
puts in Figure 12. From Figure 11, we see the effects of aleatory and epistemic uncertainty:
changes in the model parameters can lead to different scenarios in the outcomes (evidenced by
the grouping of results at time t=120.0, particularly for ΩS and ΩT ), while aleatory uncertainty
creates minor fluctuations within these outcomes.

Having established the uncertainty within our model outcomes, we then generated PRCC val-
ues for each parameter and output combination over the time-scale of the simulations. The full
set of plots and significant sensitivities are presented in the Supplementary Materials, and in this
section we overview some of these results.

4.1.1. The influence of environmental parameters
The three environmental parameters, S V , S Q and S G, all exhibit differing sensitivities upon

the outputs (see Figure 13). For these variables, an increases indicates a increase in the het-
erogeneity within the lung; for example, a greater S V value results in more ventilation being
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directed towards the base of the lung and less towards the apex, and similarly for S Q and S G.
For the number of lesions, the environmental parameters show little sensitivity, with increased
drainage at the base showing a slight negative PRCC value during the early stage of infection,
implying that better movement of immune cells to the lymphatics can reduce the number of le-
sions during the primary stage, but this reduces as latency is established. The sensitivity of the
S Q and S V have little impact on the number of lesions throughout the infection.

After a period of around 30 days, the PRCC values for S Q against both the total number of

Figure 13: Sensitivity plots for environmental parameters within TBMetapopPy, plotting the PRCC value of each param-
eter against one of the three outputs over time. Grey shaded area shows non-significance (p<0.01).

bacteria and the average lesion size become significant. This implies that the differential in per-
fusion across the lung has little impact on the primary infection, but does impact the conditions
present during latent infection, with a greater differential increasing both the total bacteria present
within the patient and the size of the lesions they have developed.

4.1.2. The importance of T cells
Figure 14 shows a selection of the sensitivities of parameters related to T cells against the

outputs of the model. We note that the model is highly sensitive to many of these parameters,
indicating that T cells play a very important role in the course of infection. For the number of
lesions, the sensitivities for most parameters remain in the insignificant range, but for most these
values become significant after the primary stage of infection. T cell activation is very important,
with εT having negative values (as greater rates of activation decrease the number of lesions)
and θεT having negative values (as an increased half-sat reduces the rate of contact between T
cells and antigen-presenting cells). This trend for T cell activation also occurs for the other two
outputs. The speed at which T cells destroy macrophages and the contact rates allowing this
to occur have high sensitivities for all three outputs, indicating this is an important process to
maintain control over infection. Establishing a sufficient T cell presence is also an important
factor, with T cell replication have a strongly negative PRCC value, as the proliferation of T cells
is necessary in the model to fight bacterial growth.
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Figure 14: Sensitivity plots for T cell related parameters within TBMetapopPy, plotting the PRCC value of each parame-
ter against one of the three outputs over time. Grey shaded area shows non-significance (p<0.01). Only parameters with
sustained significant PRCC values against one output are displayed.

4.1.3. Bacterial replication
Our PRCC results show contrasting findings for the replication of intracellular and extracel-

lular bacteria on the outputs, as shown in Figure 15. Intracellular replication (λI) has a positive
PRCC value for all three outputs during the initial primary infection (albeit with non-significance
for ΩN). This value becomes negative and remains non-significant until briefly becoming sig-
nificant for all three outcomes at around 30 days. This is in contrast to the two extracellular
replication rates, which at 60 days are both positive. This suggests there may be some benefit to
bacteria by growing slower when intracellular, possibly due to slower growth reducing the rate of
cell death of the macrophage, and thus keeping the bacteria in an environment where they cannot
be harmed for a longer period of time.

4.1.4. Translocation of macrophages is more important than translocation of dendritic cells
One perhaps surprising result is that the translocation of macrophages (τM) had higher PRCC

value than translocation of dendritic cells (τD) for most of the time-frame of infection, as shown
in Figure 16. τM occurs at a much lower rate than τD in our model (1e-4 - 1e-1 compared to 0.1
- 1.0 ranges respectively), indicating that this process is an important part bacterial containment
within our model, possibly as the macrophages carry a larger quantity of bacteria than the den-
dritic cells, and thus draining more of them to the lymph nodes and exposing them to activated
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Figure 15: Sensitivity plots for bacterial replication parameters within TBMetapopPy, plotting the PRCC value of each
parameter against one of the three outputs over time. Grey shaded area shows non-significance (p<0.01).

T cells faster is a suitable mechanism to improve the fight against the bacteria proliferation.

Figure 16: Sensitivity plots for immune cell migration parameters within TBMetapopPy, plotting the PRCC value of
each parameter against one of the three outputs over time. Grey shaded area shows non-significance (p<0.01).

4.1.5. Parameters affecting different stages
As noted, many parameters within TBMetapopPy change significance over time, with some

of these corresponding to different stages of infection. Tables A1, A2 and A3 in Supplementary
Materials show the effects of all parameters with a significant PRCC against each outcome,
stratified into 10 days periods. We see that some parameters that are significant during the first
30 days (i.e. the primary stage of infection) lose significance at later stages. And conversely,
parameters that are insignificant during the early stages gain significance later in the simulated
time. Examples of this include the rate of death of naı̈ve T cells (µT N), where increased T cell
death results in great bacterial numbers, but only during the primary infection, and enhanced
recruitment of macrophages to the lymph nodes (βMY ), whereby increased cell recruitment there
decreases the average size of lesions and the total number of bacteria within the model, but only
from day 51 onwards.
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5. Discussion

Computational models of the within-host dynamics of TB have been used extensively to
improve our understanding of how disease progresses within the body, particularly at the scale
of a single lesion [16, 17, 18] and with some models looking at the disease over the whole lung
and the associated lymph nodes [34, 35, 40, 41]. However, these models have not included the
notions of heterogeneity of environmental conditions within the lung as shown in this paper,
which are believed to be critical to the apical localisation of TB during the crucial post-primary
stage [11]. In our first model [19], we presented the first in silico model of a pulmonary TB
infection that included environmental heterogeneity and bacterial dissemination to show how the
environmental conditions at the apex of the lung can favour bacterial growth and lead to larger
bacterial loads at that location during latency. In this work, we have expanded on that initial
model by including the whole life-cycle, from initial infection with bacteria to post-primary
disease.

The results of our numerical simulations have shown that the plausibility of the environmental
heterogeneity being the driving factor for a post-primary apical disease localisation within the
lung. Within our model, we have set the initial infection to begin in the lower regions of the
lungs. As this progresses, the bacteria proliferate until their numbers are brought under control
by the adaptive immune response. However, in order to trigger this adaptive response, antigen-
presenting cells (dendritic cells and macrophages in our model) must traffic to the draining lymph
nodes. By doing so, these cells present a means of bacterial dissemination, since any alive
bacteria inside the cells are transferred along with the cell. This establishes a secondary infection
within the lymphatic system. There is then a short window in our model whereby bacteria are
present in the lymph nodes but before a solid granuloma has formed there, and it is during this
period that the free bacteria are able to access the blood stream and re-seed the lung. Various
smaller lesions form, but due to the adaptive immune response already being established, these
lesions do not reach the sizes of the single lesion seen in the initial infection. These lesions
are heterogeneous, with lesions towards the apex reaching a greater size than those lower down.
This scale is not completely linear: the regions at the very apex of the lung are so poorly perfused
that bacteria cannot reach them. Thus there exists a ideal region, slightly below the apex, where
conditions are ideal for bacterial growth. Once an external event reduces the immune response
(by knocking out some of the recruitment of T cells), the numerous lesions present begin to
expand, and it is in this region that the lesions reach the dangerous sizes seen during primary
infection. It would be interesting to make a comparison between the apical location identified in
this paper with radiological lesions, but such a study was beyond the scope of this work.

Our sensitivity analysis shows that the skew of perfusion values has a significant effect on
the total number of bacteria and the average lesion size during the primary and latency stages,
whereas the skews of ventilation and drainage have limited impact. Therefore, we can interpret
this as showing that the heterogeneity of perfusion may be the main environmental factor that
contributes to the apical localisation, probably due to the reduced immune response it causes
there. Differentials in blood flow have long thought to contribute to this apical localisation,
with bed rest (which alters the scale and direction of blood flow due to the change in the host’s
posture [42]) previously being shown to have positive effects on TB recovery [14] and this is the
first modelling evidence to support this idea.

The results of our sensitivity analysis also highlight other mechanisms that may contribute
to disease outcome. We have demonstrated the importance of T cells within the model, as the
majority of T cell related parameters had significant influence on all three of our disease outputs.
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For our model, extracellular replication has a greater impact on disease outputs during the la-
tency stage than intracellular replication. Thus, it may be more important to focus treatments on
destroying these extracellular bacteria than those in the intracellular niche to improve treatment
during latency.

Our TBMetapopPy environment models a single individual, with environmental attributes
determined at the beginning of simulation remaining constant throughout. In reality, whilst the
environment of the lung affects the disease, the reverse is also true, with the disease altering the
anatomy of the lung, with tissue destruction and cavitation creating new routes of bacterial dis-
semination. Furthermore, our model simulates a single individual, with one set of environmental
parameters being used for all simulations. However, no two human beings have the same lung, as
lung morphology and physiology are affected by a number of factors, including height and body
size [43], and sex [44, 45, 46]. Gender may be of particular interest to TB researchers, as there
has been shown to be gender differences in responses to treatment: an analysis of the REMoxTB
clinical trial revealed that men with cavitation showed poorer response to treatment than women
with or without cavitation [47]. These differentials in disease outcome between genders may
be caused by biological sex differences between male and female lung morphologies [44, 48],
although the causes may also be socio-economic or cultural [49].

The focus of our model has been to simulate the disease in its untreated form. However,
it is reasonable to assume that environmental heterogeneities also impact the pharmacokinetics
of TB treatment, as all drugs will enter the environment via the blood and thus perfusion dif-
ferentials may result in inadequate concentrations of chemotherapy reaching the areas of worst
bacterial growth. The pharmacodynamics of the different drugs that are currently used to fight
TB are affected by different environments and so a variety of different drugs could be included
in the model that perform different actions dependent on their location. The ability to combine
a whole-organ model of various lung morphologies with a range of possible treatment regimens
would confer the ability to create ‘virtual clinical trials’, where new regimens could be trialled
on synthetic patients first, allowing us to make predictions on their likely efficacy and thus better
prioritise the regimens to be put into actual trials.
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